The nth roots of minus unity

01.00] From a purely arithmetical starting-point, one might ask, mischievously, what is the square root of minus unity ?

$$
x=\sqrt{ }(-1)
$$

or equivalently,

$$
x^{2}=-1
$$

The facile answer is of course "i", the mysterious prototype of my father's frequentlyaired expression "the square root of minus b^{*} gger-all". But i is far from negligible, and has mathematical status equal to unity itself.
01.10] From an algebraic point of view, we recall Harriott's pioneering insights back in Elizabethan times that the proper way to present this is as a polynomial equation of the form

$$
x^{2}+1=0
$$

And we also know from the Fundamental Theorem of Algebra that this equation has in fact two solutions (as many as the highest degree of the unknown).
01.20] The first step is to factorise the equation, if at all possible. And lo, as Eddington used to say, it is indeed.

$$
\begin{aligned}
& x^{2}-(i)^{2}=0 \\
& (x-i)(x+i)=0
\end{aligned}
$$

So the square root of minus unity is not just i but $-i$ also.
02.00] How therefore do we cope with the cube roots of minus unity? At least we now know to present the situation as a polynomial equation.

$$
\begin{aligned}
& x=3 \sqrt[3]{ }(-1) \\
& x^{3}+1=0
\end{aligned}
$$

02.10] $x=-1$ is clearly one solution, and therefore, by algebraic division (often cited as 'synthetic division', I don't know why) we find

$$
x^{3}+1=(x+1)\left(x^{2}-x+1\right)=0
$$

02.11] The roots of $\left(x^{2}-x+1\right)$ can be found from the quadratic formula as

$$
\frac{1 \pm \sqrt{ }\left[(-1)^{2}-4(1)(1)\right]}{2}
$$

From which $\mathrm{x}=\frac{1 \pm \mathrm{i} \sqrt{ } 3}{2}$
02.20] In summary, the cube roots of minus unity are $-1, \frac{1 \pm \mathrm{i} \sqrt{ } 3}{2}$
03.00] Can we progress to the fourth roots of minus unity ?

$$
\begin{aligned}
& x=4 \sqrt{ }(-1) \\
& x^{4}+1=0
\end{aligned}
$$

03.10] Not easily. We need to devise a general-purpose algorithm for such higher roots, and de Moivre's theorem is the way forward.

Let $v=s(\cos \alpha+i \sin \alpha)$ be the nth root of $z=r(\cos \theta+i \sin \theta)$
so that $\mathrm{v}^{\mathrm{n}}=\mathrm{z}$
$\therefore \quad[\mathrm{s}(\cos \alpha+\mathrm{i} \sin \alpha)]^{\mathrm{n}}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
$\therefore \quad \mathrm{s}^{\mathrm{n}}(\cos \mathrm{n} \alpha+\mathrm{i} \sin \mathrm{n} \alpha)=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
Equating like with like,
(1) $s=n \sqrt{ }$ (immaterial as $r=1$ for plus or minus unity)
and

$$
\cos n \alpha+i \sin n \alpha=\cos \theta+i \sin \theta
$$

Equating real with real and imaginary with imaginary,

$$
n \alpha=\theta+2 \pi k \quad(\text { where } k=0,1,2,3,4, \ldots)
$$

(2) $\alpha=\frac{\theta+2 \pi k}{n}$
03.20] So for the fourth roots of minus unity, where $n=4$ and $\theta=\pi$
($n b$ that $z=\cos \pi+i \sin \pi=-1$ defines minus unity on the Argand diagram),
$\alpha(k=0)=\frac{\theta}{4}=\pi / 4=45^{\circ}$
$\cos \alpha=+(\sqrt{ } 2 / 2) \quad \sin \alpha=+(\sqrt{ } 2 / 2)$
$\alpha(k=1)=\frac{\theta+2 \pi}{4}=3 \pi / 4=135^{\circ}$
$\cos \alpha=-(\sqrt{ } 2 / 2) \quad \sin \alpha=+(\sqrt{ } 2 / 2)$
$\alpha(k=2)=\frac{\theta+4 \pi}{4}=5 \pi / 4=225^{\circ}$
$\cos \alpha=-(\sqrt{ } 2 / 2) \quad \sin \alpha=-(\sqrt{ } 2 / 2)$
$\alpha(k=3)=\frac{\theta+6 \pi}{4}=7 \pi / 4=315^{\circ}$
$\cos \alpha=+(\sqrt{ } 2 / 2) \quad \sin \alpha=-(\sqrt{ } 2 / 2)$
03.30] In summary, the fourth roots of minus unity are $(\sqrt{ } 2 / 2)(1+i)$,
$(\sqrt{ } 2 / 2)(-1+i),(\sqrt{ } 2 / 2)(-1-i),(\sqrt{2} / 2)(1-i)$

NB the following tabulation, or maybe a more complete one, is immensely useful ! $\underline{\text { more complete one }}=\underline{h t t p s: / / e n . ~ w i k i p e d i a . o r g / w i k i / E x a c t ~ t r i g o n o m e t r i c ~ v a l u e s ~}$

θ		$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
Rad	Deg						
$0 /$ 2π	0	0	1	0	Undef	1	Undef
$\pi / 6$	30	$1 / 2$	$\sqrt{3} / 2$	$\sqrt{3} / 3$	2	$2 \sqrt{3} / 3$	$\sqrt{3}$
$\pi / 4$	45	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\pi / 3$	60	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$	$2 \sqrt{3} / 3$	2	$\sqrt{3} / 3$
$\pi / 2$	90	1	0	Undef	1	Undef	0
$2 \pi / 3$	120	$\sqrt{3} / 2$	$-1 / 2$	$-\sqrt{3}$	$2 \sqrt{3} / 3$	-2	$-\sqrt{3} / 3$
$3 \pi / 4$	135	$\sqrt{2} / 2$	$-\sqrt{2} / 2$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1
$5 \pi / 6$	150	$1 / 2$	$-\sqrt{3} / 2$	$-\sqrt{3} / 3$	2	$-2 \sqrt{3} / 3$	$-\sqrt{3}$
π	180	0	-1	0	Undef	-1	Undef
$7 \pi / 6$	210	$-1 / 2$	$-\sqrt{3} / 2$	$\sqrt{3} / 3$	-2	$-2 \sqrt{3} / 3$	$\sqrt{3}$
$5 \pi / 4$	225	$-\sqrt{2} / 2$	$-\sqrt{2} / 2$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
$4 \pi / 3$	240	$-\sqrt{3} / 2$	$-1 / 2$	$\sqrt{3}$	$-2 \sqrt{3} / 3$	-2	$\sqrt{3} / 3$
$3 \pi / 2$	270	-1	0	$U n d e f$	-1	Undef	0
$5 \pi / 3$	300	$-\sqrt{3} / 2$	$1 / 2$	$-\sqrt{3}$	$-2 \sqrt{3} / 3$	2	$-\sqrt{3} / 3$
$7 \pi / 4$	315	$-\sqrt{2} / 2$	$\sqrt{2} / 2$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
$11 \pi / 6$	330	$-1 / 2$	$\sqrt{3} / 2$	$-\sqrt{3} / 3$	-2	$2 \sqrt{3} / 3$	$-\sqrt{3}$

