The nth roots of minus unity

01.00] From a purely arithmetical starting-point, one might ask, mischievously, what is the **square root** of **minus unity** ?

$$x = \sqrt{(-1)}$$

or equivalently,

x² = -1

The facile answer is of course "i", the mysterious prototype of my father's frequentlyaired expression "the square root of minus b*gger-all". But i is far from negligible, and has mathematical status equal to unity itself.

01.10] From an algebraic point of view, we recall Harriott's pioneering insights back in Elizabethan times that the proper way to present this is as a polynomial equation of the form

x² + 1 =0

And we also know from the Fundamental Theorem of Algebra that this equation has in fact two solutions (as many as the highest degree of the unknown).

01.20] The first step is to factorise the equation, if at all possible. And lo, as Eddington used to say, it is indeed.

$$x^{2} - (i)^{2} = 0$$

(x - i) (x + i) = 0

So the square root of minus unity is not just i but -i also.

02.00] How therefore do we cope with the **cube roots** of **minus unity**? At least we now know to present the situation as a polynomial equation.

$$x = \sqrt[3]{(-1)}$$

 $x^3 + 1 = 0$

02.10] x = -1 is clearly one solution, and therefore, by algebraic division (often cited as 'synthetic division', I don't know why) we find

$$x^{3} + 1 = (x + 1) (x^{2} - x + 1) = 0$$

02.11] The roots of $(x^2 - x + 1)$ can be found from the quadratic formula as

$$\frac{1 \pm \sqrt{[(-1)^2 - 4(1)(1)]}}{2}$$

From which $x = \frac{1 \pm i\sqrt{3}}{2}$

02.20] In summary, the cube roots of minus unity are -1, $\frac{1 \pm i\sqrt{3}}{2}$

03.00] Can we progress to the fourth roots of minus unity ?

$$x = 4\sqrt{(-1)}$$

 $x^4 + 1 = 0$

03.10] Not easily. We need to devise a general-purpose algorithm for such higher roots, and de Moivre's theorem is the way forward.

Let $v = s (\cos \alpha + i \sin \alpha)$ be the nth root of $z = r (\cos \theta + i \sin \theta)$

so that $v^n = z$

$$\therefore \qquad [s (\cos \alpha + i \sin \alpha)]^n = r (\cos \theta + i \sin \theta)$$

$$\therefore$$
 sⁿ (cos n α + i sin n α) = r (cos θ + i sin θ)

Equating like with like,

(1)
$$s = n\sqrt{r}$$
 (immaterial as $r = 1$ for plus or minus unity)

and

Equating real with real and imaginary with imaginary,

 $n\alpha = \theta + 2\pi k$ (where k = 0,1, 2, 3, 4, ...)

(2)
$$\alpha = \frac{\theta + 2\pi k}{n}$$

03.20] So for the fourth roots of minus unity, where n = 4 and θ = π (nb that $z = \cos \pi + i \sin \pi = -1$ defines minus unity on the Argand diagram),

$$\alpha$$
 (k=0) = $\frac{\theta}{4}$ = $\pi/4$ = 45° cos α = +($\sqrt{2}/2$) sin α = +($\sqrt{2}/2$)

$$\alpha \ (k=1) = \frac{\theta + 2\pi}{4} = 3\pi/4 = 135^{\circ} \qquad \cos \alpha = -(\sqrt{2}/2) \qquad \sin \alpha = +(\sqrt{2}/2)$$

$$\alpha$$
 (k=2) = $\frac{\theta + 4\pi}{4}$ = $5\pi/4$ = 225° cos α = $-(\sqrt{2}/2)$ sin α = $-(\sqrt{2}/2)$

$$\alpha$$
 (k=3) = $\frac{\theta + 6\pi}{4}$ = $7\pi/4$ = 315° cos α = $+(\sqrt{2}/2)$ sin α = $-(\sqrt{2}/2)$

03.30] In summary, the **fourth roots** of **minus unity** are $(\sqrt{2}/2)$ (1 + i),

$$(\sqrt{2}/2)$$
 (- 1 + i), $(\sqrt{2}/2)$ (- 1 - i), $(\sqrt{2}/2)$ (1 - i)

NB the following tabulation, or maybe a <u>more complete one</u>, is immensely useful ! <u>more complete one</u> = <u>https://en.wikipedia.org/wiki/Exact_trigonometric_values</u>

θ			0		0	0	
Rad	Deg	sin U	COS U	tan 0	CSC U	Sec U	COLA
0/	0	0	1	0	Undef	1	Undef
2π							
π/6	30	1/2	$\sqrt{3}/2$	$\sqrt{3}/3$	2	$2\sqrt{3}/3$	$\sqrt{3}$
π/4	45	$\sqrt{2}/2$	$\sqrt{2}/2$	1	$\sqrt{2}$	$\sqrt{2}$	1
π/3	60	$\sqrt{3}/2$	1/2	$\sqrt{3}$	$2\sqrt{3}/3$	2	$\sqrt{3}/3$
π/2	90	1	0	Undef	1	Undef	0
2π/3	120	$\sqrt{3}/2$	- 1/2	$-\sqrt{3}$	$2\sqrt{3}/3$	-2	$-\sqrt{3}/3$
3π/4	135	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1	$\sqrt{2}$	$-\sqrt{2}$	-1
5π/6	150	1/2	$-\sqrt{3}/2$	$-\sqrt{3}/3$	2	$-2\sqrt{3}/3$	$-\sqrt{3}$
π	180	0	-1	0	Undef	-1	Undef
7π/6	210	- 1/2	$-\sqrt{3}/2$	$\sqrt{3}/3$	-2	$-2\sqrt{3}/3$	$\sqrt{3}$
5π/4	225	$-\sqrt{2}/2$	$-\sqrt{2}/2$	1	$-\sqrt{2}$	$-\sqrt{2}$	1
4π/3	240	$-\sqrt{3}/2$	- 1/2	$\sqrt{3}$	$-2\sqrt{3}/3$	-2	$\sqrt{3}/3$
3π/2	270	-1	0	Undef	-1	Undef	0
5π/3	300	$-\sqrt{3}/2$	1/2	$-\sqrt{3}$	$-2\sqrt{3}/3$	2	$-\sqrt{3}/3$
7π/4	315	$-\sqrt{2}/2$	$\sqrt{2}/2$	-1	$-\sqrt{2}$	$\sqrt{2}$	-1
11π/6	330	- 1/2	$\sqrt{3}/2$	$-\sqrt{3}/3$	-2	$2\sqrt{3}/3$	$-\sqrt{3}$