
Rationale of Irrationality

The mathematics$ one is taught at schools is really rather utilitarian, and little 
if any attention is paid to the deeper implications of arithmetic$ in particular. 
But, fortunately, the ancient Greeks had devoted a great deal of their 
awesome collective – and individual – brainpower to investigations of this sort, 
and I’ve always been rather intrigued by their discoveries (or at least, those 
that I could understand). 

Three of the best-known names were Pythagoras (born ca 570 BC), Euclid 
(born ca 325 BC) and Archimedes (born ca 287 BC), and I’d like to dwell on a 
fascinating connection between the two first-mentioned of these.

Pythagoras didn’t originate his eponymous theorem about the square on the 
hypotenuse$ of a right-angled triangle, which had been discovered empirically 
centuries or even millennia previously, but he gave it a rationale, quite 
possibly the proof that Euclid reproduced in his Elements (a compendium of 
the geometry$ and number theory as known by that time).

But the particular case of a right-angled isosceles$ triangle caused a crisis 
which has reverberated down the centuries to this day. If the legs of the 
triangle were each (say) a metre in length, the theorem reported that the 
length in metres of the hypotenuse was the square root of (12 + 12), ie √2.

The result was taken calmly, until one Hippasus, tasked with evaluation of this 
quantity, found to his horror that it couldn’t be expressed rationally, ie as a 
ratio, one whole number divided by another whole number. The senior ranks 
of the Brotherhood decided that this awkward inconsistency with their beliefs 
had to be suppressed; Hippasus was taken out to sea, tied to an anvil and 
dropped overboard.

But the news couldn’t be kept secret, and in conjunction with Zeno’s 
paradoxes concerning the infinitesimal and the infinite had a profound 
consequence for the development of early Greek mathematics, steering it 
towards geometry rather than arithmetic and algebra

In what follows, ‘number’ means positive integer, and ‘divides’ means ‘divides 
exactly, without remainder’.

$ All these terms were originated by the ancient Greeks. The word 
‘hypotenuse’ is particularly interesting, as its literal meaning is “stretching 
under”. This goes back to the even-more ancient Egyptian use of a 3-4-5 
knotted rope to define the required right-angles at the base corners of 
Important buildings such as square pyramids. The scalene triangle with 
commensurate sides was of course infinitely preferable to the 
incommensurate 1-1-√2 sides of an isosceles triangle. 

A] To prove that √2 is irrational using Pythagorean proof

01.00]  Suppose that √2 is rational.

∴  √2 = a/b where a and b are coprime

∴ 2 = a2/b2



∴ a2 = 2b2

01.01]  2b2 is evidently divisible by 2 and is therefore even

01.02]  ∴ a2 is even, and a is therefore even (odd times odd is odd)

01.03]  ∴ a = 2c, where c is some number, odd or even

02.00]  ∴ a2 = 4c2 = 2b2 so b2 = 2c2

02.01]  ∴ b2 is even, and b is therefore even (odd times odd is odd)

02.02]  ∴ b = 2d, where d is some number, odd or even

03.00]   So a and b are both divisible by 2, and cannot be coprime

03.01]   ie √2 cannot be rational, and is therefore irrational. QED.

I came across this proof when I was about 13 and have wondered, ever since, 
whether there was some way of proving a similar result for √3, and √5, and so 
on. Well of course there is, using Euclid’s Lemma, and let’s just trial it for √2.

B] To prove that √p is irrational using Euclid’s Lemma

01.00]  Suppose that √p is rational, where p is any prime

∴  √p = a/b where a and b are coprime

∴ p = a2/b2

∴ p.b2 = a2

01.01]   p. b2 is evidently divisible by p

01.02]   But a2 is divisible by p only if a is divisible by p (Euclid’s Lemma)

01.03] ∴ p.b2 = a2 is only possible if a is divisible by p

02.00]  If a is divisible by p then a2 is divisible by p2

02.01]  ∴ p.b2 is divisible by p2 

02.02]  ∴ b2 is divisible by p

02.03]   But b2 is divisible by p only if b is divisible by p (Euclid’s Lemma)

03.00]   So a and b must both be divisible by p, and cannot be coprime

03.01]   So √p cannot be rational, and is therefore irrational. QED.



But what about cube roots, fourth roots, fifth roots and so on ? 

C] To prove that n√p (n>2) is irrational using Euclid’s Lemma

01.00]  Suppose that n√p is rational, where n is integer and p is any prime

∴  n√p = a/b where a and b are coprime

∴ p = an/bn

∴ p.bn = an

01.01]   p.bn is evidently divisible by p

01.02]   But an is divisible by p only if a is divisible by p (Euclid’s Lemma)

01.03] ∴ p.bn = an is only possible if a is divisible by p

02.00]  If a is divisible by p then an is divisible by pn

02.01]  ∴ p.bn is divisible by pn 

02.02]  ∴ bn is divisible by p

02.03]   But bn is divisible by p only if b is divisible by p (Euclid’s Lemma)

03.00]   So a and b must both be divisible by p, and cannot be coprime

03.01]   So n√p cannot be rational, and is therefore irrational. QED

D]  Excelsior

We’re making good progress, but there are other subsets of numbers that 
haven’t yet been addressed. Let’s stick to square roots to start with.

 Perfect square numbers (4, 9, 16, 25, etc)
 Even numbers greater than 2 (6, 8, 10, 12, etc)
 Odd non-prime numbers (15, 21, 27, 33, 35, 39, etc)

D1] To prove that √n (n = m2) is rational
              __
01.00]  √m2  = m, a whole number (2, 3, 4, 5, etc) and is therefore rational.
                               
                                 __
D2] To prove that √2n is irrational using Pythagorean proof
                                    __
01.00]  Suppose that √2n is rational.
                  __

∴  √2n = a/b where a and b are coprime



∴ 2n = a2/b2

∴ a2 = 2nb2

01.01]  2nb2 is evidently divisible by 2 and is therefore even

01.02]  ∴ a2 is even, and a is therefore even (odd times odd is odd)

01.03]  ∴ a = 2c, where c is some number (incorporating n), odd or even 

02.00]  ∴ a2 = 4c2 = 2b2 so b2 = 2c2

02.01]  ∴ b2 is even, and b is therefore even (odd times odd is odd)

02.02]  ∴ b = 2d, where d is some number, odd or even

03.00]   So a and b are both divisible by 2, and cannot be coprime
                   __
03.01]   ie √2n cannot be rational, and is therefore irrational. QED.

                                    ____
D3]   To investigate √2n+1 composites that aren’t perfect squares

I have a nasty feeling that these may turn out to be sui generis, but hang on.

The proof below, that √15 is irrational, uses the unique prime factorisation 
theorem that every positive integer has a unique factorisation as a product of 
positive prime numbers. 

The vital point is that the factors 3x5 in a squared entity must reflect the same 
factors in the entity itself (they can’t have come from nowhere), and indeed 
the squared entity therefore actually gets a double dose of them !
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Suppose √15 = p/q and that p and q are the smallest such positive integers.  
[ie √15 is expressed in lowest possible terms, p > q].

Then p2 = 15q2 

The right hand side has factors of 3 and 5, so p2 must be divisible by both 3 
and 5. By the unique prime factorisation theorem, p too must be divisible by 3 
and 5 [this takes thinking about, but it’s correct – nihil ex nihilo].             

So p = 3x5k = 15k for some k
∴ 152k2 = 15q2

∴ 15k = √15q                                                                                         
∴ √15 = q/k  [ie √15 is expressed in lowest possible terms, q > k].         /contd
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Thus k<q<p, contradicting our assertion that p,q is the smallest pair of values 
such that √15 = p/q.

So our initial assertion was false; there is no such pair of integers and √15 is 
therefore irrational.

The proof below, that √21 is irrational, follows the same strategy.
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Suppose √21 = p/q and that p and q are the smallest such positive integers  
[ie √21 is expressed in lowest possible terms, p > q].

Then p2 = 21q2

Note that the right hand side is divisible by the prime numbers 3 and 7.

So p2 is divisible by both 3 and 7.

By the unique prime factorisation theorem, p too is divisible by both 3 and 7 
and hence by 3x7 = 21.

So p = 3x7k = 21k for some k

∴ 212k2 = 21q2

 ∴ 21k = √21q

∴ √21 = q/k  [ie √21 is expressed in lowest possible terms, q > k].

Note that p>q>k.

Thus q>k is a smaller pair of positive integers with quotient √21, contradicting 
our assertion that p>q was the smallest such pair.

So our initial assertion was false; there is no such pair of integers and √21 is 
therefore irrational. 

George C is a clearly a philodidact in the best possible sense, infused with the 
Asimovian urge to communicate his enthusiasm for the wonderful world of 
human reasoning and understanding.

And it does seem that this procedure can be assumed to apply to all numbers 
in this category. 

E1]  To prove Euclid’s Lemma (base case)

Firstly, what exactly is a lemma ? It seems to mean a relatively minor 
preliminary to more substantial results that are classified as theorems.  Euclid, 
on whom I am certainly not an authority, probably established quite a number 
of lemmas in his monumental opus, but this particular one, leading as it does 
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to what is known nowadays as the Fundamental Theorem of Arithmetic, has 
come to be called the Lemma in particular.

In its most general form (used above in [C]) it states that

 If a prime p divides a product a1a2a3a4 ….. an, then it must divide at least 
one of the factors ai

In a more basic form (used above in [B]), Euclid originally stated that

 If a prime p divides a product ab, then it must divide at least one of the 
factors a or b

In modern times, Euclid’s proof has been regarded as obscure at best and 
even inadequate. I’m no mathematician, but I feel that his reputation can be 
salvaged in this regard, if only to make the Lemma at least plausible.

01.00]   Given that ab = c
  And that a prime p divides c (ie c = mp)
  And that the prime p does not divide a (ie p and a are in fact coprime)
  Then RTP that the prime p divides b (ie that b = np)

02.00]   So ab = mp

 ∴ b = (m/a) p

03.00]   All these quantities are of course individually integer and must yield    
             an integer result. But there can be no cancellation between p and a,   
             as they are coprime.

  The cancellation must therefore occur between m and a, to provide 
  an integer n :

  b = np

  Thus p divides b.  QED.

  To get a flavour of what the numbers are doing, suppose that a = 8, 
  b = 6, and p = 3. Then [02.00] becomes 6 = (16/8).3 and n is therefore   
  2.

E2]  To prove Euclid’s Lemma (general case)

01.00]   Given that a1a2a3…aN = c
  And that a prime p divides c (ie c = mp)
  Then RTP that p divides at least one of {a1 , a2 , a3 , … , aN }

 
02.00]  By repeated application of the base case Lemma, 

            If p divides c then either p divides a1a2a3…aN-1 or p divides aN
            If p d.n. divide aN then either p divides a1a2a3…aN-2 or p divides aN-1

 If p d.n. divide aN-1 then either p divides a1a2a3…aN-3 or p divides aN-2
 If p d.n. divide aN-2 then either p divides a1a2a3…aN-4 or p divides aN-3

             …
 If p d.n divide a5 then either p divides a1a2a3 or p divides a4



            If p d.n divide a4 then either p divides a1a2 or p divides a3
            If p d.n divide a3 then either p divides a1 or p divides a2 
            If p d.n divide a2 then p divides a1 

            At least one of these exhaustive possibilities must apply.   QED.

F] To prove the Unique Prime Factorisation theorem

Also known by the more grandiose name of the Fundamental Theorem of 
Arithmetic, it’s a pons asinorum to most of us who had never been told about 
Euclid’s Lemma, which makes the proof of the UPF very much easier indeed.

Rather forbiddingly stated that “Every positive integer n > 1 can be 
represented in exactly one way as a product of prime powers”, 

it may be paraphrased by saying that every number can be represented as a 
multiplication of prime factors, some of which may occur repeatedly, and that 
no two numbers have exactly the same pattern of factors.

It could be said that the particular pattern of primes embodied by any given 
number is its fingerprint, its mugshot, its DNA.

The simplest proof by far runs as follows, and you wouldn’t be surprised that it 
operates by reductio ad absurdum, otherwise known as proof by contradiction, 
a type of argument beloved by the Greeks.

Suppose that there is in fact at least one integer that has two distinct prime 
factorizations.

Let n be the least such integer and write n = p1 p2 ... pj = q1 q2 ... qk, where 
each p and q is prime. 
                                                                                                                  
As both representations have the same overall value, we can be assured that 
p1 divides q1 q2 ... qk, so p1 divides some q by Euclid's lemma.

Without loss of generality, say p1 divides q1. Since p1 and q1 are both prime, it 
follows that p1 = q1. Returning to our factorizations of n, we may cancel these 
two terms to conclude p2 ... pj = q2 ... qk. 

We now have two distinct prime factorizations of some integer strictly smaller 
than n, which contradicts the minimality of n.

So there can be no such integer with two distinct prime factorizations.  QED.

Crikey, that was easy ! But what was that bit about Euclid’s Lemma ?

 If a prime p divides a product a1a2a3a4 ….. an, then it must divide at least 
one of the factors ai



Pomme de terre, Rodney – apart from the letters of the alphabet employed, 
precisely tailored to the task in hand. 


