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ABSTRACT: In previous work, we analyzed the numerical efficiency of several
algorithms that can be used to evaluate the so-called Barnett–Coulson/Löwdin functions
(BCLFs). It was shown that series representations of these functions are generally not
recommended in the neighborhood of the cusp because of their poor convergence
(logarithmic convergence). In the present work, we propose to evaluate BCLFs using its
symmetric integral representation combined with a tailored Gauss quadrature. The new
method is shown to be capable of achieving acceptable accuracy, as illustrated by the
numerical values obtained for two-center overlap integrals, which agree with previously
published results. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem 106: 2398–2407, 2006

Key words: Slater-type orbitals; tailored Gauss quadrature; atomic orbitals;
multi-center integrals

1. Introduction

D uring the past few years, renewed interest in
using Slater-type functions (STFs) emerged

among a number of scientists and especially those
working in the field ab initio methodological devel-
opment. The reason for choosing STFs as the appro-
priate basis set to be used in quantum chemistry is
supported by two very important theoretical results.
On the one hand, it was shown in the early days of
quantum chemistry that any exact solution of the
Schrödinger equation should possess a cusp on the
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origin [1], that is on the nuclei. On the other hand,
these solutions must also decrease exponentially
at infinity. Since the most widely used approxima-
tion for building the approximate wave function
of the Schrödinger equation is the well-known lin-
ear combination of atomic orbitals (LCAO), it is
clear that if the AOs are carefully selected, i.e., have
the right properties, the leading LCAO wave func-
tion will automatically inherit such properties. As
a consequence, the pioneering work of many scien-
tists in the field of quantum chemistry focused on
developing algorithms in which STFs were used as
the basis set. However, despite the efforts of these
pioneers, STFs have never been used extensively
in ab initio computations mainly because the pro-
cedures dealing with multi-center integrals were
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very inefficient. Of course, the Alchemy program
attributable to Yoshimine et al. [2] provides proof of
the concept that, at least in the case of linear systems,
an efficient computer program using STFs can be
developed. The Alchemy case and the challenge of
solving a long-standing problem have continuously
fueled the battle against multi-center integrals over
STFs.

Over the past decades, several methods were pro-
posed to tackle the difficult problem of evaluating
multi-center integrals over STFs. These methods can
be grouped into three major classes:

1. Addition theorem-based methods: In this class,
we basically find the methods in which the
STFs are expanded into infinite series in order
to separate the electron coordinates from the
molecular parameters, i.e., geometrical quan-
tities. On closer inspection of the mathemat-
ical structure of the methods found in this
class, we can distinguish two subclasses. The
two-range addition theorem, which accord-
ing to Weniger [3, 4] is a rearrangement of a
three-dimensional (3D) Taylor expansion, pro-
vides a series expansion of a given function
in terms of spherical harmonics (also known
as multipole expansion). Formally, this can be
written as

�(r − a) =
+∞∑
λ=0

Fλ(ρ<, ρ>)Pλ

(a · r
ar

)

=
+∞∑
λ=0

Fλ(ρ<, ρ>)

λ∑
m=−λ

[
Ym

λ

]∗
(θa, φa)Ym

λ (θr, φr),

(1)

where ρ< = min(a, r) and ρ> = max(a, r),
while Pλ(z) stands for the Legendre polyno-
mial of degree λ. As for Ym

λ (θ , φ), it repre-
sents the spherical harmonic of degree λ and
order m. The function Fλ(ρ<, ρ>) being non-
symmetrical with respect to its arguments ρ<

and ρ>, it is clear that the above expansion
has two different closed analytical expressions,
depending on whether r < a or r > a.

Regarding the second subclass of addi-
tion theorem-based methods, they are known
as one-range expansions since the right-hand
side of Eq. (1) is expanded in terms of a com-
plete set of functions. Formally, this is usually

expressed as

�m
n,l(r − a) =

∑
n′ ,l′ ,m′

Cm′
n′ ,l′(a)�m′

n′ ,l′(r) with

Cm′
n′ ,l′(a) =

〈
�m′

n′ ,l′(r)
∣∣�m

n,l(r − a)
〉

r
(2)

where the expansion coefficients depend only
on the geometrical parameter a. In the con-
text of multi-center integrals over STFs, this
approach has been used mainly by Filter and
Steinborn [5] and by Guseinov [6–10].

2. Integral transform-based methods: Two integral
transforms were examined for the purpose of
multi-center integrals over STFs: the Fourier
integral transform (FIT) and the Gaussian inte-
gral transform (GIT). It is of interest to point
out the mathematical similarity of the expres-
sions of multi-center integrals as obtained in
both approaches. Indeed, in both cases, multi-
center integrals end up being represented by a
multiple integral of the form:

I =
∫ 1

u=0
duf (u)

∫ 1

v=0
dvg(u) . . .∫ +∞

z=0
G(u, v, . . . , z) dz. (3)

Proposed by Bonham et al. [11], the FIT was
later thoroughly investigated by Steinborn’s
group [12–18], and this led to the definition of
a new class of exponentially decreasing func-
tions known as the B functions. More recently,
using Sidi’s �D [19, 20] as a starting point,
Safouhi [21, 22] was able to develop special-
ized algorithms used to evaluate efficiently the
semi-infinite integral occurring in the expres-
sions of multi-center integrals as obtained in
the framework of the FIT. The GIT, which can
also be regarded as a Laplace transform of an
appropriately chosen function, was originally
developed by Shavitt and Karplus [23–26]. The
approach was used in the past few years by
Rico et al. [27] to develop series expansions
for multi-center integrals in terms of Gaussian-
type functions (GTFs). A series of Fortran
routines were published by the authors for
benchmarking purposes [28]. More recently,
we have proposed to evaluate the semi-infinite
integral in (3) as it occurs in the framework of
the GIT by means of a tailored Gauss quad-
rature [29] known as Gauss–Bessel. Accord-
ing to our preliminary results, it appears that
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Gauss–Bessel quadrature used in connection
with the GIT permits accurate evaluation of
multi-center integrals over STFs. However, the
method needs to be examined from an effi-
ciency perspective before attempting to use it
within an operational system.

3. Hybrid methods: In recent work, Rico et al. [30]
proposed to combine GTFs and STFs within
an operational system. Indeed, for some multi-
center integrals, STFs were used because it was
possible to develop efficient numerical proce-
dures. However, in some other cases, including
the notorious four-center two-electron inte-
grals, the authors switch to very extended GTF
basis sets in order to approximate the integral
under consideration.

In the present work, we reexamine the evaluation
of the Barnett–Coulson/Löwdin function (BCLF).
In previous work [31], it was found that near the
cusp, the convergence of the series representations of
BCLFs deteriorates drastically, finally ending up as
logarithmic on the cusp. In these cases, i.e., near and
on the cusp, even the application of a convergence
accelerating procedure (Levin u transformation [32])
was unable to achieve the required accuracy when
operating on a small number of partial sums (≤70).
To solve this problem, we proposed to evaluate
BCLFs by means of a suitable integral representa-
tion to which a combination of Gauss quadratures is
applied. However, in practice the procedure was not
very efficient, since high-order quadratures (as high
as 80) were necessary to achieve an acceptable accu-
racy. In this work, we show that BCLFs can be eval-
uated efficiently by means of a recently developed
Gauss–Bessel quadrature [29]. Compared with clas-
sical Gauss quadratures, the present method appears
to be more efficient, since the weight function cap-
tures an aspect of the integrand, i.e., a moving sharp
peak, which is hard to approximate accurately by a
polynomial function.

2. Mathematical Preliminaries

An STF centered on some point defined by a
location vector a, is defined as

χm
n,l(α, r − a) = Nn(α)‖r − a‖n−l−1

× exp(−α‖r − a‖)Ym
l (r − a) with

Nn(α) = (2α)
n+1/2

√
(2n)! , (4)

where Ym
l (r) = ‖r‖lYm

l (θr, ϕr) is the solid spherical
harmonic of degree l and order m. The two-range
addition theorem of STF is usually derived from the
Gegenbauer addition theorem given in [33 (p. 107)].
Thus, differentiation with respect to the screening
parameter α yields

‖r − a‖n−l−1 exp(−α‖r − a‖)

= 1
ar

+∞∑
λ=0

(2λ + 1)An−l
λ+1/2(α, a, r)Pλ

(a · r
ar

)
with

{
n = 0, 1, . . .
0 ≤ l ≤ n − 1,

(5)

where the terms An
λ+1/2(α, a, r) are known as the

BCLFs. These functions are usually defined recur-
sively as{

A0
λ+1/2(α, a, r) = Iλ+1/2(αρ<)Kλ+1/2(αρ>)

An
λ+1/2(α, a, r) = −(∂/∂α)An−1

λ+1/2(α, a, r),
(6)

where the Iλ+1/2(z) and Kλ+1/2(z) represent the modi-
fied Bessel functions of the first and second kind (see
Ref. [34], p. 79).

2.1. NUMERICAL EVALUATION OF BCLFs

In previous work [31], two different representa-
tions were compared for the purpose of evaluating
numerical values of BCLFs:

Series expansions in terms of modified Bessel
functions Kn+1/2(α

√
a2 + r2) (or, alternatively,

Kn+1/2[α(a + r)]): After analysis, it was found
that the convergence of both series deteriorates
as r gets closer to a, finally becoming logarith-
mic on the cusp (r = a). In such a case, it was
shown through several examples that even when
convergence accelerators are used, the numerical
procedures are still inefficient, since a fairly large
number of partial sums need to be computed to
ensure adequate convergence.
Integral representation of the form:

An
λ+1/2(α, a, r) = 1

2

∫ +∞

0

√
unHn(α

√
u)Iλ+1/2

[(ar)/(2u)] exp
[−α2u − (a2 + r2)/(4u)

]du
u

,

(7)

where Hn(z) stands for the Hermite polynomial of
order n. After numerical experimentation, it was
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found that an appropriate combination of Gauss–
Legendre and Gauss–Laguerre quadratures not
only permits accurate computation of BCLFs but,
more importantly, does not affect the complexity
of the algorithm, i.e., the number of elementary
operations involved during the computational
process.

In this study, we present a new procedure that could
be used to evaluate BCLFs by means of a tailored
Gauss quadrature, which will be referred to as the
generalized Gauss–Bessel quadrature, constructed
using the following weight function:

W(α, a, r; s|u) = u(s+1/2)−1 exp
[−α2u − |a − r|2/(4u)

]
with s ∈ N. (8)

Using the above weight function (which will be
shown later to satisfy the conditions that make it an
admissible weight over [0, ∞)), it is clear that accord-
ing to the theory of Gauss quadratures, integrals of
the form

∫ +∞

0
pn(z)W(α, a, r; s|z) dz, (9)

where pn(z) is a polynomial function, will be evalu-
ated exactly by means of a Gauss–Bessel quadrature
of order 	(n + 1)/2
 or higher. Here the symbol 	x

stands for the integral part of x. At this point, it is of
interest to examine the integrand of Eq. (7) to gain
more insight into our expectations insofar as exact
evaluation by means of Gauss–Bessel quadrature is
concerned. The form of the weight function in (8)
was chosen in such a way as to have the correspond-
ing orthogonal polynomials used to interpolate the
following function:

F(u) =
√(ar

2
z
)n

Hn
(
α

√
(ar)/2

√
z
)

︸ ︷︷ ︸
Term I

× 1√
z

exp(−1/z)Iλ+1/2(1/z)︸ ︷︷ ︸
Term II

. (10)

In the above equation, the term labeled I can easily be
shown to be a polynomial of order n. Indeed, replac-
ing the Hermite polynomial with its closed analytical
form as given in Ref. [33] (p. 250), followed by some

algebra yields

Term I = n!
	n/2
∑
p=0

(−1)p

p!(n − 2p)!
(αar)n−p

(2α)p
zn−p. (11)

As for the second term, its finite representation can
also be easily obtained by substituting for the mod-
ified Bessel function its closed analytical form as
given in Ref. [34] (p. 80). This yields

Term II = 1√
2π




λ∑
p=0

(−1)p(λ + p)!
p!(λ − p)!2p

zp

− (−1)λ exp(−2/z)
λ∑

p=0

(λ + p)!
p!(λ − p)!2p

zp


 . (12)

Combining the above expansion with the defini-
tion of the term labeled I given in Eq. (11) yields
an expression of the form Pm(z) + exp(−2/z)Qm(z).
Clearly, the first part of such a formula is a poly-
nomial, which should not pose any problem when
integrated by means of the generalized Gauss–Bessel
quadrature. As for the second part, the application
of the quadrature of interest can only provide an
approximate value. More precisely, the occurrence
of the exponential exp(−2/z) in the second part of
the definition of term II prevents it from being eval-
uated exactly. In other words, the success of the
Gauss–Bessel quadrature for the purpose of evaluat-
ing BCLFs depends mainly on how accurate the term
exp(−2/z)Qm(z) can be interpolated by the orthogo-
nal polynomials corresponding to the weight given
in Eq. (8).

2.1.1. Evaluation Using Generalized
Gauss–Bessel Quadrature

According to Davis and Rabinowitz (Ref. [35]
p. 21), a function W(z) can be considered an admis-
sible weight function over the semi-infinite range
[0, ∞), if it satisfies the following conditions:

C1: W(z) ≥ 0 ∀z ∈ [0, ∞), C2:
∫ +∞

0
W(z) dz > 0,

C3:
∫ +∞

0
znW(z) dz︸ ︷︷ ︸

nth-order moment

< ∞. (13)

Using the function given in Eq. (8), it is clear that the
first condition of the above equation holds. The sec-
ond condition follows immediately, since the weight
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function of interest is positive over the semi-infinite
range [0, +∞). Regarding the third condition, which
requires the moments to be finite, this can easily be
shown to hold, since according to Ref. [36] (p. 363),
we can write

Mr
n =

∫ +∞

0
u(r+1/2)+n−1 exp [−σ/u − τu] du

= 2
√

(σ/τ)(r+n+1/2)Kr+n+1/2(
√

στ) with{
(σ ) > 0
(τ ) > 0

, (14)

where r, n ∈ N. The conditions imposed on the
parameters σ and τ always hold in practice, since the
values of r are usually the roots of a suitably chosen
classical Gauss quadrature. As a result, both param-
eters σ = (α2ar)/2 and τ = |a − r|2/(2ar) are strictly
positive as required by the result in (14). Let us point
out that the evaluation of the above moment can be
made more efficient by using the 3-term recurrence
relation satisfied by the modified Bessel function of
the second kind (Ref. [34], p. 79). This yields

Mr
n+1 = σ

τ
Mr

n−1 + n + r + 1/2
τ

Mr
n. (15)

Before moving on to our next paragraph, it is of inter-
est to note that one may argue that a weight function
of the form,

W ′(α, a, r) = Iλ+1/2[(ar)/(2u)]
× exp

[−α2u − (a2 + r2)/(4u)
]

(16)

would be a better choice, since the remaining terms
in the integrand of Eq. (7) may be written as a polyno-
mial function (11), allowing BCLFs to be evaluated
exactly. In fact, proceeding this way is not suitable
for two main reasons. First, if the weight in Eq. (16)
were used, the roots and weights of the quadrature
would have to be evaluated for each value of λ. This
would be very penalizing from a computational cost
point of view. Second, severe numerical instabilities
are to be expected during the computation of the
moments. Indeed, if these are evaluated by means of
their closed analytical form, easily obtainable by sub-
stituting for the modified Bessel function its closed
expression, the leading formula can be written after

rearranging the terms as follow,

M′
n,λ = 1

(2α2)n
√

α2ar

×



n+λ∑
p=0




λ∑
q=max(0,p−n)

(−)q(λ + q)![2(n + q) − p]!
q!(λ − q)!p!(q + n − p)!

1
(2α2ar)q




×(α|a − r|)p exp[−(α/2)|a − r|]

− (−)λ

n+λ∑
p=0




λ∑
q=max(0,p−n)

(λ + q)![2(n + q) − p]!
q!(λ − q)!p!(q + n − p)!

1
(2α2ar)q




×(α|a + r|)p exp [−(α/2) |a + r|]

 . (17)

Examination of the above formula clearly shows
that the coefficients generated within the summation
over q grow dramatically for increasing values of λ

and n. The problem met when using the above rep-
resentation is similar to that encountered by Jones
and Weatherford in their C-matrix representation of
the addition theorem of STOs [37]. The numerical
instabilities of the C-matrix formulation were inves-
tigated in Ref. [38]. The only apparent advantage of
Eq. (17) and the C-matrix approach is their suitabil-
ity for symbolic computation since the coefficients
are either integers or rationals. Of course, relying on
some series expansion would bring back the con-
vergence problems described in Ref. [31], which are
precisely what we are trying to avoid.

2.2. SETTING UP THE GAUSS–BESSEL
QUADRATURE

It is well known that the purpose of Gauss quadra-
tures is to allow convergent definite or improper
integrals to be evaluated numerically by letting such
quantities be expressed as a weighted average of the
form ∫ b

a
f (x)w(x) dx =

nG∑
k=1

wkf (xk), (18)

where wk and xk are the so-called weights and roots
corresponding to the Gauss quadrature currently
in use, and nG is its order. Because the values of
the weights wk and roots xk are at the heart of
any Gauss quadrature, it is very important to have
a procedure that allows their efficient calculation.
In the context of the Gauss–Bessel approach, the
orthogonal polynomials are not known analytically;
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i.e., their coefficients are not explicitly defined. As
a consequence, to generate the weights and roots
needed for our calculations, we use a numerical
approach in combination with some fundamental
results on orthogonal polynomials. Practically, the
process is carried out as a two-step task. First,
the orthogonal polynomials up to a predefined
order are generated, usually by means of the so-
call Gram–Schmidt orthogonalization algorithm. In
the theory of orthogonal polynomials, it was shown
that such mathematical constructs satisfy a 3-term
recurrence relationship as stated in the following
theorem [39 (theorem 1.29)]:

Theorem 2.1. Let πk(t), k = 0, 1, 2, . . . , be the
orthogonal polynomials with respect to the measure
dλ. Then,

πk+1(t) = (t − αk)πk(t) − βkπk−1(t), k = 0, 1, 2, . . .

π−1(t) = 0, and π0(t) = 1. (19)

To generate the coefficients αk and βk we use the
Gram–Schmidt procedure allowing one to write the
following for the unnormalized orthogonal polyno-
mials (monic polynomials):

αk = 〈tπk(t), π(t)〉
〈πk(t), πk(t)〉 and βk = 〈xπk(t), πk−1(t)〉

〈πk−1(t), πk−1(t)〉
(20)

where the symbol 〈·, ·〉 stands for the inner product
with respect to an appropriate measure.After obtain-
ing the coefficients {(αp, βp)}p=0,1,..., the second step
required for the setup of the Gauss–Bessel quadra-
ture is the computation of the corresponding nodes
and roots. Numerous routes can be used to com-
plete such a task but, from a practical point of view,
the most effective is probably that relying on the
diagonalization of the Jacobi tridiagonal matrix,

Jn(W)

=




α0
√

β1 0√
β1 α1

√
β2

0
√

β2 α2
√

β3

0 0
√

β3 α3
√

β4

. . . . . . . . .

. . . . . .
√

βn−1

0
√

βn−1 αn




(21)

It turns out that the eigenvalues of the above defined
matrix are in fact the nodes of the Gauss quadra-
ture (for which the orthogonal polynomials satisfy
Eq. (20) (cf. Ref. [39]). As regards the weights they
are proportional to the first component vk,1 of the kth
normalized eigenvector,

wk = β0v2
k,1 k = 1, 2, . . . n. (22)

3. Numerical Analysis and
Applications

As mentioned briefly in Section 2.1.1, the evalu-
ation of BCLFs can be quite cumbersome since the
corresponding closed analytical form are numeri-
cally unstable while their series representation can
be very slowly convergent. In fact, in previous
work [31], it was shown that infinite expansions of
BCLFs in terms of Bessel functions Kn+1/2(ζ

√
a2 + r2)

and Kn+1/2(ζ
√|a − r|) become logarithmically con-

vergent in the neighborhood of the cusp. Obviously,
this makes the numerical procedure based on such
expansions time consuming which hinders their use
for practical purposes. An alternative to the series
representation is to use a suitable numerical inte-
gration techniques which in the present case is the
Gauss–Bessel.

In practice, it is important to point out that when
the order λ of the modified Bessel function occurring
in the integrand of (7) is small, the closed analyt-
ical form of BCLFs, or equivalently their C matrix
representation, is numerically stable. In this context,
there is little argument in favoring the Gauss–Bessel
quadrature method over the closed form. Based
on the above remarks, we have generated a 3-D
figure, which was afterward projected on the XY-
plane (cf. Fig. 1). In the projected figure, dark areas
correspond to combinations of λ and r that make the
closed analytical form of BCLF numerically unstable.
Clearly, Figure 1 shows that the most unfavorable sit-
uation correspond to small values of r, in which case
the closed form breaks down for relatively small val-
ues of λ (∼5). At the root of this problem we find the
expression of the closed form of BCLFs, represented
as a difference of two large positive numbers that
happen to be very close in magnitude.

As r increases, a numerically stable region, i.e.,
with ≥10 exact figures, appears and clearly vis-
ible in the neighborhood of the lower right cor-
ner of Figure 1(a) and beyond the cusp shown as
Figure 1(b). This stability holds for values of λ rang-
ing from 0 to 8. One particular feature of the region
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FIGURE 1. Number of exact figures in the closed analytical form of BCLFs as a function of λ and r . The figure was
obtained using the parameters ζ = 1.5, a = 3.0 and 1.002197 ≤ r ≤ 8.991792.

below the cusp [Fig. 1(a)] is the visible linear trend,
which suggests the existence of an empirical rela-
tionship of the form λ = ar + b that defines a
line below which it may be numerically safe to use
the closed form of BCLFs. Outside this area (which
includes areas in which λ is large), it is necessary
to rely on another numerically stable scheme albeit
approximate. One such schemes is the Gauss–Bessel
approach as described in Section 2.1, which uses only
one weight function (8) to compute an approxima-
tion of BCLFs. To assess the quality of the present
algorithm as applied in the context of multi-center
integrals, we address the case of overlap integrals. It
must be pointed out that overlap integrals, which
may be considered as a classroom example, were
essentially chosen because of the simplicity of the
corresponding computer code. Thus, starting from
the most general form of such integrals, which can
be written as

Sn2,l2,m2
n1,l1,m1

(ζ1, ζ2, a) =
〈
χ

m1
n1,l1

(ζ1, r)
∣∣∣χm2

n2,l2
(ζ1, r − a)

〉
,

(23)

we can derive a working formula for overlap inte-
grals in the context of the one-center two-range
expansion by combining the result in Eq. (5) with the
addition theorem of solid spherical harmonics [40]:

Ym
l (r + a) = 4π(2l + 1)!!

×
l∑

l′=0

l′∑
m′=−l′

〈lm|l′m′|l − l′m − m′〉
(2l′ + 1)!![2(l − l′) + 1]!!Y

m′
l′ (r)Ym−m′

l−l′ (a)

(24)

In addition, to simplify the final result, we also make
use of the following expansion:

Pl

(a · r
ar

)
= 4π

l∑
m=−l

[Ym
l (a/a)

]∗Ym
l (r/r). (25)

Based on the above results, we are now in a position
to derive a working formula for overlap integrals
over STFs in the framework of the single center two-
range addition theorem,

Sn2,l2,m2
n1,l1,m1

(ζ1, ζ2, a) =
〈
χ

m1
n1,l1

(ζ1, r)
∣∣χm2

n2,l2
(ζ1, r − a)

〉
= N1(ζ1)N2(ζ2)(4π)2(2l2 + 1)!!

×
l2∑

l′2=0

l′2∑
m′

2=−l′2

〈
l2m2|l′2m′

2|l2 − l′2m2 − m′
2

〉
(2l′2 + 1)!![2(l2 − l′2) + 1]!!Y

m2−m′
2

l2−l′2
(−a)

×
l2+l′2∑

λ=|l1−l′2|
(2λ + 1)

〈
l1m1|λm1 − m′

2|l′2m′
2

〉

×
〈

rn1−1 exp(−ζ1r)

∣∣∣∣∣rl′2
An2−l2

λ+1/2(ζ2, a, r)√
ar

〉
. (26)

For practical purposes, the Gaunt coefficients occur-
ring in the above expression are evaluated using the
code developed by Weniger and Steinborn [41]. As
for the radial integral, it was found after inspecting
several BCLFs cf. Fig. 2, that such functions reach
their maximum on the cusp, suggesting the use of
a Gauss–Legendre quadrature centered on that very
point and covering the interval [a − wa, a + wa]. For
the case considered in this work, we have empirically
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FIGURE 2. Graphical representation of BCLF for increasing values of λ. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

selected wa = 1. In the two remaining subintervals,
i.e., [0, a − wa) and (a + wa, +∞), we use two low-
order Gauss–Legendre (16 points) and Gauss–
Laguerre (24 points) quadratures. According to
Table I, it appears that our values are generally in
agreement with previously published results. For
the cases we have examined, it can clearly be seen
that our values (generated by the method developed
above) are in agreement with those published by
Safouhi [42]. However, to broaden the spectrum of
comparisons, we also present selected values of over-
lap integrals published by other investigators, i.e.,
Talman [43] and Guseinov and colleagues [44–46].
Based on the reference from which the data were
extracted, we have divided the entries in Table I
into four classes. In the first group, the rightmost
column holds the values published by Talman [43],
where we can clearly see a good agreement between
the author’s values, Safouhi’s, and ours. The last
three groups of results were extracted from the
work of Guseinov and coworkers, which appeared
in Refs. [44–46]. While our values still agree with
Safouhi’s [42], we can note some disagreement when
comparing those of Guseinov and coworkers. In fact,
after investigating this matter, we came to believe
that possible inaccuracies might have been over-
looked by these investigators. Indeed, in the tables
provided by Guseinov and coworkers [44–46], two
calculations referred to as left-hand side and right-
hand side are given. These values are supposed to

be very close if not equal, since they represent two
different routes for the computation of the same inte-
gral. However, after careful inspection of the tables
provided by Guseinov and coworkers, we have
noted in several instances that the two values (left-
hand side and right-hand side) do not agree (e.g.,
Table I in Ref. [46]). In addition, in the discussion
section of Ref. [44], the authors admit that, for large
quantum numbers, it was necessary to use quadru-
ple precision in order to accurately represent some of
the coefficients needed by their computational pro-
cedure. In other words, this implicitly means that
their working formula requires manipulating very
large intermediate quantities before generating the
final result, which, in the case of interest, is an over-
lap integral such that 0 ≤ |S| ≤ 1. Generally this is
not an ideal situation for numerical stability.

4. Conclusion

We have presented a new procedure that can be
used for the evaluation of BCLFs, which appear in
the framework of multi-center integrals over STFs as
treated within the one-center two-range expansion.
Indeed, for those integrals, which can be represented
by finite expansion, this method should be com-
parable in terms of efficiency with other available
techniques such as those based on integral trans-
forms. In fact, for problems in which efficiency is not
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TABLE I
Overlap integrals computed by means of Eq. (26).*

(n1, l1, m1, ζ1) (n2, l2, m2, ζ2) a This work Ref. [42] Refs. [43–46]a

(5, 4, 0, 1.0) (5, 4, 0, 1.0) 1.0 7.68617011 (−1) 7.68617011 (−1) 7.68617016 (−1)

(5, 4, 4, 1.0) (5, 4, 4, 1.0) 1.0 9.55778747 (−1) 9.55778746 (−1) 9.55778746 (−1)

(5, 4, 0, 5.0) (5, 4, 0, 1.0) 1.0 9.00262306 (−3) 9.00262308 (−3) 9.00262309 (−3)

(5, 4, 4, 5.0) (5, 4, 4, 1.0) 1.0 3.18003745 (−2) 3.18003745 (−2) 3.18003745 (−2)

(5, 4, 0, 5.0) (5, 4, 0, 5.0) 1.0 −1.38257012 (−1) −1.38257012 (−1) −1.38257012 (−1)

(5, 4, 4, 5.0) (5, 4, 4, 5.0) 1.0 3.56825987 (−1) 3.56825987 (−1) 3.56825987 (−1)

(8, 0, 0, 1.0) (8, 0, 0, 1.0) 1.0 9.89015721 (−1) 9.89015721 (−1) 9.89015721 (−1)

(8, 0, 0, 5.0) (8, 0, 0, 1.0) 1.0 1.07437342 (−2) 1.07437341 (−2) 1.07437341 (−2)

(8, 0, 0, 5.0) (8, 0, 0, 5.0) 1.0 7.85230850 (−1) 7.85230850 (−1) 7.85230850 (−1)

(3, 2, 1, 8.0) (3, 2, 1, 2.0) 5.0 −4.42287767 (−4) −4.42287767 (−4) −4.42287766 (−4)

(10, 7, 1, 2.5) (8, 1, 1, 10.0) 2.5 1.52138456 (−2) 1.52138456 (−2) 1.52138456 (−2)

(18, 12, 6, 1.5) (18, 12, 6, 30.0) 1.5 9.48615868 (−3) 9.48615868 (−3) 9.48615878 (−3)

(21, 10, 5, 6.0) (9, 6, 5, 10.0) 6.0 −2.93153656 (−8) −2.93153644 (−8) −2.93153644 (−8)

(30, 10, 8, 1.5) (14, 8, 8, 10.0) 1.5 1.22364599 (−1) 1.22364599 (−1) 1.22376276 (−1)

(4, 3, 0, 1.9) (6, 5, 0, 0.1) 100.0 −5.34413560 (−6) −5.34413558 (−6) −5.34413558 (−6)

(6, 3, 2, 1.4) (8, 5, 2, 0.6) 40.0 −3.21391600 (−5) −3.21391598 (−5) −3.21391598 (−5)

(9, 5, 3, 6.0) (8, 4, 3, 4.0) 9.0 −5.46608470 (−8) −5.46608468 (−8) −5.46510243 (−8)

(10, 7, 1, 14.4) (8, 2, 1, 9.6) 5.0 −1.84096844 (−10) −1.84096844 (−10) −1.84189026 (−10)

(10, 9, 9, 4.8) (10, 9, 9, 1.2) 5.0 6.23122318 (−4) 6.23122318 (−4) 6.23122318 (−4)

(12, 7, 3, 1.3) (12, 7, 3, 0.7) 15.0 2.29354179 (−2) 2.29354179 (−2) 2.29354178 (−2)

(17, 8, 4, 1.8) (14, 6, 4, 0.2) 30.0 9.13913987 (−7) 9.13913987 (−7) 9.13905849 (−7)

(17, 8, 4, 11.0) (8, 7, 4, 9.0) 5.0 −1.00636030 (−6) −1.00636030 (−6) −1.00623367 (−6)b

(21, 10, 6, 9.0) (9, 8, 6, 9.0) 5.0 5.38979431 (−5) 5.38979476 (−5) 5.38980685 (−5)

(30, 10, 8, 7.0) (14, 10, 8, 7.0) 5.0 1.35074705 (−2) 1.35074705 (−2) 1.35074709 (−2)

(40, 4, 3, 4.8) (12, 4, 3, 1.2) 5.0 9.48246700 (−2) 9.48246700 (−2) 9.48379265 (−2)

(43, 10, 6, 7.2) (18, 8, 6, 16.8) 5.0 −1.15808749 (−4) −1.15808750 (−4) −1.15907687 (−4)c

*To illustrate the stability of the approach described in this work, we have computed a variety of overlap integrals (small and large
quantum numbers). BCLFs were evaluated by means of a Gauss–Bessel quadrature of order 32.
aValues grouped according to the reference from which they were taken: [43], [44], [45], and [46].
bThere is a discrepancy between the left-hand side (−1.00640061 10−6) and right-hand side (−1.00623367 10−6) [46]. Note that
other similar cases have are listed in Table 1 of Guseinov and Mamedov [46].
cWe suspect that this value should read: −1.15807687 10−4.

an issue, the present approach is an ideal tool, since it
can easily be applied to the problem at hand and also
straightforwardly implemented. However, even in
such a case, one may need a large number of terms to
be summed up to ensure an acceptable convergence.
It is in that very context that the use of a tailored
Gauss quadrature may prove helpful, as it permits
accurate generation of the required coefficients.
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