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Convergence analysis of the addition theorem of Slater orbitals
and its application to three-center nuclear attraction integrals

Ahmed Bouferguenea) and Herbert W. Jones
Department of Physics, Florida A&M University, Tallahassee, 32307 Florida

~Received 20 February 1997; accepted 2 July 1998!

The mathematical foundation of the methods using addition theorems to evaluate multicenter
integrals over Slater-type orbitals is actually well understood. However, many numerical aspects of
such approaches still require further investigations. In the framework of these methods, multicenter
integrals are generally represented by infinite series which under certain circumstances are very
slowly convergent. Accordingly, the determination of the convergence type of such series is of great
importance since it allows one to choose adequately the convergence accelerator to be used in the
summation procedure. In this work, the convergence of the two-range addition theorem proposed by
Barnett and Coulson@Philos. Trans. R. Soc. London, Ser. A243, 221 ~1951!# is analyzed. The
results obtained from this study are then applied to study the convergence of three-center nuclear
integrals, and most importantly, to discuss the choice of the convergence accelerator to be used in
the summation procedure. ©1998 American Institute of Physics.@S0021-9606~98!00538-8#
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I. INTRODUCTION

The Schro¨dinger equation is known to be exactly solub
only for some few quantum mechanical systems, am
which is the well-known hydrogen atom. Although an ag
old problem, the hydrogen atom is still giving rise to ve
interesting studies,1–3 the mathematical results of whic
could eventually be used in the treatment of more com
cated systems, namely many electron atoms. Indeed, in
latter case things become much more difficult, since it
impossible to construct the exact solutions of the Sch¨-
dinger equation. Therefore, we have no choice but to turn
approximation methods; the most commonly used in
realm of quantum chemistry is the variational technique.

Fortunately, early works about the Schro¨dinger equation
have shown that its solutions must, on the one hand, sa
the Kato cusp condition4 at the origin, and on the other han
decrease exponentially at infinity.5,6 Accordingly, it is natu-
ral to expect that the trial function used in the variation
procedure should converge rapidly to the exact solution
has the above mentioned asymptotic behavior. In the cas
molecular systems, prior to the application of the suita
variational algorithm is the construction of the molecu
trial wave function. For such a purpose, theorists usu
combine linearly the atomic orbitals according to the we
known LCAO ~linear combination of atomic orbitals!
scheme.7 It is clear that within the framework of such a
approach, the molecular wave function inherits the singul
ties of the atomic orbitals. In an early work on atomic wa
functions, Slater8 proposed to use in the variational proc
dure a simplified form of the hydrogenlike functions, henc
forth known as Slater-type orbitals~STOs! in order to sim-
plify the leading numerical work. However, although STO

a!Present address: Department of Chemistry, University of Ottawa, 10 M
Curie Street, P.O. Box 450, Stn A. Ottawa, Ontario K1N 6N5, Canad
5710021-9606/98/109(14)/5718/12/$15.00
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are well suited functions from their asymptotic behav
standpoint, they have not been used extensively in the wid
diffused molecular computational programs. This was ess
tially due to the difficulty of computing the notorious mult
center integrals over such functions. To circumvent this d
ficulty, a different basis of functions was introduced
describe quantum chemical phenomena, namely
Gaussian-type orbitals~GTOs!.9 In fact these functions do
not possess the required asymptotic behavior, but their s
rior advantage stems essentially from the drastic simplifi
tions they provide in the mathematics involved in the co
putation of multicenter integrals. GTOs are nowada
considered as the cornerstone of almost all quantum che
try packages.

With the great progress made in both applied mathem
ics and computer science, an efficient evaluation of mu
center integrals over STOs appears to be an accessible
This has led a number of researchers worldwide to fo
their efforts on the elaboration of new and viable approac
directed to computing these quantities. These studies h
led to two types of approach. The first and perhaps the
liest one consists of using an addition theorem to separate
integration variables from those related to the geometry
the molecule.10–31 In other words, atomic orbitals~AOs! oc-
curring in a given multicenter integral are first translated~us-
ing an addition theorem! to a suitable origin before evalua
ing the integral itself. In this work, displaced STOs a
represented by infinite series over spherical harmonics
which the Fourier coefficients are functionals ofr . In addi-
tion, these coefficients are described by two different anal
cal forms, hence leading to the so-called two-range addi
theorem.25 In contrast, if the off-center STOs are expand
over functions ofL2(IR3) or W2

(1)(IR3)1–3,17,24,25we are led
to a one-range addition theorem, since in this case the F
rier coefficients are scalars. These scalars may be wri

ie
8 © 1998 American Institute of Physics
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as overlap integrals between the basis functions and the
being translated.17,24A detailed methodology allowing one t
derive one-range addition theorems was given in Ref.
where weakly convergent expansions of a plane wave in c
nection with the Fourier transform method were used.

Regarding the second method, it is essentially based
the use of suitable integral transformations. The best kno
are the Fourier and the Gaussian integral transforms.
latter consists of representing the term exp(2zr ), which is
closely related to the modified Bessel functionK1/2(zr ), as a
semi-infinite integral whose integrand involves a Gaussi
type function.32–34 The advantage of this approach is that
reduces the multicenter integrals problem to manipulat
the already well-known Gaussian functions. It does, ho
ever, suffer from a major drawback since it requires evalu
ing multiple integrals which take prohibitive calculatio
time. Conversely, the second transformation implies solv
the multicenter integral problem in momentum space rat
than in direct coordinate space. Mathematical simplificatio
led Steinborn’s group to new basis functions denoted bB
~Ref. 35!, which in spite of their complexity in coordinat
space have a very simple Fourier transform.36–47

In the present work, use is made of the two-range ad
tion theorem. Within the framework of such an approa
multicenter integrals are usually expressed as infinite se
the summation of which may become a challenging prob
in numerical analysis. Indeed, in an early work of Lo¨wdin12

it was pointed out that the two-range addition theorem
STOs ~also calleda function expansion! suffers from poor
convergence as one approaches the cusp. Such a bad b
ior is usually inherited by multicenter integrals based on t
expansion. To circumvent this difficulty, Peterson a
McKoy48 have used a convergence accelerator which
lowed the authors to improve substantially the efficiency
their computational algorithms. However, the application
these numerical accelerating methods cannot be effec
without a rigorous knowledge of the convergence type of
series that are being summed. For such a purpose we d
in the first part of this work asymptotic forms of the Barne
Coulsonz functions ~or equivalently Lo¨wdin a functions!
from which we determine the convergence nature of the
dition theorem of STOs. In the second part we apply th
results to the three-center nuclear attraction integral wh
appears in various fields of computational chemistry a
physics, e.g., electron-molecule scattering,ab initio calcula-
tions ~including density functional theory!. From this study,
a clear explanation of the poor convergence pointed ou
Flygareet al.49 will straightforwardly follow.

II. GENERAL DEFINITIONS

In the following, we would like to begin this work by a
brief recall of some fundamental definitions which hopefu
will facilitate the comprehension of the succeeding pa
graphs. In the most general case, a STO is defined as
lows:
Downloaded 15 Sep 2013 to 131.175.12.86. This article is copyrighted as indicated in the abstract.
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xn,l
m ~z,R!5N Rn2 l 21 exp~2zR! Y l

m~R!

with H n51,2,3, . . .

l 50,1, . . . ,n21

m52 l ,2 l 11, . . . ,l

, ~2.1!

whereN5(2z)n11/2/A(2n)! is the normalization constant
while Y l

m(R) stands for the solid spherical harmonic of d
gree l and orderm which is related to the surface spheric
harmonicYl

m(u,w) according to

Y l
m~R!5Rl Yl

m~u,w!. ~2.2!

Regarding the surface spherical harmonics, their definit
may be written using the Condon and Shortley pha
convention50 as,

Yl
m~u,w!5 i m1umu A2l 11

4p

~ l 2umu!!
~ l 1umu!!

Pl
umu~cosu!eimw,

~2.3!

where the associated Legendre functionPl
umu(z) is defined as

follows:51

Pl
umu~z!5~12z2! umu/2 S d

dzD umu

Pl~z!

5~21! l ~12z2! umu/2 S d

dzD l 1umuF ~12z2! l

2l l !
G . ~2.4!

Now, when the Slater orbital is centered on some ar
trary point defined by the position vectora ~relative to the
origin!, the expression given in Eq.~2.1! can be rewritten
with respect to this origin as follows:

xn,l
m ~z,r2a!5Nur2aun2 l 21 exp~2zur2au! Y l

m~r2a!.
~2.5!

A. The addition theorem of Slater orbitals

The difficulty arising from STOs when they are em
ployed in multicenter integrals stems essentially from
absence of a simple addition theorem which would per
separation of the variablesr anda in Eq. ~2.5!. In fact, only
the functionur2aun2 l 21 exp(2zur2au) poses serious prob
lems because the remaining term, i.e.,Y l

m(r2a), can be ex-
panded in a simple way according to the following relation52

Y l
m~r2a!54p ~2l11!!!

3 (
l 850

l

(
m852 l 8

l 8 ^ l mu l 8 m8u l 2 l 8 m2m8&

~2l 811!!! @2~ l 2 l 8!11#!!

3Yl 8
m8~r ! Yl 2 l 8

m2m8~2a!, ~2.6!

where the double factorial (2n11)!! is related to the facto-
rial function according to,

~2n11!!! 5 )
p50

n

~2p11!5
~2n11!!

2n n!
. ~2.7!

Regarding the symbol̂l 1 m1u l 2 m2u l 3 m3&, it is known as
the Gaunt coefficient and is defined by,
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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^ l 1 m1u l 2 m2u l 3 m3&5E
u50

p E
w50

2p

@Yl 1

m1~u,w!#*

3Yl 2

m2~u,w! Yl 3

m3~u,w!du dw. ~2.8!

Here, it is worth noticing that from an analytical stan
point, the expansion of the functionur2aun2 l 21 exp(2zur
2au) over a complete set of surface spherical harmonics m
easily be done by successively differentiating the Geg
bauer addition theorem34 of the Yukawa potential with re-
spect toz ~Ref. 11!. Thus, one obtains,

ur2aun2 l 21 exp~2zur2au!

5
1

Aar
(
l50

1`

~2l11! Al1 1/2
n2 l ~z,a,r ! PlS a•r

a r D , ~2.9!

where the functionsAl11/2
n2 l (z,a,r ), which from now on will

be referred to as Barnett-Coulson-Lo¨wdin functions
~BCLFs!, are defined as follows:

Al1 1/2
n2 l ~z,a,r !5S 2

]

]z D n2 l F Il11/2~zr,!

Ar,

Kl11/2~zr.!

Ar.
G ,

~2.10!

wherer, and r. stand for min(a,r) and max(a,r), respec-
tively. As regards the functionsIl11/2(z) and Kl11/2(z),
they represent the modified Bessel functions of the sec
kind.34 Note that the major advantage of the series expan
Eq. ~2.9! lies in the fact that each of its terms can be writt
explicitly because the order of the Bessel functions is h
integral and hence could be expanded in finite closed fo
according to Ref. 34.

III. CONVERGENCE ANALYSIS OF THE ADDITION
THEOREM OF STOS

In the foregoing section, an addition theorem allowi
us to expand a Slater orbital about an arbitrary origin w
derived from the well-known Gegenbauer addition theor
of modified Bessel functions of the second kind. Now,
want to derive the asymptotic forms of the functio
Al 11/2

n (z,a,r ) for large values ofl . These asymptotics will
then, be used to determine the convergence type of the a
tion theorem under consideration. Here it would be wor
while reviewing some basic definitions related to the conv
gence of infinite series. More detailed discussions are to
found in the excellent review paper of Weniger53 and in the
article of Wenigeret al.54 and in a more recent textbook o
Brezinski and Redivo-Zaglia.55

Let S5(k50
1` ak , be a convergent series, the limit o

which is s, and letr be the ratio that is defined by,

lim
n→1`

Sn112s

Sn2s
5r, ~3.1!

whereSn stands for thenth partial sum ofS such thatSn

5 (k50
n ak .

Then, according to Wimp,56 the seriesS converges lin-
early if 0,uru,1 and logarithmically ifr51. From a com-
putational point of view, a linearly convergent series may
evaluated by a direct summation procedure, though there
Downloaded 15 Sep 2013 to 131.175.12.86. This article is copyrighted as indicated in the abstract.
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convergent series the direct summation procedure sh
definitely be avoided since it is extremely difficult to achie
an acceptable numerical accuracy in a reasonable amou
CPU time. In the latter case, use of convergence accelera
techniques is a crucial issue to the computational algorith
In fact, according to Wenigeret al.,54 the definition~3.1! is
of very little use since it assumes the knowledge of the lim
s and the analytical form of the partial sumSn . Fortunately,
it was shown that, if for very large values of the indexn, the
term an has a Poincare´-type asymptotic expansion of th
form,

an5ln nQ Fa0 1
a1

n
1

a2

n2
1 . . . G

with H a0 Þ 0

n→1`.
~3.2!

Therefore,S converges linearly ifulu,1 and logarithmically
if l51 and Re(Q),21.

In what follows, our first task is devoted to elaboratin
the asymptotic representations of the modified Bessel fu
tions I n(z) andK n(z) for large values ofn and finite values
of the argumentz. Thus, in the former case, that is for th
function I n(z), our starting point will be its series
representation51 that may be written as,

I n~z!5 (
p50

1` S z

2D n12p

p! G~n1p11!

5

S z

2D n

G~n11! (
p50

1` S z

2D 2p

p! ~n11!p
, ~3.3!

where the symbol (a)n stands for the Pochhammer coef
cient defined as,

~a!051, and

~a!n5
G~a1n!

G~a!
5a3~a11!3 . . . ~a1n21!. ~3.4!

At this point, if we approximate the Pochhammer coe
ficient involved in Eq. ~3.3! by the leading term of the
asymptotic expansion of the ratioG(z1a)/G(z1b), that
is,51

G~z1a!

G~z1b!
;za2b with z→1`, ~3.5!

we immediately obtain an asymptotic representation of
Bessel function under study which may be written in
closed analytical form as,

I n~z!;

S z

2D n

G~n11!
expH z2

4nJ
with n→1` and

z2

4
!n. ~3.6!
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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Regarding the asymptotic behavior of the Bessel fu
tion K n(z), the forms given by Grosswald,57 may directly be
used. However, in order to simplify the mathematics
volved in the next section, we prefer to derive a simplifi
asymptotic representation that is valid only forz2/4!n, as
was the case for the functionI n(z). Thus, to obtain such a
representation, it is sufficient to start with the followin
definition:34

K n~z!5
p

2 sin~np!
@ I2n~z!2I n~z!#. ~3.7!

Now, substituting for the Bessel functionsI2n(z) and
I n(z) their series representations, and making use of
identity51 relatingG(12z) to G(z), that is,

G~12z! G~2z!5
p

sin~pz!
, ~3.8!

we are able to write the following expansion:

K n~z!5
p

2 sin~np! S z

2D 2n

(
p50

1` S z

2D 2p

p!

3F ~21!p
sin~np!

p
G~n2p!2

~z2/4!n

G~n1p11!G .
~3.9!

A brief survey of this last equation shows that for lar
values ofn and with the assumptionz2/4!n, the expression
enclosed between brackets may be approximated by its
term. This finally allows us to write the asymptotic represe
tation of K n(z),

K n~z!;
1

2S 2

zD n

G~n! (
p50

pmax

~21!p
G~n2p!

G~n!

S z

2D 2p

p!
, ~3.10!

where the upper bound integerpmax satisfies the inequality
pmax<@n#, the symbol@n# being the largest integer less tha
or equal ton.

Furthermore, if in the above expansionn is large enough
to apply the approximation given by Eq.~3.5!, the summa-
tion over p may therefore be approximated by a single e
ponential term. This yields

K n~z!;
1

2 S 2

zD n

G~n! expH 2
z2

4 nJ ,

with n→1` and
z2

4
!n. ~3.11!

Now that we have derived the asymptotic represen
tions of the modified Bessel functionsI n(z) and K n(z) for
large values ofn and forz2/4!n, the next step of the presen
work is to establish the asymptotics of BCLFs, i.
Al 11/2

n (z,a,r ).
The first asymptotic form, and certainly the simplest,

the functionsAl 11/2
n (z,a,r ) ~for large values ofn and z2/4
Downloaded 15 Sep 2013 to 131.175.12.86. This article is copyrighted as indicated in the abstract.
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!n) may straightforwardly be obtained by differentiatingn
times the product of the expressions given by Eqs.~3.6! and
~3.11! ~see Appendix A!. Thus one obtains,

A n
n~z,a,r !;

1

2n S r,

r.
D n S 2

]

]z D n

expH 2z2
ua22r 2u

4n J ,

~3.12!

where from now on we prefer to writen instead ofl 11/2 to
simplify the writing.

In this last equation, thenth derivative of the exponen
tial function may be explicitly written using the Hermit
polynomials, since according to Rodrigues formulas,51 these
polynomials are defined as follows:

Hn~z!5~21!n exp~z2!S d

dzD
n

exp~2z2!. ~3.13!

Now, taking the above definition into account, the fir
asymptotic representation of BCLFs follows at once,

A n
n~z,a,r !;

1

2nS r,

r.
D nS ua22r 2u

4n D n/2

3HnS zAua22r 2u
4n D expH 2z2

ua22r 2u
4n J .

~3.14!

On the other hand, substituting for the Hermite polyn
mial involved in the above equation its explicit definitio
which according to Ref. 51 may be written as follows:

Hn~z!5n! (
p50

@n/2#

~21!p
~2z!n22p

p! ~n22p!!
, ~3.15!

we finally obtain after some straightforward algebraic m
nipulations a Poincare´-type asymptotic expansion of th
function A n

n(z,a,r ) valid for large values ofn and finite
values ofza and zr that satisfy the conditions (za)2/4!n
and (zr )2/4!n. Such an expansion may be written as,

A n
n~z,a,r !

;~21!@n/2#
n!

~2z!n
~zAua22r 2u!2[~n11!/2]

S r,

r.
D n

2n@~n11!/2#11

3 (
p50

@n/2#

~21!p
1

~@n/2#2q!! ~n22@n/2#12q!!

3
~zAua22r 2u!p

np
. ~3.16!

Here, it is convenient to notice that according to t
above equation, the Poincare´-type asymptotic expansions o
the functionsA n

2n21(z,a,r ) and A n
2n(z,a,r ) are similar,

since in both cases the leading terms of such expansions
be written as
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



re

.e
q

t i

t
ith

ta
in

ds
xi
as
y

e

q
m

g to

LF

s of

d

d be

em

5722 J. Chem. Phys., Vol. 109, No. 14, 8 October 1998 A. Bouferguene and H. W. Jones
A n
2n21~z,a,r !;C

S r,

r.
D n

nn11
,

and ~3.17!

A n
2n~z,a,r!;C8

Sr,

r.
Dn

nn11
,

whereC andC8 are two constants independent ofn.
Despite its simple analytical form, the asymptotic rep

sentation given by Eq.~3.16! is only valid in the case where
r,Þr. . In other words, this means that at the cusp, i
r,5r.5a, it is necessary to derive another form since E
~3.14! gives zero. For such a purpose, our starting poin
the expansions given by Eqs.~3.3! and ~3.10!. Hence, pro-
ceeding in the same way as in the previous case, tha
differentiatingn times the product of such expansions w
respect toz ~see Appendix A!, yields, after simplifications,

A n
n~z,a,r !;

~21!n

zn

1

2n S r,

r.
D n

3 (
s5[ ~n11!/2]

1`

~21!s
~2s!!

~2s2n!! S zr.

2 D 2s

3F (
p50

min~s,@n#!

~21!p

3
G~n2s1p!

G~n1p11! ~s2p!!

S r,

r.
D 2p

p!
G . ~3.18!

With a view to providing another asymptotic represen
tion whenr,Þr. , two separate cases will be considered
the above equation. The first case we consider correspon
r,Þr. , for which the above expression may be appro
mated by a closed form straightforwardly obtained if we
sume that on one handn is large enough to apply the identit
of Eq. ~3.5! and on the other hand min(s,@n#)5s. Thus one
obtains,

A n
n~z,a,r !;

~21!n

zn

1

2 n S r,

r.
D n

3 (
s5@~n11!/2#

[n]

~21!s
~2s!!

~2s2n!!

3

F S zr.

2 D 2

2S zr,

2 D 2Gs

s!

1

ns
. ~3.19!

Here, it is worth noticing that the terms involved in th
above expansion are identical to the first@n# terms obtained
by substituting for the exponential term occurring in E
~3.14! its Taylor series representation. However, the ter
Downloaded 15 Sep 2013 to 131.175.12.86. This article is copyrighted as indicated in the abstract.
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whose orders is strictly greater than@n# are different, since
in such a case, the summation overp in Eq. ~3.18! cannot be
reduced by the Newton binomial formula.

As regards the second case, that is, that correspondin
the cusp for whichr,5r.5a, the use of the following
identity @see Ref. 18, Eq.~5!#,

(
m

~21!m
~a2m!!

m! ~b2m!! ~c2m!!
5

~a2b!! ~a2c!!

b! c! ~a2b2c!!
,

~3.20!

allows us to perform the summation overp involved in Eq.
~3.18!. Therefore, the asymptotic representation of the BC
A n

n(z,a,a) may finally be written as,

A n
n~z,a,a!;

p2 1/2

zn

1

2n (
s5[ ~n11!/2]

1`

~21!s
~2s!!

~2s2n!!

3GS s1
1

2D G~n2s!

G~n1s11!

~za!2s

s!
. ~3.21!

Here, if once again the parametern is large enough to
justify the use of the approximation~3.5!, the above expan-
sion may therefore be written as a Poincare´-type series. Thus
one obtains,

A l
n~z,a,a!;~21! [ ~n11!/2]

~za!2[~n11!/2]

2p zn

3
1

n2[~n11!/2]11 (
q50

1`

~21!q

3
@G~q1@~n11!/2#1 1

2!#
2

~2q12@~n11!/2#2n!!

~za!2q

n2q
.

~3.22!

As a consequence of the asymptotic representation
BCLFs @c.f. Eqs. ~3.16! and ~3.22!#, it is clear that the
asymptotic behavior of the terms, al

n5(2l
11) Al 11/2

n (z,a,r ) Pl@(ar)/(ar)#, involved in the addition
theorem of Eq.~2.9!, may be deduced in a straightforwar
way. Indeed, remembering thatn5 l 11/2, it may readily be
seen that for large values ofl , the leading term of the
asymptotic expansion ofal

n may be written as,

al
n;C

S r,

r.
D l 1 1/2

~ l 1 1
2!

@~n11!/2]
Pl S a•r

ar D , for r,Þr. ~3.23!

and,

al
n;C8

1

~ l 1 1
2!

2[~n11!/2]
Pl S a•r

ar D , for r,5r.5a,

~3.24!

whereC andC8 are two constants independent ofl .
As a special case of these equations, attention shoul

drawn to the fact that when the vectorsr anda are parallel,
that is to say Pl@(ar)/(ar)#5(61)l , then according to
Wimp,56 the convergence of the two-range addition theor
of Eq. ~2.9! is linear for rÞa and logarithmic otherwise.
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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IV. THREE-CENTER NUCLEAR ATTRACTION
INTEGRALS

Three-center nuclear attraction integrals are by far
most difficult one-electron quantities that are required wh
solving the Schro¨dinger equation within the LCAO-MO
~molecular orbitals! ansatz. In fact many works were devote
to the evaluation of these integrals using either the Fou
integral transform method45,58,59or the method based on ad
dition theorems.31,60–62This work essentially aims at high
lighting one of the most important difficulties encounter
when multicenter integrals over STOs are evaluated wit
the framework of the method based on the two-range a
a
fir

f
in
al
ct
e
on
us

r
s

ig
n
ti

an
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tion theorem Eq.~2.9!. Indeed, when using the two-rang
addition theorem we are usually led to an infinite ser
which under certain circumstances may be slow
convergent.49 Three-center nuclear attraction integrals a
generally defined as follows:

T5 K xN1 ,L1

M1 ~a,r !U 1

ur2cu UxN2 ,L2

M2 @b,r2a#L . ~4.1!

Now expanding the Coulomb attraction operator and us
the product of the addition theorems of Eqs.~2.6! and ~2.9!
yields after some simple algebra,
T5N1 N2 ~4p!3 ~2L211!!! (
L2850

L2

(
M2852L28

L28 ^L2 M2uL28 M28uL22L28 M22M28&

~2L2811!!! @2~L22L28!11#!!
Y

L22L
28

M22M28~2a!

3 (
L5uL12L28u

L11L28

9 ^L28M28uL1M1uLM282M1&(
l 50

1`
1

2l 11 (
l5u l 2Lu

l 1L

9 Rl~N1 ,N2 ,L2 ,L28 ,a,b,a!

3 (
m52 l

l

^ l muLM282M1ulm2~M282M1!&@Y l

m2~M282M1!
~a/a!#*Y l

m~c/c!, ~4.2!
he
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orm
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where the radial functionRl(N1 ,N2 ,L2 ,L28 ,a,b,a), which
for simplicity will be referred to asRl , is defined according
to,

Rl~N1 ,N2 ,L2 ,L28 ,a,b,a!

5K r N11L2821 exp~2ar !U r ,
l

r .
l 11UAl1 1/2

N22L2~b,a,r !

Aar
L , ~4.3!

where r , and r . stand for min(a,c) and max(a,c) respec-
tively. For numerical purposes the evaluation of these qu
tities may be carried out using two main schemes. The
and perhaps the most advantageous, since it requires no
ther mathematical developments, is based on numerical
gration techniques, whereas the second is more classic
the sense thatRl is evaluated analytically. As a matter of fa
such an analytical calculus is made possible by using thC
matrix representation of BCLFs. In the present work we c
fine ourselves to applying the first method, namely Ga
quadratures. In so doing, the radial integralRl is evaluated
as the sum of three terms over the ranges@0,min(a,c)#,
min(a,c),max(a,c)] and @max(a,c),1`).

A. Convergence analysis of three-center nuclear
attraction integrals

In this paragraph it is our aim to highlight some conve
gence aspects of three-center nuclear attraction integral
examining in details the special case corresponding tos type
orbitals. Generalization of this case to a linear system m
be done quite straightforwardly. In fact, such a case not o
allows us to simplify the mathematics but is of great prac
cal interest since these orbitals are involved in all atomic
n-
st
ur-
te-
in

-
s

-
by

ht
ly
-
d

molecular systems. Hence, from Eq.~4.3! one obtains, after
some straightforward simplifications, including the use of t
orthogonality property of surface spherical harmonics,
following expansion:

Ts,s5N1 N2 (
l 50

1`

^r N121 exp~2ar !u

3
r ,

l

r .
l 11UAl 1 1/2

N2 ~b,a,r !

Aar
L Pl S a•c

a cD . ~4.4!

In order to derive the convergence type of the above infin
expansion we are required to determine the asymptotic f
of its terms for large values ofl . Before doing so, it should
be pointed out that in a paper devoted to molecular integ
over STOs, LaBudde and Sahni63,64 established the
asymptotic form of many integrals, including the one und
study. Using some special inequalities satisfied by modifi
Bessel functions,63 the authors succeeded in deriving a set
inequalities satisfied by the terms of the series~4.4! ~for ar-
bitrary values ofl ). In this work, our approach is more re
strictive, since we mainly focus on the behavior of the ter
of ~4.4! for large values ofl . Of course, the generality o
LaBudde and Sahni’s inequalities makes it possible to de
very simply an asymptotic form of the terms of the abo
series that is equivalent to that obtained below. To start
derivation, we first express the radial integral of Eq.~4.4! as
a sum of three termsR1, R2 andR3 such that,
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



o
he
s

m-

it
erm
rd

.e.,

e
o

the
the

5724 J. Chem. Phys., Vol. 109, No. 14, 8 October 1998 A. Bouferguene and H. W. Jones
R15
1

Aacl 11E0

min~a,c! A l 11/2
N2 ~b,a,r !

Ar
r N11 l 11exp~2ar !dr

~4.5!

R25
1

Aa
E

min~a,c!

max~a,c!A l 11/2
N2 ~b,a,r !

Ar

@min~c,r !# l

@max~c,r !# l 11
r N111

3exp~2ar !dr ~4.6!

R35
cl

Aa
E

max~a,c!

1` A l 11/2
N2 ~b,a,r !

Ar
r N12 l exp~2ar !dr. ~4.7!

From the above equations it follows that in contrast toR1

andR3 the integralR2 has two different forms according t
whether min(a,c)5a or c. However, as may be seen later, t
derivation of its Poincare´-type asymptotic expansion i
straightforward.

For large values of the subscriptl the introduction of the
asymptotic form of BCLFs~3.18! @for which r,5r and
r.5min(a,c)] in the definition ofR1 yields

R1;
~21!N2

~2l 11!bN2

1

~ac! l 11

3 (
s5[ ~N211!/2]

1`

~21!s
~2s!!

~2s2N2!! S ba

2 D 2s

3 (
p50

min~s,l !

~21!p
G~ l 2s1p11/2!

G~ l 1p13/2!~s2p!!

a22p

p!

3E
0

min~a,c!

r N112l 12p11 exp~2ar !dr. ~4.8!

Now using the fact that for large values ofl and finite values
of a min(a,c) the above integral overr may be approximated
by,

E
0

min~a,c!

r N112l 12p11 exp~2ar !dr

;
@min~a,c!#N112l 12p12

N112l 12p12

exp@2a min~a,c!#

12
a min~a,c!

2l

. ~4.9!

Now inserting the above approximate into Eq.~4.8! and us-
ing some straightforward simplifications, we obtain

R1;
~21!N2

~2l 11!bN2
F min~a,c!

max~a,c!G
l 11 @min~a,c!#N1

12h

3exp@2a min~a,c!# (
s5@~N211!/2#

1`

~21!s

3
~2s!!

~2s2N2!! S ba

2 D 2s

(
p50

min~s,l !

~21!p

3
G~ l 2s1p11/2!

G~ l 1p15/2!~s2p!!

@min~a,c!/a#2p

p!
, ~4.10!
Downloaded 15 Sep 2013 to 131.175.12.86. This article is copyrighted as indicated in the abstract.
whereh stands for the ratio@a min(a,c)#/(2l). At this stage,
it turns out that the integralR1 has in fact two different
Poincare´-type expansions according to whether min(a,c)5a
or min(a,c)5c. Indeed in the former case the innermost su
mation, i.e., overp, may be performed using the identity@see
Ref. 18, Eq.~5!#,

(
d

~21!d
~a1d!!

d! ~b2d!! ~c1d!!

5~21!d
a! ~a2c!!

b! ~b1c!! ~a2b2c!!
. ~4.11!

From this point, use of Eq.~3.5! allows one to obtain the
following asymptotic expansion for the integralR1:

R1;
~21!N2

2~2l 11!bN2
S a

cD l 11 aN1

12h
exp~2aa!

3 (
s5@~N211!/2#

1` F ~21!s
~2s!!

~2s2N2!!

~2s11!!

~s11!!

S ba

2 D 2s

s!
G

3
1

~ l 1 1/2!2s12
. ~4.12!

Now, in the case where min(a,c)5c, use of Eq.~3.5! yields a
summation overp which could easily be performed since
represents in fact the standard Newton expansion of the t
@12(c/a)2#s. Some simple algebraic work leads afterwa
to the following Poincare´-type expansion:

R1;
~21!N2

4bN2
S c

aD l 11 cN1

12h
exp~2ac!

3 (
s5[ ~N211!/2]

1` F ~21!s
~2s!!

~2s2N2!!

3

F S ba

2 D 2

2S bc

2 D 2Gs

s!
G 1

~ l 1 1
2!

s12
. ~4.13!

Here, it should be pointed out that in both cases, i
min(a,c)5a and min(a,c)5c, the leading term of the
Poincare´-type expansion of the integralR1 has the same
form, that is,

R1;K1

S min~a,c!

max~a,c! D
l 11

~ l 1 1
2!

@~N211!/2#12
, ~4.14!

whereK1 is a constant independent ofl .
According to the introductory remark of this section, th

integral R2 has two different definitions according t
whether min(a,c)5a or min(a,c)5c. In what follows we will
restrict ourselves to consider only the former case, since
latter may be treated exactly in the same way. In this case
following equalities hold:r,5a and r ,5r . Thus inserting
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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the asymptotic expansion ofAl 11/2
N2 (b,a,r ) ~3.18! into Eq.

~4.6!, and collecting all the powers of the variabler , yields
the following radial integral:

E
a

c

r N112s22p11 exp~2ar !dr. ~4.15!

From the above expression, it is clear that the above inte
could be considered as a constant independent ofl , and
hence for large values of such a parameter use of Eq.~3.5!
yields after simplifications the following leading term of th
Poincare´ asymptotic expansion forR2:

R2;
K2

max~a,c!

S min~a,c!

max~a,c! D
l

~ l 1 1
2!

@~N211!/2#12
. ~4.16!

Regarding the integralR3, it is theoretically forbidden to
directly substitute the asymptotic form of BCLFs given
Eq. ~3.18! into the definition of such an integral since i
upper limit is not finite. In order to circumvent this difficulty
it is sufficient to approximateR3 by an integral where the
upper limit was set equal to a large but finite valuer max. This
approach is well justified, since for large values ofr the
integrand behaves liker p exp@2(a1b)r#. In other words,
this means that beyond such a suitably chosen limit the
lowing approximate holds:

E
r max

1`Al 11/2
N2 ~b,a,r !

Ar
r N12 l exp~2ar !'0. ~4.17!

Hence, substituting the asymptotic form of Eq.~3.18! into
the approximate definition ofR3 yields,

R3;
~21!N2

2bN2
~ac! l (

s5[ ~N211!/2]

1`
~2s!!

~2s2N2!! S ba

2 D 2s

3 (
q50

min~s,l !

~21!q
G~ l 2q11/2!

q! ~s2q!!G~ l 1s2q13/2!
b22q

3E
max~a,c!

r max exp~2ar !

r 2l 22q2N111
dr. ~4.18!

Sincel is a large number, the radial integral involved in t
above equation may be approximated by the first term of
expansion obtained by an integration by part whereu
5exp(2ar) anddv5dr/r 2l 22q2N111. Thus, one obtains

E
max~a,c!

r max exp~2ar !

r 2l 22q2N111
dr

5
1

2l 22q2N1
F exp@2a max~a,c!#

@max~a,c!#2l 22q2N1
2

exp@2ar max#

r max
2l 22q2N1 G

2OS 1

l 2D ;
1

2l 22q2N1

exp@2a max~a,c!#

@max~a,c!#2l 22q2N1
.

~4.19!
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In addition, use of the approximationG( l 2q11/2)/(2l
22q2N1)'1/2 G( l 2q21/2) enables us to obtain the fo
lowing asymptotic representation forR3:

R3;
~21!N2

4bN2
F min~a,c!

max~a,c!G
l

@max~a,c!#N1

3exp@2a max~a,c!#

3 (
s5[ ~N211!/2]

1`
~2s!!

~2s2N2!! S ba

2 D 2s

(
q50

min~s,l !

~21!q

3
G~ l 2q21/2!

~s2q!!G~ l 1s2q13/2!

Fmax~a,c!

a G2q

q!
. ~4.20!

As in the case ofR1, the above asymptotic form may b
simplified differently according to whether min(a,c)5a or
min(a,c)5c. In the former case use of Eq.~3.20! with Eq.
~3.5! yields after some simplifications the followin
Poincare´-type asymptotic expansion:

R3;
~21!N2

4bN2
F min~a,c!

max~a,c!G
l

@max~a,c!#N1exp@2amax~a,c!#

3 (
s5[ ~N211!/2]

1` F ~21!s
~2s!!

~2s2N2!!

~2s11!!

~s11!!

S ba

2 D 2s

s!
G

3
1

~ l 1 1
2!

2s12
for min~a,c!5a, ~4.21!

and

R3;
~21!N2

4bN2
F min~a,c!

max~a,c!G
l

@max~a,c!#N1

3exp@2a min~a,c!#

3 (
s5[ ~N211!/2

1` F ~21!s
~2s!!

~2s2N2!!

F S bc

2 D 2

2S ba

2 D 2Gs

s!
G

3
1

~ l 1 1
2!

s12
for min~a,c!5c. ~4.22!

From the above equations it is clear that in both cases
leading term of the Poincare´-type expansion may be writte
as follows:

R35K3

S min~a,c!

max~a,c! D
l

~ l 1 1
2!

[ ~N211!/2]12
, ~4.23!

whereK3 is a constant independent ofl .
At this stage it may readily be seen from Eqs.~4.14!,

~4.16! and ~4.23! that for large values ofl the terms of the
series representation of the three-center nuclear attractio
tegral ~4.4! behave like
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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TABLE I. Selected three-center nuclear attraction integrals in the case of a linear molecule. Numb
parentheses represent powers of 10.

Atomic orbitals Integral Dexc This work ALCHEMY b DTESTc,d

1 : ~H! 1s@1.24# ^1u2& 5 2.945 496 054~21! 2.945 496 054~22! 2.945 494 454~22!
2 : ~C! 1s@5.67# ^1u3& 11 1.606 646 078~21! 1.606 646 041~21! 1.606 645 937~21!
3 : ~C! 2s@1.61# ^1u4& 7 21.163 866 018~21! 21.163 866 018~21! 21.163 865 846~21!
4 : ~C! 2p0 @1.56# ^2u6& 2 3.710 041 454~25! 3.710 041 454~25! 3.710 152 495~25!
5 : ~C! 2p1 @1.54# ^2u7& 6 2.695 528 880~22! 2.695 528 880~22! 2.695 532 230~22!
6 : ~N! 1s@6.66# ^2u8& 6 24.621 491 513~22! 24.621 491 513~22! 24.621 497 451~22!
7 : ~N! 2s@1.94# ^3u6& 2 1.408 177 370~22! 1.408 177 370~22! 1.408 441 969~22!
8 : ~N! 2p0 @1.92# ^3u7& 3 1.467 233 406~21! 1.467 233 406~21! 1.467 232 649~21!
9 : ~N! 2p1 @1.80# ^3u8& 4 21.530 415 963~21! 21.530 415 963~21! 21.530 415 938~21!

^5u9& 4 1.009 914 329~21! 1.009 914 329~21! 1.009 914 330~21!

aThis work: Values obtained after accelerating the initial series expansion using thee algorithm.Dexc represents
the number of exact digits obtained after the summation of 17 terms of the original series. Our
correspond to the terme16

16 of thee algorithm. The molecule is along theZ axis and such thatd~H, C!52.0143
andd~H, N!54.1934.

bSee Ref. 67.
cDTEST: These values were obtained using the so2called Legendre Mo¨bius quadrature~LRM! ~Ref. 68! method
for which the parameters are: LRM 90u 30, 20; 1~-6! u 20, 16; 1~-7! u 10, 10; 1~-8!.

dSee Ref. 59.
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S min~a,c!

max~a,c! D
l

~ l 1 1
2!

[ ~N211!/2]12
Pl S a•c

ac D with l→1`,

~4.24!

whereK is a constant independent ofl .
As a conclusion of this section, it is obvious for line

molecules, that is to say Pl@(ac)/(ac)#5(61)l , the conver-
gence of the above series is linear foraÞc and logarithmic
otherwise. However, it is clear that fora'c the convergence
of Eq. ~4.4! will deteriorate since though still linear~from a
mathematical standpoint! this region is close to the casea
5c where the convergence is definitely logarithmic. Th
study provides in fact a rigorous explanation to what w
pointed out by Flygareet al. in Ref. 49. In addition to this
remark, it should be pointed out that sinceN2 appears as a
power of (l 11/2), the convergence of the series~4.4! is
expected to improve with high values of this parameter.

V. NUMERICAL RESULTS

In this section we present some numerical values
three-center nuclear attraction integrals and show the
provement in the convergence obtained with the help of
different nonlinear convergence accelerators, namely
Levin u transformation and the Wynne algorithm. It should
be mentioned that Peterson and McKoy48 have applied the
latter method to circumvent the difficulties arising from t
summation of the slowly convergent series representing fo
center integrals. According to Fessler, Ford and Smith thu
transformation may be defined as follows:

uk~Sn!5

(
i 50

k

~21! i S k

i D ~11n1 i !k22

~11n1k!k21

Sn1 i

an1 i

(
i 50

k

~21! i S k

i D ~11n1 i !k22

~11n1k!k21

1

an1 i

. ~5.1!
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For numerical purposes the evaluation of the above quan
may lead to severe numerical instabilities54 because of the
existence of alternating terms in both numerator and deno
nator. We will, therefore, apply the recursive algorithm a
vised by Smith and Ford to evaluate these quantities. Suc
algorithm is defined as,

Qk,n5Qk21,n11 2
n11

n1k S n1k

n1k11D k

Qk21,n

with k>1,n>0, ~5.2!

where the starting valueQ0,n is defined by,

Q0,n55
Sn

~n11!2an

for the numerator

1

~n11!2an

for the denominator.

~5.3!

Regarding the so-called Wynne algorithm, it is a computa-
tional procedure allowing one to calculate recursively t
quantities required by Shanks.65 The e algorithm is defined
as

ek11
~n! 5ek21

~n11!1
1

ek
~n11!2ek

~n!
, ~5.4!

where the procedure is initialized with the termse21
(n) 50 and

e0
(n)5Sn . According to Wimp,56 the e algorithm may also

suffer from numerical instabilities, but in our case such
algorithm has exhibited a good numerical behavior sinc
always converges to the right value.

In Table I it may be seen that after summing 17 terms
the series expansion~4.4! only a few accurate digits are ob
tained ~c.f. column labeledDexc). It should also be noticed
that according to the concluding remark of the previous s
tion, the convergence of Eq.~4.4! generally improves for
increasing values ofN2 ~c.f. lines 1, 5 and 6!. Furthermore,
 Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Comparison to previous values for linear and nonlinear systems. In this table, the orbita
assumed to be on theZ axis, i.e.,a(0,0,a) @see Eq.~4.1!#. Calculations are carried out using the same appro
as in Table~I!. Numbers in parentheses represent powers of 10.

Geometry Integral This work Ricoet al.a DTESTb

a53, c(3,4,5) ^2px@4.0#u3dxz@3.0#& 23.020 076 721~23! 23.020 076 72~23! 23.028 935 052~23!
a55, c(3,4,5) ^2px@4.0#u3dxz@3.0#& 22.587 578 890~25! 22.587 578 60~25! 22.600 519 879~25!
a55, c(0,0,7) ^2px@4.0#u3dxz@3.0#& 22.818 653 000~25! 22.818 657 00~25! 22.818 654 096~25!
a55, c(22,5,4) ^2s@3.0#u2pz@3.0#& 21.333 583 172~23! 21.333 596 00~23! 21.333 586 292~23!
a55, c(23,6,5) ^2s@3.0#u2pz@3.0#& 21.045 218 434~24! 21.045 219 17~24! 21.045 222 323~24!
a55, c(24,7,6) ^2s@3.0#u2pz@3.0#& 28.531 955 275~25! 28.531 955 79~25! 28.531 988 486~25!
a52, c(0,0,9) ^2s@4.0#u1s@1.0#& 22.630 240 914~22! 2.630 240 91~22! 2.630 314 167~22!
a55, c(0,0,9) ^2s@4.0#u1s@1.0#& 1.538 280 150~23! 1.538 280 15~23! 1.538 316 674~23!
a58, c(0,0,9) ^2s@4.0#u1s@1.0#& 7.945 638 156~25! 7.945 637 90~25! 7.945 820 427~25!

aReference 69.
bReference 59.
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in all cases, namely those involvings type orbitals as well as
those which do not, a spectacular improvement of the ac
racy is achieved by applying the above accelerating te
niques.

In the case of nonlinear molecules~see Table II!, the
convergence of the series under study is, theoretically,
ther linear nor logarithmic. This results from the presence
the Legendre polynomial, which makes it impossible to o
tain for the coefficient Eq.~4.24! a Poincare´-type expansion
similar to that of Eq.~3.2!. In this case, the failure of Levin
u transformation was observed, whereas thee algorithm al-
lowed us to achieve the accuracy needed inab initio quan-
tum chemical calculations. In fact, such a good behavior
the e algorithm may be predicted by noticing that the ser
Eq. ~4.4! is an infinite expansion in terms of Legendre po
nomials, Pl(cosu). For large values ofl , these polynomials
have the following asymptotic form:51

Pl~cosu!;
1

Ap sin u

1

l 1/2
$cos@~ l 1 1

2!u#

1sin@~ l 1 1
2!u#% with H 0,u,p

l→1`
. ~5.5!

From this equation, it is clear that Legendre polynomi
behave asymptotically like a Fourier series. Accordingly,
difficulties encountered when accelerating the converge
of the expansion Eq.~4.4! are similar to those occurring
when dealing with a Fourier series, in which case only v
few accelerators can be used. Fortunately, thee algorithm
belongs to this class of successful algorithms because o
form of its kernel,55 which includes special Fourier series
the form

(
i

@Bi~n! cos~b in!1Ci sin~b in!# exp~win!. ~5.6!

The special case of a molecule in which atoms are locate
the vertices of an equilateral triangle is of interest since
such a case the cusp plays an important role. The integ
listed in Table III were obtained with the molecular syste
C3. These values show that, in this special case, 17 pa
sums are generally not sufficient to achieve more than fiv
six accurate digits.
o 131.175.12.86. This article is copyrighted as indicated in the abstract.
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VI. CONCLUDING REMARKS

The first part of this work aimed at examining the co
vergence of the two-range addition theorem~as derived by
Barnett and Coulson11!. It is shown that for arbitrary vectors
r anda @c.f. Eq.~2.9!# the terms of this orthogonal expansio
are represented asymptotically as a product involving a L
endre polynomial Eq.~2.9!. For the special case in whichr
anda are parallel, we show that the series representation
~2.9! converges logarithmically whenr 5a and linearly oth-
erwise. This study hence provides a rigorous proof to
observation reported by Lo¨wdin in one of his early works on
the addition theorem of STOs.12

Strictly speaking, the evaluation of the series Eq.~2.9! is
not required when computing multicenter integrals ov
STOs since it is generally combined with other expansio
e.g., Laplace expansion of the Coulomb operator. Howe
as shown in Sec. IV, the knowledge of the asymptotic fo
of the terms defining the series Eq.~2.9! helps one to derive
the asymptotic representation of the terms involved in
series describing multicenter integrals.

As an application of this approach, we have conside
the case of three-center nuclear attraction integrals in wh
only s type orbitals are used. Thus, after some algebra
obtains an orthogonal expansion Eq.~2.9!, the terms of
which are

TABLE III. Convergence of the series expansion Eq.~4.4! for an equilateral
geometry. The atoms are located at:~0., 0., 0.!, ~0., 0., 2.51900!, ~2.18152,
0., 1.25950!. Calculations are carried out using the same approach a
Table ~I!. Numbers in parentheses represent powers of 10.

Atomic orbitals Integral This work DTESTa

1 : 1s@5.67# ^1u5& 2.320 346 76~25! 2.320 320 39~25!
2 : 2s@1.61# ^2u5& 2.036 349 67~22! 2.036 346 71~22!
3 : 2p0 @1.56# ^3u5& 3.594 130 07~22! 3.594 125 61~22!
4 : 2p1 @1.54# ^4u5& 24.891 573 90~24! 24.891 139 61~24!

^2u6& 1.949 350 00~21! 1.949 349 28~21!
^3u6& 2.052 678 19~21! 2.052 682 43~21!
^4u6& 24.328 212 00~22! 24.328 219 90~22!

5 : 1s@5.67# ^1u7& 23.594 136 80~22! 23.594 125 61~22!
6 : 2s@1.61# ^2u7& 22.052 682 14~21! 22.052 682 43~21!
7 : 2p0 @1.56# ^3u7& 21.667 138 73~21! 21.667 138 08~21!
8 : 2p1 @1.54# ^4u7& 4.607 731 36~22! 4.607 729 24~22!

aReference 59.
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asymptotically represented by a product involving a Le
endre polynomial Eq.~2.9!. In the case of linear molecules
i.e., a parallel toc, it is shown that the series Eq.~2.9! con-
verges logarithmically fora5c and linearly elsewhere. In
order to highlight the importance of this analysis, seve
examples are presented throughout Secs. IV and V. The
merical values listed in Table I correspond to a linear m
ecule and show that a very good accuracy is achieved
the epsilon algorithm operating on the first 17 terms of
expansion Eq.~2.9!. It should be emphasized that though o
analysis of Sec. IV was restricted to integrals withs type
orbitals, the accuracy obtained with nonspherical orbit
e.g.,p, is very satisfactory.

In the case of nonlinear molecules, two different e
amples were studied. In the first instance~Table II!, we have
considered the case in which the cusp does not play an
portant role. Hence, starting with 17 partial sums, of t
series Eq.~2.9! and using the epsilon algorithm, we obta
numerical values which agree favorably with those of ot
authors~even when nonspherical orbitals are involved!. As
regards the values of Table III, they correspond to a non
ear molecular system, namelyC3, in which the atoms are
located on the vertices of an equilateral triangle. In this ca
it appears that 17 partial sums of the initial series Eq.~2.9!
yield after using the epsilon algorithm to only six accura
digits ~at least when nonspherical orbitals are involved!. This
observation suggests that an improvement of the accu
will require the computation of more partial sums, especia
when nonspherical orbitals are involved in multicenter in
grals.
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APPENDIX: FURTHER REMARKS ON THE
DERIVATION OF THE ASYMPTOTIC EXPANSION OF
BCLFS

Throughout Sec. III, we have established the asympt
expansion of BCLFs, i.e.,A n

n(z,a,r ), by differentiatingn
times, that representA n

0(z,a,r ). It is clear that such a deri
vation is only allowed under special circumstances which
the case of interest hold. Indeed, according to Bromwich,66 it
is stated that,

~i! Differentiation of the asymptotic representation of
Downloaded 15 Sep 2013 to 131.175.12.86. This article is copyrighted as indicated in the abstract.
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function f may not lead to the asymptotic expansio
of f 8 unless we know from independent reasoni
that f 8 is asymptotically developable.

~ii ! If the asymptotic representation off is a convergent
series, we can then apply the test of unifor
convergence66 directly to the differentiated series an
hence infer that the derived function has an exp
sion.

Before applying the above statements, let us write
asymptotic representation ofA n

0(z,a,r ), which according to
Sec. III, is the product of Eqs.~3.6! and ~3.11!. Thus, one
obtains

A n
0~z,a,r !;

1

2n S r,

r.
D n

expH 2z2
ua22r 2u

4n J
5

1

2n S r,

r.
D n

(
p50

1` S 2z2
ua22r 2u

4n D pY p!.

~A1!

Here, it is clear that use of the second of the above st
ments allows one to obtain the asymptotic expansion
BCLFs @c.f. Eq. ~3.14!# as thenth derivative of Eq.~A1!.
This immediately follows from the absolute-convergen
property of the series representation of the exponential fu
tion.

An alternative way to show that in our case different
tion of Eq. ~A1! will lead to the Poincare´-type expansion of
BCLFs is to apply the first of the above statements. Acco
ingly, one needs to show that for any positive integern,
BCLF is asymptotically developable. For such a purpose
start by forming the product of the infinite series given
Eqs. ~3.3! and ~3.9! and then differentiating term by term
with respect toz. After simplifications, this yields

A n
n~z,a,r !5

z2n

2n S r,

r.
D n p

sin~np!(s50

1`

~zr,/2!2s

3 (
q50

s
1

q! ~s2q!! ~n11!s2q
S r.

r,
D 2q

3F ~21!q
sin~np!

p

~2s!! G~n2q!

~2s2n!!G~n!

2
~2n12s!!

~2n12s2n!!G~n!G~n1q11!
~zr./2!2nG .

~A2!

Now bearing in mind that forzr.!n the second term ap
pearing in brackets can be neglected@as for Eq.~3.9!#, one
obtains after some algebraic manipulations~including Eq.
~3.5! and the well-known binomial expansion! the following
expansion:

A n
n~z,a,r !;

z2n

2n S r,

r.
D n

(
s5[ ~n11!/2]

1`

~21!s

3
~2s!!

~2s2n!!

1

s! S z2ua22r 2u
4n D s

. ~A3!

From this equation, it clearly appears that BCLFs are
pandable asymptotically in a Poincare´-type series, which in
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other words means that differentiation of the asymptotic r
resentation ofA n

0(z,a,r ) will give ~in a more straightfor-
ward manner! the asymptotic expansion ofA n

n(z,a,r ) @c.f.
Eqs.~3.12! and ~3.18!.#
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