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Convergence analysis of the addition theorem of Slater orbitals
and its application to three-center nuclear attraction integrals

Ahmed Bouferguene® and Herbert W. Jones
Department of Physics, Florida A&M University, Tallahassee, 32307 Florida

(Received 20 February 1997; accepted 2 July 1998

The mathematical foundation of the methods using addition theorems to evaluate multicenter
integrals over Slater-type orbitals is actually well understood. However, many numerical aspects of
such approaches still require further investigations. In the framework of these methods, multicenter
integrals are generally represented by infinite series which under certain circumstances are very
slowly convergent. Accordingly, the determination of the convergence type of such series is of great
importance since it allows one to choose adequately the convergence accelerator to be used in the
summation procedure. In this work, the convergence of the two-range addition theorem proposed by
Barnett and CoulsofiPhilos. Trans. R. Soc. London, Ser. 243 221 (1951)] is analyzed. The
results obtained from this study are then applied to study the convergence of three-center nuclear
integrals, and most importantly, to discuss the choice of the convergence accelerator to be used in
the summation procedure. @998 American Institute of Physid§0021-9608)00538-9

I. INTRODUCTION are well suited functions from their asymptotic behavior
- o standpoint, they have not been used extensively in the widely
The Schrdinger equation is known to be exactly soluble diffused molecular computational programs. This was essen-

\c/)vwi)(/:hfci); tshoemv(\a/erlel\?:l o?/tljr?nr:ucri]:omeencg?grlrfalp\izztjrﬂséna:Oen%a"y due to the difficulty of computing the notorious multi-
yarog ) 9 9€ center integrals over such functions. To circumvent this dif-

old problem, the hydrogen atom is still giving rise to very ficulty, a different basis of functions was introduced to

interesting studie$;® the mathematical results of which . :
describe quantum chemical phenomena, namely the

could eventually be used in the treatment of more compli- . : 9 :
cated systems, namely many electron atoms. Indeed, in th%aus&an-type orbital§GTOS.” In fact these functions do

latter case things become much more difficult, since it i npt possess the required asymptotic behavior, but their supe-

impossible to construct the exact solutions of the Schrofor advantage stems essentially from the drastic simplifica-

dinger equation. Therefore, we have no choice but to turn t§ONS they provide in the mathematics involved in the com-

approximation methods; the most commonly used in theputation of multicenter integrals. GTOs are nowadays
realm of quantum chemistry is the variational technique. considered as the cornerstone of almost all quantum chemis-

Fortunately, early works about the Sctinger equation Y Packages. _ .
have shown that its solutions must, on the one hand, satisfy ~With the great progress made in both applied mathemat-

the Kato cusp conditidhat the origin, and on the other hand, IS and computer science, an efficient evaluation of multi-
decrease exponentially at infinity. Accordingly, it is natu- ~ center integrals over STOs appears to be an accessible task.
ral to expect that the trial function used in the variational This has led a number of researchers worldwide to focus
procedure should converge rapidly to the exact solution if itheir efforts on the elaboration of new and viable approaches
has the above mentioned asymptotic behavior. In the case éfrected to computing these quantities. These studies have
molecular systems, prior to the application of the suitablded to two types of approach. The first and perhaps the ear-
variational algorithm is the construction of the molecularliest one consists of using an addition theorem to separate the
trial wave function. For such a purpose, theorists usuallyntegration variables from those related to the geometry of
combine linearly the atomic orbitals according to the well-the moleculé?~3In other words, atomic orbitalgAOs) oc-
known LCAO (linear combination of atomic orbitgls curring in a given multicenter integral are first translatest
schemé. It is clear that within the framework of such an ing an addition theorejrto a suitable origin before evaluat-
approach, the molecular wave function inherits the singulariing the integral itself. In this work, displaced STOs are
ties of the atomic orbitals. In an early work on atomic waverepresented by infinite series over spherical harmonics in
functions, Slatét proposed to use in the variational proce- which the Fourier coefficients are functionalsrofin addi-

dure a simplified form of the hydrogenlike functions, hence-tion, these coefficients are described by two different analyti-
forth known as Slater-type orbital§TOS9 in order to sim- cal forms, hence leading to the so-called two-range addition
plify the leading numerical work. However, although STOstheoren?® In contrast, if the off-center STOs are expanded
over functions ofl,(IR%) or WSD(IR%)1317:2428ye are led
dpresent address: Department of Chemistry, University of Ottawa, 10 Marié0 a one-range addition theorem, since in this case the Fou-
Curie Street, P.O. Box 450, Stn A. Ottawa, Ontario KIN 6N5, Canada. rier coefficients are scalars. These scalars may be written
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as overlap integrals between the basis functions and the STO ™ (y R)=N R~ exp —¢(R) Y™(R)

being translated’?* A detailed methodology allowing one to '

derive one-range addition theorems was given in Ref. 25, n=123...

where weakly convergent expansions of a plane wave in con- with =0,1,...n—1

nection with the Fourier transform method were used.
Regarding the second method, it is essentially based on

the use of suitable integral transformations. The best knowmwhere A'=(2¢)""%%/(2n)! is the normalization constant,

are the Fourier and the Gaussian integral transforms. Thehile Y"(R) stands for the solid spherical harmonic of de-

latter consists of representing the term exgx(), which is  greel and ordem which is related to the surface spherical

closely related to the modified Bessel functiép,({r), asa harmonicY["(6,¢) according to

semi-infinite integral whose integrand involves a Gaussian- Moy ol m

type function®?~3* The advantage of this approach is that it ~ ! (R)=R Y (0.¢). (2.2

reduces the multicenter integrals problem to manipulatingRegarding the surface spherical harmonics, their definition

the already well-known Gaussian functions. It does, hOWmay be written using the Condon and Shortley phase
ever, suffer from a major drawback since it requires evaluatgonventior® as,

ing multiple integrals which take prohibitive calculation
time. Co_nversel_y, the second transformation implies solvinq(m(a = [21+1 (I—|m])! Pl (cosp)e™
the multicenter integral problem in momentum space rather ' ¢ 47 (I+]|m))1 ! ’
than in direct coordinate space. Mathematical simplifications (2.3
led Steinborn’s group to new basis functions denotedBby
(Ref. 35, which in spite of their complexity in coordinate
space have a very simple Fourier transfofrf.’

In the present work, use is made of the two-range addi-

[m|
tion theorem. Within the framework of such an approach,F’lm‘(Z)Z(1—22)““'/2 (d_z) Pi(2)
multicenter integrals are usually expressed as infinite series,

, 2.1
m=-—1,—-1+1,...]

where the associated Legendre functhP?‘(z) is defined as
follows:*!

the summation of which may become a challenging problem I+]m| (1-22)

in numerical analysis. Indeed, in an early work ofain? =(—1)" (1—2z?)Iml=2 (—) — (2.9

it was pointed out that the two-range addition theorem of dz 21!

STOs(also calleda function expansionsuffers from poor Now, when the Slater orbital is centered on some arbi-

convergence as one approaches the cusp. Such a bad behg¥ry point defined by the position vectar(relative to the
ior is usually inherited by multicenter integrals based on thisyigin), the expression given in Eq2.1) can be rewritten
expansion. To circumvent this difficulty, Peterson andyth respect to this origin as follows:

McKoy*® have used a convergence accelerator which al-

lowed the authors to improve substantially the efficiency of ~ xmi({.r—a)=Mr—al"™' "t exp(— ¢|[r—a]) Y['(r—a).
their computational algorithms. However, the application of 2.
th.ese numerical accelerating methods cannot be effectivg The addition theorem of Slater orbitals

without a rigorous knowledge of the convergence type of the - o

series that are being summed. For such a purpose we derive The difficulty arising from STOs when they are em-
in the first part of this work asymptotic forms of the Barnett- Ployed in multicenter integrals stems essentially from the
Coulson¢ functions (or equivalently Lovdin « functiong absencg of a S|mple. addition th_eorem which would permit
from which we determine the convergence nature of the agéeparation of the ve1|r|§LbIesanda in Eq. (2.9. In fact, only
dition theorem of STOs. In the second part we apply thes@€ function|r—al"™~* exp(~{|r —al) poses serious prob-
results to the three-center nuclear attraction integral whicff@ms because the remaining term, i27(r —a), can be ex-
appears in various fields of computational chemistry and@nded in a simple way according to the following relaffn:
physigs, e.g, electrqn-molegule scatterial,initio _calcula- YM(r—a)=4m (2h+1)!!

tions (including density functional theoyyFrom this study,

a clear explanation of the poor convergence pointed out by : I’ dmil’ m|l=1" m—m’)
Flygareet al*° will straightforwardly follow. X >
=0 m=—" 21"+ [2(1-1")+21]1
X () Y (—a), (2.6)
where the double factorial 2+ 1)!! is related to the facto-
Il. GENERAL DEFINITIONS rial function according to,
In the following, we would like to begin this work by a v (2v+1)!

brief recall of some fundamental definitions which hopefully v+l = 1;[0 (2pt1)= Tov 2.7
will facilitate the comprehension of the succeeding para- P v

graphs. In the most general case, a STO is defined as foRegarding the symbadll; my|l, my|l3 mg), it is known as
lows: the Gaunt coefficient and is defined by,
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LA L ist better ways to carry out such a task, while for logarithmic
(1l mafl; myfl5 m3>=J 70f 70[Y|11(9,<P)]* convergent series the direct summation procedure should
e definitely be avoided since it is extremely difficult to achieve
xylmZ( 6,¢) Y|m3(0,<p)d0 de. (2.8  an acceptable numerical accuracy in a reasonable amount of
2 3 CPU time. In the latter case, use of convergence accelerating
Here, it is worth noticing that from an analytical stand- techniques is a crucial issue to the computational algorithm.
point, the expansion of the functigm—al"~'~* exp(~{r  In fact, according to Wenigeet al,>* the definition(3.1) is
—a|) over a complete set of surface spherical harmonics mayf very little use since it assumes the knowledge of the limit
easily be done by successively differentiating the Gegens and the analytical form of the partial suy. Fortunately,
bauer addition theoreth of the Yukawa potential with re- it was shown that, if for very large values of the indexthe

spect tog (Ref. 11. Thus, one obtains, term a, has a Poincargype asymptotic expansion of the
|r_a|n7|71 exq_§|r_a|) form,
2
1 a-r —\n ® “a
== 2 (2+1) ALLLLan Px(_>, (2.9 S e

ar x=o ar
where the functionsA?;!,(¢,a,r), which from now on will with ag # 0 3.2
be referred to as Barnett-Coulsonvidin functions n— +oo, '

(BCLF9), are defined as follows:

n-! {|>\+1/2(§P<) Ky+1/2(8p>)

Vo< Vo=

Therefore S converges linearly if\| <1 and logarithmically
if \=1 and Re@)<—1.
' In what follows, our first task is devoted to elaborating
the asymptotic representations of the modified Bessel func-
(210 -
_ tions1,(z) andK ,(z) for large values ofv and finite values
wherep andp.. stand for mingr) and maxgr), respec-  of the argument. Thus, in the former case, that is for the

tively. As regards the functions$, ;1(z) and K, 1X2),  function 1,(z), our starting point will be its series
they represent the modified Bessel functions of the secongbpresentatiott that may be written as,

kind.3* Note that the major advantage of the series expansion

n—I J
Ay (g arn=|— PY:

Eqg. (2.9 lies in the fact that each of its terms can be written (E vep
explicitly because the order of the Bessel functions is half- i 2
integral and hence could be expanded in finite closed forms Iv(z):pzo p! T(v+p+1)
according to Ref. 34.
z\? z 2p
I1l. CONVERGENCE ANALYSIS OF THE ADDITION _ (2 = (2)
THEOREM OF STOS T+ & pl (et 3.3

In the foregoing section, an addition theorem allowing,,nere the symbol &),
us to expand a Slater orbital about an arbitrary origin Wagsient defined as,
derived from the well-known Gegenbauer addition theorem
of modified Bessel functions of the second kind. Now, we  (a)p=1, and
want to derive the asymptotic forms of the functions I'(a+n)
Al', 1.(¢,a,r) for large values of. These asymptotics will, a),=—=——=aX(a+1)X ...(a+n—1). (3.4
then, be used to determine the convergence type of the addi- I'(a)
tion theorem under consideration. Here it would be worth- At this point, if we approximate the Pochhammer coef-
while reviewing some basic definitions related to the conversicient involved in Eq.(3.3 by the leading term of the
gence of infinite series. More detailed discussions are to bgsymptotic expansion of the ratib(z+ «)/T'(z+ 8), that
found in the excellent review paper of Wenigeand in the is.51
article of Wenigeret al® and in a more recent textbook of
Brezinski and Redivo-Zagli&. I'(z+a)

Let S=3.7, a;, be a convergent series, the limit of I'(z+B)
which is s, and letp be the ratio that is defined by,

stands for the Pochhammer coeffi-

2% F with z— + oo, (3.5

we immediately obtain an asymptotic representation of the
Sh+1—S Bessel function under study which may be written in a

nLle S—s P 3D Glosed analytical form as,
where S, stands for thenth partial sum ofS such thatS, (E '
= 3i_o & | z
Then, according to Wimp® the seriesS converges lin- 2) C(v+1) ex Ay

early if 0<|p|<1 and logarithmically ifp=1. From a com-
putational point of view, a linearly convergent series may be
evaluated by a direct summation procedure, though there ex-

2
Z
with v— + o andz<v. (3.6
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Regarding the asymptotic behavior of the Bessel func<v) may straightforwardly be obtained by differentiating
tion K ,(2), the forms given by Grosswafd may directly be  times the product of the expressions given by Eg§$) and
used. However, in order to simplify the mathematics in-(3.11) (see Appendix A Thus one obtains,
volved in the next section, we prefer to derive a simplified , N s o
asymptotic representation that is valid only &f4<v, as ANZ,a,r)~ 1 (P<) (_ i) exp{ e |a®—r |)
was the case for the functidn(z). Thus, to obtain such a 2v
representation, it is sufficient to start with the following
definition*

where from now on we prefer to write instead ofl + 1/2 to
T simplify the writing.
Ki(2)= 5= [1-.(2-1.(2)]. 3.7 In this last equation, thath derivative of the exponen-
2sin(v) . ) L , . .
tial function may be explicitly written using the Hermite
Now, substituting for the Bessel functiots ,(zZ) and  polynomials, since according to Rodrigues formutathese
I.,(z) their series representations, and making use of th@olynomials are defined as follows:
identity’* relatingT'(1—2) to I'(2), that is,

n

- Hny(z)=(—1)" exp(zz) exp(—zz). (3.13
F(1-2) N(=2)= g (3.9
Now, taking the above definition into account, the first
we are able to write the following expansion: asymptotic representation of BCLFs follows at once,
(z 2p v(|a2—r2| "2
— + o Py
z v 2 (4" a, r) )
K2 =55 Sigw) (5) > o 2\p) | 4y
p=0 : |a2—r2| , |a2_r2|
sin(v7) (Z214)" Xl SN, R 8 )
X[ (=1)P F(v=p)— v |-
(3.9

On the other hand, substituting for the Hermite polyno-
A brief survey of this last equation shows that for large mial involved in the above equation its explicit definition,
values ofr and with the assumptiozf/4< v, the expression which according to Ref. 51 may be written as follows:
enclosed between brackets may be approximated by its first

term. This finally allows us to write the asymptotic represen- | (/2] 0 (2z)" 2P
tation of K (2), Hn(z)=n! pgo (-1

p! (n—2p)!’ (3.15

N

2
o (_) P we finally obtain after some straightforward algebraic ma-
1/2 - I'(v—p) \2 nipulations a Poincargype asymptotic expansion of the
V(Z)N_(_) I'(v) 2 (=P T(v) 310 function A"(¢,a,r) valid for large values ofv and finite
values ofa and {r that satisfy the conditions{@)?/4<v

and ((r)?/4<v. Such an expansion may be written as,
where the upper bound integpf,., satisfies the inequality

max=[ 7], the symbol v] being the largest integer less than

or equal tov. AN(¢,a,r)
Furthermore, if in the above expansioris large enough
to apply the approximation given by E¢3.5), the summa- p<\’
tion over p may therefore be approximated by a single ex- p_>
ponential term. This yields ~(-p (20”(5 Ja®=r? 2[(n+l)/2 2 L(n+1)/2]+1
1/2\* z2 [n/2]
KV(Z)~—(—> I'(v) exn[——], B 1
2\2 4” % & UV =g (-2 2
2
z
with v—+ and —<v. (3.1) J]a2—r?|)P
4 xu. (3.16

p
Now that we have derived the asymptotic representa- ”
tions of the modified Bessel functiong(z) andK ,(z) for
large values ob and forz?/4< v, the next step of the present Here, it is convenient to notice that according to the
work is to establish the asymptotics of BCLFs, i.e.,above equation, the PoinCatype asymptotic expansions of
AN A L,a,r). the functions.A2""(¢,a,r) and A2"(¢,a,r) are similar,
The first asymptotic form, and certainly the simplest, ofsince in both cases the leading terms of such expansions may
the functionsA[', ;,(¢,a,r) (for large values ofr andz?/4  be written as
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p<) v whose ordes is strictly greater thanv] are different, since
- in such a case, the summation oyein Eq. (3.18 cannot be
A2 Yz arn~C p>+1 , reduced by the Newton binomial formula.
v As regards the second case, that is, that corresponding to
the cusp for whichp.=p.=a, the use of the following
and (317 identity [see Ref. 18, Eq5)],
v a—u)! a—b)! (a—c)!
(p_<) 2(_1)MI (— :'“)_ |:(||)£_)|'
on o m u! (b—pu)! (c—p)! bl c! (a—b—c)!
A (¢arn~C ey (3.20

_ allows us to perform the summation overinvolved in Eq.
whereC andC’ are two constants independentof (3.18. Therefore, the asymptotic representation of the BCLF
Despite its simple analytical form, the asymptotic repre- 4"(7 a,a) may finally be written as,

sentation given by Eq3.16) is only valid in the case where

; ; - 12 +oo |
p<#p~. In other words, this means that at the cusp, i.e., n ™ 1 s (29)!
p~=p-=a, it is necessary to derive another form since Eg. Ay(L,a,a)~ o 20 s=[(AT1)12] B (2s—n)!
(3.14 gives zero. For such a purpose, our starting point is

the expansions given by Eq&.3) and(3.10. Hence, pro- r 1) T'(v—s) ([a)*
ceeding in the same way as in the previous case, that is X S+§ [(v+s+1) sl (3.2
differentiatingn times the product of such expansions with , . )
respect tol (see Appendix A yields, after simplifications, . H€re, if once again the parameteris large enough to
justify the use of the approximatiof3.5), the above expan-
(=" 1 [(p\? sion may therefore be written as a Poinetyee series. Thus
AN(L,a,r)~ o 2 (IJ_) one obtains,
>
B (Za)2ln+1/2]
n
2s)! 2s .An ,a,a)~ -1 [(n+1)/2]
N S (§p_>) '(¢,a,8)~(~1) —
s=[(n+1)/2] (2s—n)!' |\ 2
1 =
min(s,[ »]) X L2ln+ 12 +1 qZO (—1)9
x| 2 (=1P
p=0 ><[1“(q+[(n+ 2]+ 3)1? (¢a)®
(p<)29 (2q+2[(n+1)/2]—-n)!  ,2q
—s+
I'(v—s+p) P> (3.18 (3.22

X
L(v+p+1) (s—p)! p! . .
As a consequence of the asymptotic representations of
With a view to providing another asymptotic representa-BCLFS [c.f. Egs. (3.16 and (3.22], it is clear that the
tion whenp_ # p-. , two separate cases will be considered inasymptotic  behavior  of  the  terms, a/'=(2l
the above equation. The first case we consider corresponds tol) A+ 12(¢,a,r) Pi[(ar)/(ar)], involved in the addition
p-#p-, for which the above expression may be approXi_theorem of Eq.2.9), may be deduced in a straightforward
mated by a closed form straightforwardly obtained if we as-Way. Indeed, remembering that=1+1/2, it may readily be
sume that on one handis large enough to apply the identity S€en that for large values df the leading term of the
of EqQ. (3.5 and on the other hand mij{(v])=s. Thus one asymptotic expansion &' may be written as,

obtains, I+ 1/2
5
(D" 1 (p<)’ o P> ar
ANz~ o2 p—i a=C s yieva D ar ) for po#p. (3.23
[¥] and
2s)! '
X > (_1)S¥
s=[("T1)/2] (2s—n)! 0o 1 b a-r . o
T) _(T> } 1 (3.24
X —. (3.19 , _
s! VS whereC andC' are two constants independentlof

As a special case of these equations, attention should be
Here, it is worth noticing that the terms involved in the drawn to the fact that when the vectaranda are parallel,
above expansion are identical to the f{rs terms obtained that is to sayP,[(ar)/(ar)]=(=1)', then according to
by substituting for the exponential term occurring in Eq. Wimp,*® the convergence of the two-range addition theorem
(3.14) its Taylor series representation. However, the term®f Eq. (2.9) is linear forr #a and logarithmic otherwise.
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IV. THREE-CENTER NUCLEAR ATTRACTION tion theorem Eq.(2.9). Indeed, when using the two-range

INTEGRALS addition theorem we are usually led to an infinite series
Three-center nuclear attraction integrals are by far thdVhich undger certain circumstances may be slowly

most difficult one-electron quantities that are required wherfonvergent: Three-center nuclear attraction integrals are

solving the Schidinger equation within the LCAO-Mo 9enerally defined as follows:

(molecular orbitalsansatz. In fact many works were devoted

to the evaluation of these integrals using either the Fourier oM

integral transform methd@°®°or the method based on ad- —<lele(a,r)

dition theorems1®°-62Thjs work essentially aims at high-

lighting one of the most important difficulties encounteredNow expanding the Coulomb attraction operator and using

when multicenter integrals over STOs are evaluated withirthe product of the addition theorems of E¢2.6) and (2.9

the framework of the method based on the two-range addiyields after some simple algebra,

r—

X&A;’Lz[ﬁ,r—a]> . (4.0

Lo L2 MLILL MA|Lo—L) Mo— M e
TN N, (A 2L S S (L2 ,2|  MalL: 22 2 yre
Gom iy (RLpFDN [2(L—Lp+a] Tl

(—a)

Li+Ly +oo I+L
X2 T(LMAILIMILME =M ) D 5m— > " Ry(Ng, N Lo, Ly e, 8,2)
—|L,-L. =0 21+ 1\ =Ty
L=|L;—Ly|
|
me‘il (I m|LMy—My[xm=(M;—M YT M2 M (@a)* yee), (4.2

where the radial functioriR;(N1,N,,L,,L;,a,8,a), which  molecular systems. Hence, from Eg.3) one obtains, after
for simplicity will be referred to afR,;, is defined according some straightforward simplifications, including the use of the
to, orthogonality property of surface spherical harmonics, the

, following expansion:
Ri(Ng,Na Lo, L5, a,8,a)

ANl g ar
= < Nitlo—1 exp(— ar) rlfl‘ -1 )> , (4.3 re
r- ’ Var Tss=N1 N, IEo(r'\‘l‘l exp—ar)|
wherer_ andr. stand for ming,c) and maxé,c) respec- \
tively. For numerical purposes the evaluation of these quan- rl ‘Alfllz(ﬁ,a,r) a-c
tities may be carried out using two main schemes. The first Xr|+1 Jar Nacl (4.4
and perhaps the most advantageous, since it requires no fur- -

ther mathematical developments, is based on numerical inte-

gration techniques, whereas the second is more classical in

the sense thak, is evaluated analytically. As a matter of fact In order to derive the convergence type of the above infinite

such an analytical calculus is made possible by usingthe €Xxpansion we are required to determine the asymptotic form

matrix representation of BCLFs. In the present work we conOf its terms for large values dt Before doing so, it should

fine ourselves to applying the first method, namely Gaus$€ pointed out that in a paper devoted to molecular integrals

. L. . 4 ;

quadratures. In so doing, the radial integfylis evaluated Over STOs, LaBudde and Safiti* established the

as the sum of three terms over the rangésmina,c)], asymptotic form of many integrals, including the one under

min(a,c),max@,c)] and [ max@,c),+«). study. Using some special inequalities satisfied by modified

Bessel function§? the authors succeeded in deriving a set of

inequalities satisfied by the terms of the selié<) (for ar-

bitrary values ofl). In this work, our approach is more re-
In this paragraph it is our aim to highlight some conver- strictive, since we mainly focus on the behavior of the terms

gence aspects of three-center nuclear attraction integrals of (4.4) for large values ofl. Of course, the generality of

examining in details the special case correspondirgtype  LaBudde and Sahni's inequalities makes it possible to derive

orbitals. Generalization of this case to a linear system mightery simply an asymptotic form of the terms of the above

be done quite straightforwardly. In fact, such a case not onlgeries that is equivalent to that obtained below. To start our

allows us to simplify the mathematics but is of great practi-derivation, we first express the radial integral of E44) as

cal interest since these orbitals are involved in all atomic an@ sum of three term®&,, R, andR5 such that,

A. Convergence analysis of three-center nuclear
attraction integrals
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N
1 min(a,c) A|+21/2(13'a'r)
R :_J' T2 T N+ ey — ar)dir
1 \/ECI+1 o \/F W
(4.9
N .
Rzzijmaxavcw‘hfuz(B:aﬂ [mine,n]' 1y
Ja) mina.c) Jr [max(c,r)]'**
Xexp(—ar)dr (4.6
Cl erw 'AIN-ElIZ('B’a'r) N, —1 ( 7)
Ra=— — N7l exp(—ar)dr. (4.
3 \/a maxa,c) \/F F(

From the above equations it follows that in contrastitg

A. Bouferguene and H. W. Jones

where » stands for the ratipa min(a,c)]/(2l). At this stage,

it turns out that the integrak, has in fact two different
Poincaretype expansions according to whether mjo(=a

or min(@,c)=c. Indeed in the former case the innermost sum-
mation, i.e., ovep, may be performed using the identfisee
Ref. 18, Eq.(5)],

(a+9)!
Eg (_1)65!(b—5)!(c+ 5)!

al(a—c)!

:(_1)5b!(b+c)!(a—b—c)!'

(4.11

From this point, use of Eq3.5 allows one to obtain the

and R, the integralR, has two different forms according to following asymptotic expansion for the integral:

whether miné,c)=a or c. However, as may be seen later, the
derivation of its Poincargype asymptotic expansion is Ry~

straightforward.

For large values of the subscripthe introduction of the
asymptotic form of BCLFs(3.18 [for which p_-=r and
p==min(a,c)] in the definition of R, yields

(=12 1
Y (21+1)8N2 (ac) +1
+ oo
2s)! a\?
X z _1)SL B_
s=[(Nz+1)/2] (2s=Np!\ 2
min(s,l)

I'(l-s+p+1/2 a 2P
I'dd+p+3/2)(s—p)! p!

X X (=P
p=0

min(a,c)
XJ’ rN1t21+2p+1 ey — ar)dr. (4.9

0

Now using the fact that for large valueslofnd finite values
of @ min(a,c) the above integral overmay be approximated

by,

min(a,c)
f er+2|+2p+l qu_a’r)dr
0
[min(a,c)]N:t "2 2P+2 exd — & min(a,c)]
TN +21+2p+2 a min(a,c)
2

4.9

Now inserting the above approximate into E4.8) and us-
ing some straightforward simplifications, we obtain

11 min(a,c)]N
1-79

(= 1)N2 [ min(a,c)
(21+1) N2l maxa,c)

1

+

X exd — a min(a,c)] (—1)°
s=[(R5+1)12]

(ZS)! ,G'a 2smin(s,l)
“GsNpil 2| & CV°

I'(l-s+p+1/2) [min(a,c)/a]®®
T+ p+5/2)(s—p)! p!

, (410

aM

_1\N, l+1
! 1_nexp(—aa)

2(21+1)pN2\ ©

2s

Ba
(2s)!  (2s+1)! | 2
(2s—Ny)! (s+1)! s!

+ o0

X > (—1)°
s=[(Ny+1)/2]

1

1277 12

Now, in the case where miag)=c, use of Eq(3.5) yields a
summation ovep which could easily be performed since it
represents in fact the standard Newton expansion of the term
[1—(c/a)?]5. Some simple algebraic work leads afterward
to the following Poincargype expansion:

(—1)N2[c|'*1 M
17~ 4% a 14 exp(— ac)
+ o
(29)!
X —1)
s:[(r\%n/z] ) (2s—Npy)!
Ba 2 IBC 21s
2 2 1
. e (4.13

Here, it should be pointed out that in both cases, i.e.,
min(a,c)=a and ming,c)=c, the leading term of the
Poincaretype expansion of the integrak, has the same
form, that is,

min(a,c) |'?

maxa,c)
1(| + 1[N+ 1)/2)+2”

(4.19

Rl~

whereC; is a constant independent bof

According to the introductory remark of this section, the
integral R, has two different definitions according to
whether miné,c)=a or min(@,c)=c. In what follows we will
restrict ourselves to consider only the former case, since the
latter may be treated exactly in the same way. In this case the
following equalities holdp_=a andr_=r. Thus inserting
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the asymptotic expansion o2 (8,a,r) (3.19 into Eq. In addition, use of the approximatiof' (I —q+1/2)/(2

1+1/2 .
(4.6), and collecting all the powers of the variablgyields 24— N1)~1/2T'(1—q—1/2) enables us to obtain the fol-
the following radial integral: lowing asymptotic representation f@t;:
c (— 1) min(a,c) : Ny
farNﬁZS—zP“ exp(— ar)dr, (4.15 Ra~ 25 |maxa,c) [maxa,c)]
From the above expression, it is clear that the above integral X exf—a maxa,c)]
could be considered as a constant independent, @ind +oo (29)! ja 2gmin(s,!)
hence for large values of such a parameter use of(E§) X —| — E (—1)9
yields after simplifications the following leading term of the s=[(Nz+1)2) (28— Np)! | 2 q=0
Poincareasymptotic expansion faR,: maxa,c)]2d
' ' rid—-qg-1/2 a
min(a,c) « (I=q ) 420
K, maxa,c) 416 (s=a)!I'(I+s—q+3/2) q!
27~ . .
max@,c)(| + 3)[(Na+ 17214 2 As in the case ofR,, the above asymptotic form may be

simplified differently according to whether ma¢)=a or
Regarding the integraRks, it is theoretically forbidden to min?a d)=c. In the %rmer casg use of E(ﬁ.Zva(\:/)ith Eq.

directly substitute the asymptotic form of BCLFs given by (3.5 yields after some simplifications the following
Eqg. (3.18 into the definition of such an integral since its Poincaretype asymptotic expansion:

upper limit is not finite. In order to circumvent this difficulty,

it is sufficient to approximaték; by an integral where the (—1)N2
upper limit was set equal to a large but finite vatyg,. This Rz~

min(a,c) |’

[max a,c)Ntex] — amaxa,c)]

N2 | maxa,c
approach is well justified, since for large values rothe 4Bz axa,c)
integrand behaves like? exd —(a+B)r]. In other words, Ba\?
this_ means thgt beyond such a suitably chosen limit the fol- +o (2s)!  (2s+1)! >
lowing approximate holds: X —-1)°
s=[(N5+1)/2] (2s—Npy)! (s+1)! sl
N
o AlpBar)
————— M7 exp(— ar)~0. 4.1 :
frmax Jr A—ar) (4.17 xm for min(a,c)=a, (4.21)
(I+2)
Hence, substituting the asymptotic form of E8.18 into q
the approximate definition oR yields, an
N +o0 2 (—1)N2 [ min(a,c) |'
R e 2(ac)' (291 [pa® 37 745N | maxa,c) [maxa,c)]"™
3 23Nz s=[(R5+ 1)) (25=No)!\ 2 B ’
i Xexd —a min(a,c
m'”ﬁ") e I'(—q+1/2) 2 i 7 min@c)] , ,
“ & OV girirs—arm B pe|®(Ba)?p
s (29)! 2 2
"max eX[I(—aI’) X — (_ (28_N )! sl
X ————dr. (4.18 s=[(Nz+1)/2 2 :
ma)(a,c)r2|_2q_Nl+1
1 .
Sincel is a large number, the radial integral involved in the X(I T for min(a,c)=c. (4.22

above equation may be approximated by the first term of the
expansion obtained by an integration by part where

ol 2N 1 X From the above equations it is clear that in both cases the
=exp(—ar) anddv=dr/r<~<97™"% Thus, one obtains

leading term of the Poincaftgpe expansion may be written

as follows:
J’rmax exp(— ar)
max(a,c)r 2 20~ Np+1 min(a,c) \'
B max a,c)

B 1 exfd —a maxa,c)] exgd— armad 3T 3(|+%)[(N2+1)/2]+2’ (4.23

~ 21-29—Ny|[maxa,c)]? 29 M rﬁqla_xzq_Nl
where/C; is a constant independent bof

1 1 exd —a maxa,c)] At this stage it may readily be seen from E¢4.14),
-0 12| 21-29—N; [maxa,c)]2 24N’ (4.16 and (4.23 that for large values of the terms of the

series representation of the three-center nuclear attraction in-
(4.19 tegral (4.4) behave like
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TABLE |. Selected three-center nuclear attraction integrals in the case of a linear molecule. Numbers in
parentheses represent powers of 10.

Atomic orbitals Integral Dgyc This work ALCHEMY ° DresT®

S(H) 1s[1.24] (1]2) 5 2.045496054-1)  2.945496 056—2)  2.945 494 456—2)
(0) 19[5.67] (1]3) 11  1.606646078-1)  1.606 646 04(—1)  1.606 645 937—1)
(0 29[1.61] (1]4) 7 —1.163866016-1) -—1.163866016-1) —1.163 865 846-1)
(C) 2po[1.56 (2|6) 3.710 041 456-5)  3.710041454-5)  3.710 152 496-5)
1(C) 2p, [154 (2]7) 2.695528 880-2)  2.695528 880-2)  2.695 532 230-2)
(N) 15[6.66] (2]8) —4.621491518-2) —4.6214915168-2) —4.621 497 45(—2)
(N) 2s[1.94] (36) 1.408 177 370-2)  1.408 177 370-2)  1.408 441 960-2)
S(N) 2po[1.92 (3|7) 1.467 233406-1)  1.467233406-1)  1.467 232 640-1)
“(N) 2p,[1.80 (3|8) -1.530415966-1) —1.530415966-1) —1.530415 936-1)

(5/9) 1.009 914 320-1)  1.009 914 320-1)  1.009 914 330-1)

O© O ~NOOULPA,WNPRP

A DhowbNhdOODN

#This work: Values obtained after accelerating the initial series expansion usiegtberithm.D,. represents

the number of exact digits obtained after the summation of 17 terms of the original series. Our values
correspond to the term}g of the e algorithm. The molecule is along tfeaxis and such that(H, C)=2.0143
andd(H, N)=4.1934.

bSee Ref. 67.

°DTesT. These values were obtained using the-salled Legendre Moius quadraturéLRM) (Ref. 68 method

for which the parameters are: LRM 9@0, 20; 1-6) | 20, 16; 1-7) | 10, 10; 1-8).

dSee Ref. 59.
min(a,c) \' For numerical purposes the evaluation of the above quantity
maxa,c) may lead to severe numerical instabilifit®ecause of the
n L

P,(E) with [ — +oo, existence of alternating terms in both numerator and denomi-
ac nator. We will, therefore, apply the recursive algorithm ad-
(4.24  vised by Smith and Ford to evaluate these quantities. Such an

whereK is a constant independent bf algorithm is defined as,

As a conclusion of this section, it is obvious for linear K
molecules, that is to say[Rac)/(ac)]=(=1)', the conver- Q=0 - E Q

! ! k,n k—=1n+1 k—1n

gence of the above series is linear #o# ¢ and logarithmic n+k
otherwise. Ho'wever,.it is cle{:\r that far=c th.e convergence with k=1n=0, (5.2
of Eq. (4.4) will deteriorate since though still linedfrom a
mathematical standpointhis region is close to the cage  where the starting valu®,, is defined by,
=c where the convergence is definitely logarithmic. This
study provides in fact a rigorous explanation to what was

a| -~
(1+ )Nz 172142

n+k

n+k+1

for the numerator

pointed out by Flygarest al. in Ref. 49. In addition to this (n+1)%a,

remark, it should be pointed out that sindg appears as a Qon= (5.3
power of (+1/2), the convergence of the seriét4) is 1 for the denominator.

expected to improve with high values of this parameter. (n+1)%a,

Regarding the so-called Wyrmalgorithm, it is a computa-
tional procedure allowing one to calculate recursively the
quantities required by ShanR3The e algorithm is defined
In this section we present some numerical values ofis

three-center nuclear attraction integrals and show the im-
provement in the convergence obtained with the help of two (n) _ (n+1) 1

' i €= €1t i (5.9
different nonlinear convergence accelerators, namely the Ef(““)—ef(”)
Levin u transformation and the Wyna algorithm. It should
be mentioned that Peterson and McKbpave applied the Where the procedure is initialized with the terei8} =0 and
latter method to circumvent the difficulties arising from the €5” =S, . According to Wimp:°® the e algorithm may also
summation of the S|ow|y Convergent series representing fourSUffer from numerical inStabi”tieS, but in our case such an
center integra|s_ According to Fessler, Ford and Smithuthe algorithm has exhibited a gOOd numerical behavior since it

V. NUMERICAL RESULTS

transformation may be defined as follows: always converges to the right value.
" o In Table I it may be seen that after summing 17 terms of
3 (_1)i( K\ (1+n+)*"2 S,y the series expansio@.4) only a few accurate digits are ob-
=0 i) (L4+n+Kk)* T anti tained(c.f. column labeled,,J. It should also be noticed
Uk(Sh) = % K (lonenf? 1 (5.1))  that according to the concluding remark of the previous sec-
2 (_1)i(_ (1+n+1i) tion, the convergence of Ed4.4) generally improves for
i=0 ) (1+n+k)* T ansi increasing values di, (c.f. lines 1, 5 and B Furthermore,
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TABLE Il. Comparison to previous values for linear and nonlinear systems. In this table, the orbitals are
assumed to be on thgaxis, i.e.,a(0,0a) [see Eq(4.1)]. Calculations are carried out using the same approach
as in Table(l). Numbers in parentheses represent powers of 10.

Geometry Integral This work Ricet al? Dres™

,c(3,45)  (2p,[4.0]|3d,[3.0)) —3.020 076 72(—3) —3.020 076 72-3) —3.028 935 05¢-3)
,c(3,45)  (2p,[4.0]|3d,[3.0]) —2.587 578 890-5) —2.58757860-5) —2.600519 870-5)
,¢(0,0,7)  (2p,[4.0]|3d,[3.0]) —2.818653000-5 —2.818657 00-5) —2.818 654 096-5)
,c(—254) (2s[3.0]2p,[3.0)) —1.333583172-3) —1.33359600-3) —1.333 586 292-3)
,¢(—3,6,5) (2[3.0]|2p,[3.0)) —1.04521843¢-4) —1.04521917-4) —1.045 222 326-4)
,c(—4,7,6) (2s[3.0]|2p,[3.0)) —8.531955276-5 —8.53195570-5 —8.531988 486-5)

(

(

QJQJQJQ)Q‘-“SDSDSDQJ
o U1 N OO or OOl Ww

,¢(0,0,9) 25[4.0]|15[1.0])  —2.630240914-2) 2.63024091-2) 2.630 314 167-2)
,¢(0,0,9) 25[4.0]|1s[1.0]) 1.538280150-3) 1.53828016-3) 1.538 316 674-3)
,c(0,0,9)  (2s[4.0]|1s[1.0]) 7.945 638 156-5)  7.945637 90-5)  7.945 820 427-5)

aReference 69.
PReference 59.

in all cases, namely those involvisgype orbitals as well as  VI. CONCLUDING REMARKS
those which do not, a spectacular improvement of the accu-  The first part of this work aimed at examining the con-
racy is achieved by applying the above accelerating techyergence of the two-range addition theoréas derived by
niques. . Barnett and Coulsdd). It is shown that for arbitrary vectors
In the case of nonlinear moleculésee Table I, the | 5044 [c.f. Eq.(2.9)] the terms of this orthogonal expansion
convergence of the series under study is, theoretically, nei; o represented asymptotically as a product involving a Leg-
ther linear nor logarithmic. This results from the presence ofgre polynomial Eq(2.9). For the special case in whigh
the Legendre polynomial, which makes it impossible to 0b-3q4 are parallel, we show that the series representation Eq.
tain for the coefficient Eq4.24 a Poincardype expansion (2.9 converges logarithmically when=a and linearly oth-
similar to that of Eq(3.2). In this case, the failure of Levin onvise. This study hence provides a rigorous proof to the
u transformation was observed, whereas éhgorithm al-  opservation reported by edin in one of his early works on
lowed us to achieve the accuracy neededninitio quan-  ihe addition theorem of STJZ.
tum chemical calculations. In fact, such a good behavior of Strictly speaking, the evaluation of the series E49) is
the e algorithm may be predicted by noticing that the seriesnot required when computing multicenter integrals over
Eq. (4.4) is an infinite expansion in terms of Legendre poly- sT0s since it is generally combined with other expansions,
nomials, R(cosé). For large values of, these polynomials ¢ g | aplace expansion of the Coulomb operator. However,
have the following asymptotic for: as shown in Sec. IV, the knowledge of the asymptotic form
1 1 of the terms defining the series Hg.9) helps one to derive
== p1c0d(l+ 3) 6] the asymptotic representation of the terms involved in the
v sing | series describing multicenter integrals.
As an application of this approach, we have considered
5.5 the case of three-center nuclear attraction integrals in which
| = +oe only s type orbitals are used. Thus, after some algebra one
From this equation, it is clear that Legendre polynomialsobtains an orthogonal expansion E@.9), the terms of
behave asymptotically like a Fourier series. Accordingly, thewhich are
difficulties encountered when accelerating the convergence
of the expansion Eq(4.4) are similar to those occurring TABLE Ill. Convergence of the series expansion Ef4) for an equilateral
when dealing with a Fourier series, in which case only veryd®°mety. The atoms are located @, 0., 0), (0., 0., 2.51900 (2.18152,
. 0., 1.25950. Calculations are carried out using the same approach as in
few accelerators can be used. Fortunately, dhalgorithm

; - Table (). Numbers in parentheses represent powers of 10.
belongs to this class of successful algorithms because of the

P (cos #)~

+sin(I1+ 3 6]} with

form of its kerneP® which includes special Fourier series of Atomic orbitals  Integral This work Dres™
the form 1: 15[5.67] (1/5) 2.32034676-5)  2.320 320 30-5)
2 :2s[1.6]] (2|5) 2.03634967-2)  2.036 346 71-2)
> [Bi(n) cog Bin)+C; sin(Bin)] exp(w;n). (5.6 3:2p,[1.56  (3|5) 3.59413007-2)  3.5941256(1-2)
i 4:2p,[1.54  (45) —4.89157390-4) —4.891 139 6(—4)
. . . 2/6 1.949 350 00-1 1.949 349 28-1
The spe_C|aI case ofa molecule in wh|ch atoms are Ioc_ated on 23}6§ 2 052 678 1&; 2 052 682 4§1;
the vertices of an equilateral triangle is of interest since in (46)  —4.32821200-2) —4.328219 90-2)
such a case the cusp plays an important role. The integralss : 1s[5.67] (1/7)  —3.59413680-2) —3.594 125 6(-2)
listed in Table 11l were obtained with the molecular system 6 : 2s[1.61 (2[7)  -2.05268214-1) —2.05268248-1)

2po[1.56]  (3]7) —1.66713878-1) —1.66713808-1)

C5. These values show that, in this special case, 17 partial_ : oo 154 (4]7) 460773136-2) 4607729 26-2)

sums are generally not sufficient to achieve more than five ta__
six accurate digits. 3Reference 59.
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asymptotically represented by a product involving a Leg- function f may not lead to the asymptotic expansion
endre polynomial Eq(2.9). In the case of linear molecules, of f' unless we know from independent reasoning
i.e., a parallel toc, it is shown that the series E(R.9) con- thatf’ is asymptotically developable.

verges logarithmically form=c and linearly elsewhere. In (i) If the asymptotic representation éfis a convergent
order to highlight the importance of this analysis, several series, we can then apply the test of uniform
examples are presented throughout Secs. IV and V. The nu- convergenc® directly to the differentiated series and
merical values listed in Table | correspond to a linear mol- hence infer that the derived function has an expan-
ecule and show that a very good accuracy is achieved with sion.

the epsilon algorithm operating on the first 17 terms of theB
expansion Eq(2.9). It should be emphasized that though our
analysis of Sec. IV was restricted to integrals withype
orbitals, the accuracy obtained with nonspherical orbitals
e.g.,p, is very satisfactory.

In the case of nonlinear molecules, two different ex-
amples were studied. In the first instar@able Il), we have
considered the case in which the cusp does not play an im-

efore applying the above statements, let us write the
asymptotic representation pf%(¢,a,r), which according to
Sec. Ill, is the product of Eq€3.6) and (3.11). Thus, one

bbtains
v |a2_r2|
_p2= 0
eXp{ 4 4y

1
A‘:(g,a,r>~—(”—<
2v \p>

pt®
portant role. Hence, starting with 17 partial sums, of the :i P<) D _§2|a2—r2|)p p!
series EQ(2.9) and using the epsilon algorithm, we obtain 2v \p~/ p=0 4y .

numerical values which agree favorably with those of other (A1)
authors(even when nonspherical orbitals are involueds o

regards the values of Table I, they correspond to a nonlinHere, it is clear that use of the second of the above state-
ear molecular system, name{ys, in which the atoms are ments allows one to obtain the asymptotlc expansion of
located on the vertices of an equilateral triangle. In this casesCLFS [c.f. Eq. (3.14] as thenth derivative of Eq.(A1).

it appears that 17 partial sums of the initial series €9) This immediately _foIIows from t_he absolute—conve_rgence

yield after using the epsilon algorithm to only six accuratePrOperty of the series representation of the exponential func-

digits (at least when nonspherical orbitals are involvdis ~ tON- . . . .
observation suggests that an improvement of the accuracy AN alternative way to show that in our case differentia-

will require the computation of more partial sums, especiallyion of Eq. (A1) will lead to the Poincar¢ype expansion of
when nonspherical orbitals are involved in multicenter inte-BCLFS is to apply the first of the above statements. Accord-
grals. ingly, one needs to show that for any positive integer

BCLF is asymptotically developable. For such a purpose we
start by forming the product of the infinite series given by
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Now bearing in mind that fotp. <v the second term ap-
pearing in brackets can be neglected for Eqg.(3.9)], one
obtains after some algebraic manipulatidirscluding Eq.
(3.5 and the well-known binomial expansipthe following

APPENDIX: FURTHER REMARKS ON THE
DERIVATION OF THE ASYMPTOTIC EXPANSION OF
BCLFS

expansion:
Throughout Sec. Ill, we have established the asymptotic £ o\ +oo
expansion of BCLFs, i.e.A"(¢,a,r), by differentiatingn Aﬂ(g’,a,r)~2— (—) (1)
times, that represent °(¢,a,r). It is clear that such a deri- VoAP>) s=ln+1)2)
vation is only allowed under special circumstances which in (2s)! 1 [¢%a?—r2?|\S
the case of interest hold. Indeed, according to BromwWfdh, (2s=m)1 s 17 (A3)

is stated that, . . .
From this equation, it clearly appears that BCLFs are ex-

(i)  Differentiation of the asymptotic representation of apandable asymptotically in a PoinCasge series, which in
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other words means that differentiation of the asymptotic rep<E. J. Weniger, Ph.D. thesis, UniversiRegensburg, 1982.

resentation otAS(g’,a,r) will give (in a more straightfor-
ward mannerthe asymptotic expansion od"(¢,a,r) [c.f.
Eqgs.(3.12 and(3.18.]
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