Intel® Fortran Compiler User's Guide

Intel® Fortran Compiler
User's Guide

Copyright © 1996 - 2002 Intel Corporation
All rights reserved
Issued in USA

Document No. FL-700-05

Intel® Fortran Compiler User's Guide

Disclaimer

Information in this document is provided in connection with Intel products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted by
this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel
products are not intended for use in medical, life saving, or life sustaining applications.

This Intel® Fortran Compiler User's Guide as well as the software described in it is
furnished under license and may only be used or copied in accordance with the terms of
the license. The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel
Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in
association with this document.

Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved"” or "undefined." Intel reserves these for future definition and shall have
no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel
Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium Il Xeon, Pentium IIl Xeon,

and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

* Other names and brands may be claimed as the property of others.
Copyright © Intel Corporation 1996 - 2002.

Portions Copyright © 2001 Compag Information Technologies Group, L.P.

Intel® Fortran Compiler User's Guide

Welcome to Intel® Fortran Compiler

The Intel® Fortran Compiler version 7.0 compiles code targeted for the 1A-32 Intel®
architecture and Intel® Itanium® architecture. The Intel Fortran Compiler has a variety of
options that enable you to use the compiler features for higher performance of your
application.

In addition to the Getting Started with the Intel® Fortran Compiler section included with this
document, for installing and more details on getting started, see Intel® Fortran Compiler
Installing and Getting Started document.

Major Components of the Intel® Fortran Compiler
Product

Intel® Fortran Compiler product includes the following components for the development
environment:

¢ Intel® Fortran Compiler for 32-bit Applications
¢ Intel® Fortran Itanium® Compiler for Itanium-based Applications
¢ Intel Debugger (IDB)

The Intel Fortran Compiler for Itanium-based applications includes Intel® Itanium®
Assembler and Intel Iltanium® Linker. This documentation assumes that you are familiar
with the Fortran programming language and with the Intel® processor architecture. You
should also be familiar with the host computer's operating system.

What's New in This Release

This document combines information about Intel® Fortran Compiler for 1A-32-based
applications and Itanium®-based applications. IA-32-based applications correspond to the
applications run on any processor of the Intel® Pentium® processor family generations,
including the Xeon(TM) processor. Itanium-based applications correspond to the
applications run on the Intel® Itanium® and Itanium 2 processors.

The following variations of the compiler are provided for you to use according to your host
system's processor architecture and targeted architectures.

o Intel® Fortran Compiler for 32-bit Applications is designed for I1A-32 systems, and its
command is i f c. The IA-32 compilations run on any IA-32 Intel processor and
produce applications that run on 1A-32 systems. This compiler can be optimized
specifically for one or more Intel 1A-32 processors, from Intel® Pentium® to Pentium 4
to Celeron(TM) and Xeon(TM) processors.

¢ Intel® Fortran Itanium® Compiler for Itanium®-based Applications (native compiler) is

Intel® Fortran Compiler User's Guide

designed for Itanium architecture systems, and its command is ef ¢. This compiler
runs on Itanium-based systems and produces Itanium-based applications. Itanium-
based compilations can only operate on Itanium-based systems.

Improvements and New Features

New Intel® Itanium® and Itanium 2 processors support with -t ppl and -t pp2
options

New OpenMP* option, - opennp_st ubs

Support of . nod files for parallel invocations and the - nodul e option

Extended optimization directives

The Intel Fortran Compiler has a variety of options that enable you to use the compiler
features for higher performance of your application. For new options in this release, see
New Compiler Options.

£ Note

Please refer to the Release Notes for the most current information about features
implemented in this release.

Hyper-Threading Technology Support

Both auto-parallelization and OpenMP features support Hyper-Threading Technology.
Hyper-Threading Technology enables the operation of multiple logical processors to share
execution resources in each physical processor package. It increases system throughput
when executing multithreaded applications or when multitasked workloads are running
concurrently.

OpenMP* Support

The Intel® Fortran Compiler supports OpenMP API version 2.0 and performs code
transformation for shared memory parallel programming. The OpenMP support is
accomplished with the - opennp option. In addition, the functionality of the OpenMP has
been reinforced with new option,

- opennp_st ubs.

Optimizing for Intel® Itanium® 2 Processor Family

New options -t ppl and - t pp2 provide specific support for Intel® Itanium® and Itanium 2
processors.

Support of Parallel Invocations

Intel® Fortran Compiler User's Guide

The programs in which modules are defined support valuable compilation mechanisms,
such as parallel invocations with make file for Inter-procedural optimizations of multiple
files and of the whole program. In addition, the programs that require modules located in
multiple directories, can be compiled using the

- 1 di r option to locate the . nod files (modules) that should be included in the program.

The new

- nodul e option specifies the directory to rout the module files.

Extended Optimization Directives

In addition to the compiler options, Intel Fortran Compiler supports Intel-extended language

directives perform various tasks during compilation to enhance optimization of application
code. A few directives for software pipelining, loop unrolling and prefetching have been

added.

Features and Benefits

The Intel® Fortran Compiler enables your software to perform the best on Intel architecture -

based computers. Using new compiler optimizations, such as the whole-program

optimization and profile-guided optimization, prefetch instruction and support for Streaming

SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2), the Intel Fortran
Compiler provides high performance.

Feature

Benefit

High Performance

Achieve a significant performance gain by using
optimizations

Support for Streaming
SIMD Extensions

Advantage of new Intel microarchitecture

Automatic vectorizer

Advantage of parallelism in your code achieved
automatically

Parallelization

Automatic generation of multithreaded code for loops.
Shared memory parallel programming with OpenMP*.

Floating-point
optimizations

Improved floating-point performance

Data prefetching

Improved performance due to the accelerated data
delivery

Interprocedural
optimizations

Larger application source files perform better

Whole program
optimization

Improved performance between modules in larger
applications

Profile-guided optimization

Improved performance based on profiling the frequently
used procedure

Processor dispatch

Taking advantage of the latest Intel architecture features
while maintaining object code compatibility with previous
generations of Intel® Pentium® Processors.

Intel® Fortran Compiler User's Guide

Product Web Site and Support

For the latest information about Intel Fortran Compiler, visit the Intel® Fortran Compiler
home page where you can find:

o Fortran compiler performance-related information
o Marketing information
¢ Internet-based support and resources

¢ Intel Architecture Performance Training Center

For general information on Intel® software development products, visit
http://www.intel.com/software/products/index.htm.

For specific details on the Itanium® architecture, visit the web site at
http://developer.intel.com/design/itanium/index.htm?iid=search+ltaniumé&.

System Requirements

The Intel® Fortran Compiler can be run on personal computers that are based on Intel ®
architecture processors. To compile programs with this compiler, you need to meet the
processor and operating system requirements.

Minimum Hardware Requirements
IA-32 Compiler

e A system based on a Pentium®, Intel® Xeon(TM) processor or subsequent 1A-32
processor.

e 128 MB RAM

e 100 MB disk space
Recommended: A system with Pentium 4 or Xeon processor and 256 MB of RAM.
[tanium® Compiler

¢ Itanium-processor-based system. The Itanium®-based systems are shipped with all of
the hardware necessary to support this Itanium® compiler.

e 512 MB RAM (1GB RAM recommended)

e 100 MB disk space

Intel® Fortran Compiler User's Guide

Operating System Requirements

IA-32 architecture:
For the current Linux* versions of kernel and glibc supported, please refer to the product
Release Notes.

[tanium® architecture:

To run Itanium®-based applications, you must have an Intel® Itanium® architecture system
running the Itanium®-based operating system. Itanium®-based systems are shipped with
all of the hardware necessary to support this product. For the current Linux versions of
kernel and glibc supported, please refer to the product Release Notes.

It is the responsibility of application developers to ensure that the operating system and
processor on which the application is to run support the machine instructions contained in
the application.

For use/call-sequence of the libraries, see the library documentation provided in your
operating system. For GNU libraries for Fortran, refer to
http://www.gnu.org/directory/gcc.html in case they are not installed with your operating
system.

Browser

For both architectures, the browser Netscape*, version 4.74 or higher is required.

FLEXIm* Electronic Licensing

The Intel® Fortran Compiler uses the GlobeTrotter* FLEXIm* licensing technology. The
compiler requires valid license file in the | i censes directory in the installation path. The
default directory is / opt /i ntel / | i censes and the license files have a file extension
of . lic.

Using the Intel® License Manager for FLEXIm* describes how to install and use the Intel®
License Manager for FLEXIm to configure a license server for systems using counted
licenses.

How to Use This Document

This User's Guide explains how you can use the Intel® Fortran Compiler. It provides
information on how to get started with the Intel Fortran Compiler, how this compiler
operates and what capabilities it offers for high performance. You will learn how to use the
standard and advanced compiler optimizations to gain maximum performance of your
application.

This documentation assumes that you are familiar with the Fortran Standard programming
language and with the Intel® processor architecture. You should also be familiar with the
host computer's operating system.

Intel® Fortran Compiler User's Guide

f) Note:

This document explains how information and instructions apply differently to each targeted
architecture. If there is no specific indication to either architecture, the description is
applicable for both architectures.

Notation Conventions

This documentation uses the following conventions:

This type style An element of syntax, a reserved word, a keyword, a file
name, or a code example. The text appears in lowercase
unless uppercase is required.

This type style Indicates the exact characters you type as input.

This type style Command line arguments and option arguments you enter.

This type style Indicates an argument on a command line or an option's
argument in the text.

[opti ons] Indicates that the items enclosed in brackets are optional.

{val ue| val ue} A value separated by a vertical bar (]) indicates a version of
an option.

... (ellipses) Ellipses in the code examples indicate that part of the code is
not shown.

This type style Indicates an Intel Fortran Language extension code
example.

This type style Indicates an Intel Fortran Language extension discussion.
Throughout the manual, extensions to the ANSI standard
Fortran language appear in this color to help you easily
identify when your code uses a non-standard language
extension.

This type style Hypertext

Related Publications

The following documents provide additional information relevant to the Intel Fortran
Compiler:

e Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian
T. Smith, and Jerrold L. Wagener. The MIT Press, 1997. Provides a comprehensive
guide to the standard version of the Fortran 95 Language.

o Fortran 90/95 Explained, Michael Metcalf and John Reid. Oxford University Press,
1996. Provides a concise description of the Fortran 95 language.

Information about the target architecture is available from Intel and from most technical
bookstores. Most Intel documents are available from the Intel Corporation web site at
www.intel.com. Some helpful titles are:

Intel® Fortran Compiler User's Guide

e Intel® Fortran Libraries Reference, doc. number 687929

¢ Intel® Fortran Programmer's Reference, doc. number 687928

¢ Using the Intel® License Manager for FLEXIm*

e VTune(TM) Performance Analyzer online help

¢ Intel Architecture Software Developer's Manual

e Vol. 1: Basic Architecture, Intel Corporation, doc. number 243190

e Vol. 2: Instruction Set Reference Manual, Intel Corporation, doc. number 243191
e Vol. 3: System Programming, Intel Corporation, doc. number 243192

¢ Intel® Itanium® Architecture Application Developer's Architecture Guide

e Intel® Itanium® Architecture Software Developer's Manual

e Vol. 1: Application Architecture, Intel Corporation, doc. number 245317
e Vol. 2: System Architecture, Intel Corporation, doc. number 245318
¢ Vol. 3: Instruction Set Reference, Intel Corporation, doc. number 245319

¢ Vol. 4: Itanium Processor Programmer's Guide, Intel Corporation, doc. number
245319

¢ Intel® Itanium® Architecture Software Conventions & Runtime Architecture Guide

¢ Intel® [tanium® Architecture Assembly Language Reference Guide

¢ Intel® Itanium® Assembler User's Guide

e Pentium® Processor Family Developer's Manual

o Intel® Processor Identification with the CPUID Instruction, Intel Corporation, doc.
number 241618

For developer's manuals on Intel processors, refer to the Intel's Literature Center.

Publications on Compiler Optimizations

The following sources are useful in helping you understand basic optimization and
vectorization terminology and technology:

¢ Intel® Architecture Optimization Reference Manual

Intel® Fortran Compiler User's Guide

Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1997.

The Structure of Computers and Computation: Volume I, David J. Kuck. John Wiley
and Sons, New York, 1978.

Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee
(A Book Series on Loop Transformations for Restructuring Compilers). Kluwer
Academic Publishers. 1993.

Loop Parallelization, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1994.

High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-
Wesley, Redwood City. 1996.

Supercompilers for Parallel and Vector Computers, H. Zima. ACM Press, New York,
1990.

Efficient Exploitation of Parallelism on Pentium® Ill and Pentium® 4 Processor-Based

Systems, Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian.

10

Intel® Fortran Compiler User's Guide

Options Quick Reference Guides

This section provides three sets of tables comprising Intel® Fortran Compiler Options Quick
Reference Guides:

o Alphabetical Listing, alphabetic tabular reference of all compiler and compilation as
well as linker and linking control, and all other options implemented by the Intel
Fortran Compiler available for both IA-32 and Intel® Itanium® compilers as well as
those available exclusively for each architecture.

e« Summary tables for IA-32 and Itanium compiler features with the options that enable
them

o Compiler Options for Windows* and Linux* Cross-reference

Conventions used in the Options Quick Guide Tables

[-] indicates that option is ON by default, and if option includes
"-", the option is disabled; for example, - cer r s- disables
printing errors in a terse format.

[n] indicates that the value in [] can be omitted or have various
values; for example, in - unr ol | [n] option, n can be
omitted or have different values starting from O.

Values in {} with | are used for option's version; for example, option

vertical bars -i {2]| 4| 8} has these versions: -i 2,-i 4, -1 8.

{n} indicates that option must include one of the fixed values for
n; for example, in option - Zp{ n}, n can be equal to 1, 2, 4,
8, 16.

Wordsinthi s indicate option's required argument(s). Arguments are

st yl e following | separated by comma if more than one are required. For

an opti on example, the option - Qopti on, t ool , opt s looks in the

command line like this:
prompt>i fc -Qoption,link,-w nyprog.f

New Compiler Options

The following table lists new options in this release. See Conventions Used in the Options
Quick Guide Tables.

¢ Options specific to the Itanium® architecture (Itanium®-based systems only)

All other options are available for both IA-32 and Itanium architectures.

11

Intel® Fortran Compiler User's Guide

Option

Description

Default

-dynam c-linker(file)

Specifiesin fi | e a dynamic linker
of choice, rather than default.

OFF

- nodul e[pat h]
-nonodul e

Specifies the directory where the
module files (extension . nod) are
placed. Omitting this option or
specifying - nonodul e results in
placing the . nod files in the
directory where the source files are
being compiled.

More... |

- nonodul e

~o0{ 0] 1] 2}

Controls the compiler's inline
expansion. The amount of inline
expansion performed varies as
follows:

- 00: disable inlining

- 01: disables inlining unless - i p
or - (b2 is specified. Enables
inlining of functions.

- (b2: Enables inlining of any
function. However, the compiler
decides which functions are
inlined. This option enables
interprocedural optimizations and
has the same effect as specifying
the - i p option.

-opennp_st ubs

Enables to compile OpenMP
programs in sequential mode. The
OpenMP directives are ignored
and a stub OpenMP library is
linked (sequentially).

OFF

-safe_cray_ptr

Specifies that Cray pointers do not
alias with other variables.

More... |

OFF

-1ist

Prints a source listing on st dout .
More...

I

OFF

-list -show ncl ude

Prints a source listing to st dout
with contents of | NCLUDE files.

More... |

OFF

12

Intel® Fortran Compiler User's Guide

Itanium-based systems

-tppl Targets optimization to the Intel® OFF
Itanium®-based systems Itanium® processor for best
performance.
More...
-tpp2 Targets optimization to the Intel® ON

Itanium® 2 processor for best
performance. Generated code is
compatible with the Itanium
processor.

Mme“|

Compiler Options Quick Reference Alphabetical

The following table describes options that you can use for compilations you target to either
IA-32- or Itanium®-based applications or both. See Conventions Used in the Options Quick

Guide Tables.

o Options specific to IA-32 architecture (IA-32 only)
o Options specific to the Itanium® architecture (Itanium-based systems only)

All other options are available for both 1A-32 and Itanium architectures.

Option

Description

Default

-0f check
IA-32 compiler

Enables a software patch for
Pentium® processor Of
erratum.

Mme_|

OFF

Executes any DOloop at least
once. Same as - onetri p.

Mmanl

OFF

-72, -80, -132

Specifies 72, 80 or 132 column

lines for fixed form source only.

The compiler might issue a

warning for non-numeric text

beyond 72 for the - 72 option.
Mmenl

-72

-align

Analyzes and reorders memory
layout for variables and arrays.
Mmenl

To disable, use the - noal i gn
option (default is OFF)

ON

13

Intel® Fortran Compiler User's Guide

-ansi _alias[-]

Enables (default) or disables
assumption of the programs
ANSI conformance.

More... |

ON

-auto

Makes all local variables
AUTOVATI C.

More... |

OFF

- aut odoubl e

Sets the default size of real
numbers to 8 bytes; same as -
r8.

More... |

OFF

-auto_scal ar

Makes scalar local variables
AUTOMVATI C.

More... |

ON

-ax{i |[M KW

IA-32 compiler

Generates processor-specific
code corresponding to one of
codes: i , M K, and Wwhile also
generating generic 1A-32 code.
Compiler generates multiple
versions of some routines, and
chooses the best version for the
host processor at runtime
indicated by processor-specific
codes i (Pentium® Pro), M
(Pentium with MMX(TM)
technology), K (Pentium 111), and
W(Pentium 4 and Xeon(TM)).

More... |

OFF

- Bdynam c

Used with - | nane (see in this
table), enables dynamic linking
of libraries at run time.
Compared to static linking,
results in smaller executables.

OFF

-Bstatic

Enables linking a user's library
statically.

OFF

-C

Stops the compilation process
after an object file (. 0) has
been generated.

More... |

OFF

14

Intel® Fortran Compiler User's Guide

- C90

Links with an alternative I/O
library (I i bCEPCF90. a) that
supports mixed input and output
with C on the standard streams.

More... I

OFF

-C
IA-32 compiler

Equivalent to: (- CA, - CB, - CS,
- CU, - QV) extensive runtime
diagnostics options.

More... I

OFF

-CA
IA-32 compiler

Generates runtime code, which
checks whether pointers and
allocatable array references are
defined and allocated. Should
be used in conjunction with
-d{n}.

More... |

OFF

-CB

IA-32 compiler

Generates runtime code to

check that array subscript and

substring references are within

declared bounds. Should be

used in conjunction with - d{ n} .
More... I

OFF

-CS

IA-32 compiler

Generates runtime code that

checks for consistent shape of

intrinsic procedure. Should be

used in conjunction with - d{ n} .
More...

OFF

-CU

IA-32 compiler

Generates runtime code that

causes a runtime error if

variables are used without

being initialized. Should be

used in conjunction with - d{ n} .
More...

OFF

-CV

IA-32 compiler

On entry to a subprogram, tests
the correspondence between
the actual arguments passed
and the dummy arguments
expected. Both calling and
called code must be compiled
with - CV for the checks to be
effective. Should be used in
conjunction with - d{ n} .

More...

OFF

15

Intel® Fortran Compiler User's Guide

-cerrs[-]

Enables/disables errors and
warning messages to be printed
in a terse format for diagnostic
messages.

More... |

OFF

-cm

Suppresses all comment
messages.
More... |

OFF

-common_args

Assumes by reference
subprogram arguments may
alias one another.

More... |

OFF

- cpp{ n}

Same as - f pp{n}.
More... |

OFF

Compiles debugging
statements indicated by the
letter Din column 1 of the
source code.

More...

OFF

- DX

Compiles debugging
statements indicated by the
letters Xin column 1 of the
source code.

More...

OFF

- DY

Compiles debugging
statements indicated by the
letters Y in column 1 of the
source code.

More...

OFF

-d{n}

IA-32 compiler

Sets diagnostics level as
follows:

- dO - displays procname line

- d1 - displays local scalar
variables

- d2 - local and common scalars

- d>2 - display first n elements
of local and COVMON arrays, and
all scalars.

More... |

-do

- Dnane[=t ext]

Defines a macro name and
associates it with the specified
value.

More... |

OFF

16

Intel® Fortran Compiler User's Guide

-dps, -nodps

Enable (default) or disable
DEC* parameter statement
recognition.

More... |

-dps

-dryrun

Show driver tool commands but
do not execute tools.

More... I

OFF

-dynam c-linker(file)

Specifiesin fi | e a dynamic
linker of choice, rather than
default.

OFF

-e90, - e95

Enable issuing of errors rather
than warnings for features that
are non-standard Fortran.

More... I

OFF

Preprocesses the source files
and writes the results to

_st dout . If the file name ends
with capital F, the option is
treated as

OFF

“EP

Preprocesses the source files
and writes the results to stdout
omitting the #l i ne directives.

More... I

OFF

-extend_source

Enables extended (132-
character) source lines. Same
as - 132.

More... |

OFF

Preprocesses the source files
and writes the results to file.

More... I

OFF

-falias

Assumes aliasing in program.

More... I

ON

-fno-alias

Assumes no aliasing in
program.

More... |

OFF

-ffnalias

Assumes aliasing within
functions.
More...

ON

17

Intel® Fortran Compiler User's Guide

-fno-fnalias

Assumes no aliasing within
functions, but assumes aliasing
across calls.

More... |

OFF

-fcode_asm

Produces assembly file listing
with optional code byte
annotations.

More... |

OFF

-fsource_asm

Produces assembly file listing
with optional high-level source
code annotations.

More... |

OFF

-fverbose-asm

Produces assembly file with

compiler comments including

compiler version and options.

Enabled by default when

producing an assembly file.
More...

ON

-f nover bose-asm

Produces assembly file without
compiler comments.
More...

OFF

-fnsplit-

[tanium compiler

Disables function splitting,
which is enabled by
- prof _use.

More... |

OFF

“FI

Specifies that the source code
is in fixed format. This is the
default for source files with the
file extensions . for, . f,
or.ftn.

More...

OFF

_fp

IA-32 compiler

Disables the use of the ebp
register in optimizations.
Directs to use the ebp-based
stack frame for all functions.

More... |

OFF

- fpp{n}

Enables the Fortran
preprocessor (f pp) on all
Fortran source files prior to
compilation.

n=0: disable CVF and
#directives

n=1: enable CVF conditional
compilation and # directives;

OFF

18

Intel® Fortran Compiler User's Guide

when f pp runs, - f pplis the
default
n=2: enable only # directives,
n=3: enable only CVF
conditional compilation
directives.

More...

-fp_port

IA-32 compiler

Rounds floating-point results at
assignments and casts. Some
speed impact.

More... |

OFF

“FR

Specifies that the source code

is in Fortran free format. This is
the default for source files with

the . f 90 file extension.

More... |

OFF

-ftz

Itanium compiler

Flushes denormal results to
zero.

More... |

OFF

-9

Generates symbolic debugging
information and line numbers in
the object code for use by
source-level debuggers.

More... |

OFF

-hel p

Prints help message.

More... |

OFF

-i{2] 4] 8}

Defines the default KI ND for
integer variables and constants
to be 2, 4, and 8 bytes.

More...

-ldir

Specifies an additional directory
to search for include files whose
names do not begin with a
slash (/).

More... |

OFF

-i _dynam c

Sets dynamic linking of Intel-
provided libraries as default.
More... |

OFF

-inmplicitnone

Sets | MPLI CI T NONE as the
default. Same as - u.

More... |

OFF

19

Intel® Fortran Compiler User's Guide

-inline_debug info

Keep the source position of

inlined code instead of

assigning the call-site source

position to inlined code.
More... |

OFF

Enables single-file
interprocedural optimizations.
More... |

OFF

-ip_no_inlining

Disables full or partial inlining
that would result from the -i p
interprocedural optimizations.
Requires -i p or - i po.

More...

I

ON

-i p_no_pinlining
IA-32 compiler

Disables partial inlining.
Requires -i p or

-1 po.
More... |

OFF

-1 PF_fma[-]
Itanium® compiler

Enables/disables the
contraction of floating-point
multiply and add/ subtract
operations into a single
operation.

More... |

ON

-1 PF_f p_specul ati onnode
[tanium compiler

Sets the compiler to speculate
on floating-point (fp) operations
in one of the following modes:
f ast : speculate on fp
operations;
saf e: speculate on fp
operations only when it is safe;
stri ct: enables the compiler's
speculation on floating-point
operations preserving floating-
point status in all situations;
same as of f in the current
version.
of f : disables the fp
speculation.

More... |

-1 PF_fp_
specul ati on
f ast

20

Intel® Fortran Compiler User's Guide

-1PF_flt_eval nethodO
Itanium compiler

-1PF_flt _eval nethodO
directs the compiler to evaluate
the expressions involving
floating-point operands in the
precision indicated by the
program.

More... |

OFF

-1 PF_fltacc[-]
Itanium compiler

Enables/disables compiler

optimizations that affect

floating-point accuracy.
More...

| PF_fltacc-

-ipo

Enables interprocedural

optimization across files.

Compile all objects over entire

program with multifile

interprocedural optimizations.
More... |

OFF

-ipo_c

Optimizes across files and
produces a multifile object file.
This option performs
optimizations as
- i po, but stops prior to the final
link stage, leaving an optimized
object file.

More... |

OFF

-1 po_obj

Forces the generation of real
object files. Requires - i po.
More...

I1A-32: OFF
ltanium
Compiler: ON

-ipo_S

Optimizes across files and
produces a multifile assembly
file. This option performs
optimizations as
- i po, but stops prior to the final
link stage, leaving an optimized
assembly file.

More... |

OFF

-ivdep_paral | el
Itanium compiler

Indicates there is absolutely no
loop-carried memory
dependency in the loop where
| VDEP directive is specified.

More... |

OFF

-Kpic, -KPIC

Generates position-independent
code.

OFF

21

Intel® Fortran Compiler User's Guide

-Ldir

Instructs linker to search di r
for libraries.
More... I

OFF

- | nane

Links with a library indicated in
nane.

More... |

OFF

-1 st

Prints a source listing to

st dout (typically, your terminal
screen) without contents of

i ncl ude files.

More... |

OFF

-list -show ncl ude

Prints a source listing to
st dout with contents of
i ncl ude files expanded.

More... |

OFF

-| ower case

Sets the case of external linker
symbols such as subroutine
names to be lowercase
characters.

More... |

ON

- nodul e[pat h],
- nonmodul e

Specifies the directory where
the module files
(extension . nod) are placed.
Omitting this option or
specifying - nonodul e results
in placing the . nod files in the
directory where the source files
are being compiled.

More... |

- nonodul e

Maintains declared floating
point precision as well as
conformance to the IEEE* 754
standards for floating-point
arithmetic. Optimization is
reduced accordingly.

More...

OFF

-rrpl

Restricts floating point precision
to be closer to declared
precision. Some speed impact,
but less than - np.

More...

OFF

22

Intel® Fortran Compiler User's Guide

- nbs

Treats backslash (\) as a
normal graphic character, not
an escape character.

More...

!

OFF

-nobss _init

Disables placement of zero-
initialized variables in BSS
(using DATA section)

More...

I

OFF

-nolib_inline

Disables inline expansion of
intrinsic functions.
More...

I

ON

- nol ogo

Suppresses compiler version
information.

More... |

ON

- nus

Disables appending an

underscore to external

subroutine names.
More... |

OFF

-nusfile

Disables appending an
underscore to subroutine
names listedinfil e.

More... |

OFF

-0 -0, -
IA-32 compiler

Optimize for speed. Disable -

f p. option. _More... |

OFF

-01
[tanium compiler

Optimizes to favor code size:
turns off software pipelining to
reduce code size. Enables the
same optimizations as - O
except for loop unrolling and
software pipelining.

More...

OFF

Optimizes for speed. Disables -
f p. option.
More... |

ON

Disables optimizations.
More... I

OFF

23

Intel® Fortran Compiler User's Guide

Enables - Q2 option with more
aggressive optimization, for
example, loop transformation.
Optimizes for maximum speed,
but may not improve
performance for some
programs.

More...

OFF

- {0] 1] 2}

Controls the compiler's inline
expansion. The amount of inline
expansion performed varies as
follows:

- 00: disable inlining

- b1: disables inlining unless -
i p or- Qb2 is specified.
Enables inlining of functions.

- (b2: Enables inlining of any
function. However, the compiler
decides which functions are
inlined. This option enables
interprocedural optimizations
and has the same effect as
specifying the - i p option.

-ofile

Indicates the executable file
namein fil e ; for example, -
onyfile.

Combined with - S, indicates
assembly listing file name.
Combined with - ¢, indicates
object file name.

More... |

OFF

-onetrip

Executes any DO loop at least
once. (Identical to the
- 1 option.)

More... I

OFF

- opennp

Enables the parallelizer to

generate multithreaded code

based on the OpenMP

directives. This option implies

that - f pp and - aut o are ON.
More... |

OFF

24

Intel® Fortran Compiler User's Guide

writes the results to files named
according to the compilers
default file-naming conventions.

More...

-opennp_ Controls the OpenMP -opennp
report{0] 1] 2} parallelizers diagnostic levels. _reportl
- opennp_st ubs Sets compilation of the OFF
OpenMP programs to be in
sequential mode. The OpenMP
directives are ignored and a
stub OpenMP library is linked
(sequentially).
-opt _report Generates optimizations report OFF
Itanium compiler and directs to st derr unless
-opt _report _fileis
specified.
More... |
-opt_report_file Specifies the fi | enane to hold | OFF
filename the optimizations report.
Itanium compiler More... |
-opt _report_|I evel Specifies the detail level of the -opt _
{m n| med| nmax} optimizations report. report _
Itanium compiler More... | | evel m n
-opt _report _phasephase Specifies the optimization to OFF
Itanium compiler generate the report for. Can be
specified multiple times on the
command line for multiple
optimizations.
More... |
-opt _report_help Prints to the screen all available | OFF
Itanium compiler phases for -
opt _report_phase.
More...
-opt _report_routine Generates reports from all OFF
routi ne_substring routines with names containing
Itanium compiler the subst ri ng as part of their
name. If not specified, reports
from all routines are generated.
More... |
-P Preprocesses the fpp files and OFF

25

Intel® Fortran Compiler User's Guide

- pad, -nopad

Enables/disables changing
variable and array memory
layout.

More... |

- nopad

- pad_source

Enables the acknowledgment of
blanks at the end of a line.

More... I

OFF

-parall el

Enables the auto-parallelizer to
generate multithreaded code for
loops that can be safely
executed in parallel.

More...

OFF

-par _threshol d

Sets a threshold for the auto-
parallelization of loops based
on the probability of profitable
execution of the loop in parallel,
n=0 to 100.

More... |

n=75

-par _report{0] 1] 2| 3}

Controls the auto-parallelizer's
diagnostic levels.
More... I

-par_
reportl

- pc32
- pc64
- pc80
IA-32 compiler

Enables floating-point
significand precision control as
follows:

- pc32 to 24-bit significand

- pc64 to 53-bit significand, and

- pc 80 to 64-bit significand
More... |

- pc64

-Pg

IA-32 compiler

Compile and link for function
profiling with Linux gpr of tool.
More... |

OFF

-posixlib

Enables linking to the POSIX*
library (I i bPOSF90. a) in the
compilation.

More... I

OFF

-prec_div
IA-32 compiler

Disables floating point division-
to-multiplication optimization
resulting in more accurate
division results. Slight speed
impact.

More... |

OFF

26

Intel® Fortran Compiler User's Guide

-prefetch[-] Enables or disables prefetch ON
IA-32 compiler insertion (requires - C3).
More... I
-prof _dirdir Specifies the directory to hold OFF
profile information in the
profiling output files, *. dyn and
*dpi .
More |
- prof _gen Instruments the program for OFF
profiling: to get the execution
count of each basic block.
More... I
-prof _filefile Specifies file name for profiling OFF
summary file.
More... I
- prof _use Enables the use of profiling OFF
dynamic feedback information
during optimization.
More... |
-q Suppresses compiler output to OFF
standard error, __stderr.
More... I
- dyncont bl k1, bl k2, ... " Enables dynamic allocation of OFF
given COVMON blocks at run
time.
More |
-Qnstalldir Sets di r as a root directory for | OFF
compiler installation.
More... |
-Q ocation,tool, path Sets pat h as the location of the | OFF
tool specified by t ool .
More... |
- Q occom Enables local allocation of given | OFF
"bl k1, bl k2,..." COMMON blocks at run time.
More... I
- Qoption,tool, opts Passes the options, opt s, to OFF

the tool specified by t ool .

More... I

27

Intel® Fortran Compiler User's Guide

Compile and link for function
profiling with UNIX* pr of tool.
More... |

OFF

“r{8] 16}

Defines the KI ND for real
variables to be 8, or 16 bytes.
By default, variables of type
REAL (4) are used.

- r 8: change the size and
precision of default REAL
entities to DOUBLE

PRECI SI ON. Same as the -
aut odoubl e.

- r 16: change the size and
precision of default REAL
entities to REAL (KI ND=16)

More... |

OFF

-rcd
IA-32 compiler

Disables changing of rounding
mode for floating-point-to-
integer conversions.

More...

OFF

Produces an assembly output
file.
More... |

OFF

-safe_cray_ptr

Specifies that Cray* pointers do
not alias with other variables.

More... |

OFF

-save

Saves all variables (static
allocation). Opposite of - aut o.
More... |

OFF

-scal ar_rep[-]
IA-32 compiler

Enables or disables scalar
replacement performed during
loop transformations (requires -
).

More... |

OFF

-sox|[-]
IA-32 compiler

Enables or disables (default)
saving of compiler options and
version in the executable.
Itanium compiler: accepted for
compatibility only.

More...

OFF

28

Intel® Fortran Compiler User's Guide

-shar ed

Instructs the compiler to build a

Dynamic Shared Object (DSO)

instead of an executable.
More...

!

OFF

-static

Sets static linking of the shared
libraries (. so).
More...

I

OFF

- synt ax

Enables syntax check only.
Same as -vy.
More...

I

OFF

-Tffile

Compiles fi | e as a Fortran
source.
More...

I

OFF

-tppl
Itanium compiler

Targets optimization to the
Intel® Itanium® processor for
best performance.

More...

I

OFF

-t pp2
[tanium compiler

Targets optimization to the
Intel® Itanium® 2 processor for
best performance. Generated
code is compatible with the
Itanium processor.

More...

I

ON

-tpp{5]| 6] 7}
IA-32 compiler

-t pp5 optimizes for the Intel
Pentium processor.
-t pp6 optimizes for the Intel
Pentium Pro, Pentium [l, and
Pentium Il processors.
-t pp7 optimizes for the Intel
Pentium 4 and Xeon(TM)
processor.

More... |

-t pp7

Sets | MPLI CI T NONE by
default. Same as
-inmplicitnone.

More... I

ON

- Uname

Removes a defined macro
specified by namne; equivalent to
an #undef preprocessing
directive.

More... |

OFF

29

Intel® Fortran Compiler User's Guide

-unrol I [n]

-Use n to set maximum number
of times to unroll a loop.
-Omit n to let the compiler
decide whether to perform
unrolling or not.
-Use n =0 to disable unroller.
The Itanium compiler currently
recognizes only n = 0O; all other
values are ignored.

More... |

ON

- upper case

Sets the case of external linker
symbols such as subroutine
names to be uppercase
characters.

More... |

OFF

- us

Appends (default) an

underscore to external

subroutine names.
More... |

ON

-use_asm

Produces objects through the
assembler.

More... |

OFF

Displays compiler version
information.
More...

I

OFF

Shows driver tool commands
and executes tools.
More...

I

OFF

-Vaxlib

Enables linking to portability
library (I i bPEPCF9O0. a) in the
compilation.

More...

I

OFF

-vec
_report{0| 1| 2| 3| 4] 5}

IA-32 compiler

Controls amount of vectorizer
diagnostic information as
follows:

n = 0: no information

n = 1: indicate vectorized /non-
vectorizerd loops

n = 2: indicate vectorized /non-
vectorized loops

n = 3: indicate vectorized /non-
vectorized loops and prohibit
data dependence information
n = 4: indicate non-vectorized
loops

-vec
_reportl

30

Intel® Fortran Compiler User's Guide

n = 5: indicate non-vectorized
loops and the reason why they
were not vectorized.

More...

-vVins

Enables support for a certain
set of extensions to Fortran that
were introduced by Digital*
VMS* and Compag* Fortran
compilers.

More... |

OFF

Suppresses all warning
messages.
More... |

OFF

-wa0, - Wo5

Suppresses warning messages
about Fortran features which
are deprecated or obsoleted in
Fortran 95.

More... |

OFF

- W n}

Suppresses or displays all
warning messages.
n=0: suppresses all warnings
n=1: displays all warnings
(default).

More...

On a bound check violation,
issues a warning instead of an
error.

More... |

OFF

-x{i | MKW

IA-32 compiler

Generates code that is
optimized for a specific
processor corresponding to one
of codes: i , M K, and W but
that will execute on any IA-32
processor. With this option, the
resulting program may not run
on processors older than the
target specified.

More... |

OFF

Removes standard directories
from the include file search.

More... |

OFF

Enables syntax check only.
More... |

OFF

31

Intel® Fortran Compiler User's Guide

-zero Implicitly initializes to zero all OFF

data that is uninitialized. Used

in conjunction with -save.
Mmenl

- Zp{1]| 2| 4] 8| 16} Specifies alignment constraint IA-32: - Zp4
for structures on 1-, 2-, 4-, 8- or Itanium
16-byte boundary. Compiler: -

Mom".l Zp8

Compiler Options by Functional Groups

Options entered on the command line change the compiler's default behavior, enable or
disable compiler functionalities, and can improve the performance of your application. This
section presents tables of compiler options grouped by Intel® Fortran Compiler functionality

within these categories:
e Customizing Compilation Process Option Groups
¢ Language Conformance Option Groups

o Application Performance Optimizations

Key to the Tables

In each table:
o The functions are listed in alphabetical order

e The default status ON or default value is indicated; if not mentioned, the default is OFF
e The IA-32 or Itanium® architectures are indicated as follows:

- not mentioned = used by both architectures
- indicated in a row = used in the following rows exclusively by indicated architecture.

Each option group is described in detailed form in the sections of this documentation. Some
options can be viewed as belonging to more than one group; for example, option - ¢ that

tells compiler to stop at creating an object file, can be viewed as monitoring either
compilation or linking. In such cases, the options are mentioned in more than one group.

Customizing Compilation Process Options

Alternate Tools and Locations

32

Intel® Fortran Compiler User's Guide

Option Description Default
-Q ocation,tool, path Enables you to specify a OFF
pat h as the location of the
specified t ool (such as the
assembler, linker,
preprocessor, and compiler).
See Specifying Alternate
Tools and Locations.
- Qoption,tool, opts Passes the options specified OFF
by opt s toat ool , where
opt s is a comma-separated
list of options. See Passing
Options to Other Tools.
Preprocessing
See the Preprocessing section for more information.
Option Description Default
- cpp{n} Same as - f pp{n}. OFF
- Dnane Defines the macro name and associates it OFF
[=t ext] with the specified value. The default (-
Dnane) defines a macro with value =1.
-E Directs the preprocessor to expand your OFF
source file and write the result to standard
output.
- EP Same as - E but does not include #line OFF
directives in the output.
-F Preprocesses to an indicated file. Directs the OFF
preprocessor to expand your source module
and store the result in a file in the current
directory.
-fpp{n} Uses the f pp preprocessor on Fortran source | OFF
files.
n=0: disable CVF and #di r ecti ves (-fppl
n=1: enable CVF conditional compilation and when
directives; when f pp runs, - f pp1 is the fpp
default runs)
n=2: enable only #di recti ves,
n=3: enable only CVF conditional compilation
directives.
-ldir Adds directory di r to the include and module | OFF
file search path.
-P Directs the preprocessor to expand your OFF
source file and store the result in a file in the
current directory.

33

Intel® Fortran Compiler User's Guide

- Unane Eliminates any definition name currently in OFF
effect.
-X Removes standard directories from the OFF
include file search path.
Compiling
See detailed Compiling section.
Option Description Default
- 0f _check Avoid incorrect decoding of some Of OFF
IA-32 only instructions; enable the patch for the
Pentium® Of erratum.
-align Analyzes and reorders memory layout for -align
variables and arrays.
-noal i gn Disables - al i gn. OFF
-C Compile to object only (. 0), do not link. OFF
- _dynam' C- Specifiesin fi | e a dynamic linker of choice, | OFF
l'inkerfile rather than default.
-falias Assumes aliasing in program. ON
-fno-alias Assumes no aliasing in program.. OFF
-ffnalias Assumes aliasing within functions. ON
-fno-fnalias Assumes no aliasing within functions, but OFF
assumes aliasing across calls.
-fp Disables using ebp as general purpose OFF
IA-32 only register in optimizations. Directs to use the
ebp-based stack frame for all functions.
-ftz Flushes denormal results (floating-point OFF
Itanium®-based values smaller than smallest normalized
systems floating-point number) to zero. Use this
option when the denormal values are not
critical to application behavior.
-ldir Adds directory di r to the include and OFF
module file search path.
-Kpic, -KPIC Generate position-independent code. OFF
- nodul e[pat h], Specifies the directory where the module -
- nonodul e files (extension . nmod) are placed. Omitting nonodul e
this option or specifying - nonodul e results
in placing the . nod files in the directory
where the source files are being compiled.
-nobss_init Disable placement of zero-initialized OFF
variables in BSS (using Data).

Intel® Fortran Compiler User's Guide

-p, -gp Compile and link for function profiling with OFF
UNIX* prof tool.
- pg Compile and link for function profiling with OFF
IA-32 only Linux* gprof tool.
-Qnstall,dir Sets root directory of compiler installation, OFF
indicated in di r to contain all compiler
install files and subdirectories.
-S Produce assembly file named fi | e. asm OFF
with optional code or source annotations. Do
not link.
-sox[-] Enable (default) or disable saving of compiler | OFF
IA-32 only options and version in the executable.
-Tffile Compile fi | e as Fortran source. OFF
-use_asm Produces objects through the assembler. OFF
- Zp{ n} Specifies alignment constraint for structures IA-32:
on n-byte boundary (n =1, 2, 4, 8, 16). The - | -Zp4
Zp16 option enables you to align Fortran ltanium®
structures such as common blocks. Compiler:
-Zp8
Linking
See detailed Linking section.
Option Description Default
- Bdynam ¢ Used with - | nane (see below), enables OFF
dynamic linking of libraries at run time.
Compared to static linking, results in
smaller executables.
-Bstatic Enables linking a user's library statically.
-C Compile to object only (. 0), do not link. OFF
- C90 Link with alternate I/O library for mixed OFF
output with the C language.
- dynami c- Specifies in fi | e a dynamic linker of OFF
l'inkerfile choice, rather than default.
-i _dynam c Enables to link Intel-provided libraries OFF
dynamically.
-Ldir Instructs linker to search di r for libraries. | OFF

35

Intel® Fortran Compiler User's Guide

- | nane Link with a library indicated in name. OFF
-p, -4p Compile and link for function profiling with | OFF
UNIX prof tool.
- pg Compile and link for function profiling with | OFF
IA-32 only Linux gprof tool.
-posixlib Enables linking with POSIX* library. OFF
- shar ed Instructs the compiler to build a Dynamic OFF
Shared Object (DSO) instead of an
executable.
-static Enables static linking of libraries. OFF
-Vaxlib Enable linking with portability library. OFF
Compilation Output
See the Specifying Compilation Output section for more information.
Option Description Default
-C Compile to object only (. 0), do not OFF
link.
-fcode-asm Produces assembly file with optional | OFF
code byte information.
-fsource-asm Produces assembly file with optional | OFF
high-level source code information.
-fverbose-asm Produces assembly file with OFF
compiler comments including
compiler version and options used.
Enabled by default when producing
an assembly file.
-fnover bose-asm Produces assembly file without OFF
compiler comments.
-1i st Prints a source listing to st dout . OFF
-list -show ncl ude Prints a source listing to st dout OFF
with contents of i ncl ude files
expanded.
-ofile Produces the executable file name OFF
specifiedinfil e;
for example, - onyfil e.
Combined with - S, indicates
assembly listing file name.
Combined with - c, indicates object
file name.
-S Produce assembly file named OFF

fil e. asmwith optional code or
source annotations. Do not link.

36

Intel® Fortran Compiler User's Guide

Debugging

See the Debugging section for more information.

Option

Description

Default

-DD

Compiles debug statements
indicated by a Dor a d in column 1; if
this option is not set these lines are
treated as comments

OFF

- DX

Compiles debug statements
indicated by a X (not an x) in column
1; if this option is not set these lines
are treated as comments.

OFF

- DY

Compiles debug statements
indicated by a Y (not ay) in column
1; if this option is not set these lines
are treated as comments.

OFF

-inline_debug_info

Keeps the source position of inline
code instead of assigning the call-site
source position to inlined code.

OFF

-9

Produces symbolic debug
information in the object file.

OFF

-y, -syntax

Both perform syntax check only.

OFF

Libraries

See detailed section on Libraries.

Option Description Default

- C90 Link with alternate 1/O library for OFF
mixed output with the C language.

-i _dynam c Enables to link Intel-provided libraries | OFF
dynamically.

-Ldir Instructs linker to search di r for OFF
libraries.

- | nane Links with the library indicated in OFF
nane.

-posixlib Link with POSIX* library. OFF

-shared Instructs the compiler to build a OFF
Dynamic Shared Object (DSO)
instead of an executable.

-static Enables to link shared libraries (. so) | OFF
statically.

-Vaxlib Link with portability library. OFF

37

Intel® Fortran Compiler User's Guide

Diagnostics and Messages

See Diagnostics and Messages section for more information.

Runtime Diagnostics (IA-32 Compiler only)

Description

Default

Equivalent to: (- CA, - CB, - CS, - CU, - CV)
extensive runtime diagnostics options.

OFF

Use in conjunction with - d{ n} . Checks for
ni | pointers/allocatable array references at
runtime.

OFF

Use in conjunction with - d{ n} . Generates
runtime code to check that array subscript
and substring references are within declared
bounds.

OFF

Use in conjunction with - d{ n} . Generates
runtime code that checks for consistent
shape of intrinsic procedure.

OFF

Use in conjunction with - d{ n} . Generates
runtime code that causes a runtime error if
variables are used without being initialized.

OFF

Use in conjunction with - d{ n}. On entry to a
subprogram, tests the correspondence
between the actual arguments passed and
the dummy arguments expected. Both calling
and called code must be compiled with - CV
for the checks to be effective.

OFF

-d{n}

Set the level of diagnostic messages, n=0, 1,
2, >2

-do

Compiler Information Messages

Option

Description

Default

- nol ogo

Disables the display of the compiler
version (or sign-on) message: compiler 1D,
version, copyright years.

OFF

-hel p

You can print a list and brief description of
the most useful compiler driver options by
specifying the - hel p option on the
command line.

OFF

Displays compiler version information.

OFF

-V

Shows driver tool commands and
executes tools.

OFF

-dryrun

Shows driver tool commands, but does
not execute tools.

OFF

38

Intel® Fortran Compiler User's Guide

Comment and Warning Messages

Option

Description

Default

-cm

Suppresses all comment messages.

OFF

-cerrs[-]

Enables/disables (default) a terse
format for diagnostic messages, for
example: "file", line no :
error nmessage

-cerrs

-W

Suppresses all warning messages.

OFF

- w0, - wo5

Suppresses warning messages about
Fortran features which are
deprecated or obsoleted in Fortran 95.

OFF

Suppresses or displays all warning
messages generated by
preprocessing and compilation.
n=0: suppresses all warnings

n=1: displays all warnings (default).

On a bound check violation, issues a
warning instead of an error
(accommodates old FORTRAN code,
in which array bounds of dummy
arguments were frequently declared
as 1)

OFF

Error Messages

Option

Description

Default

-e90, - e95

Enable issuing of errors rather than
warnings for features that are non-
standard Fortran.

OFF

-q

Suppresses compiler output to
standard error, _stderr.When -q is
specified with - bd, then only fatal error
messages are output to _st derr.

OFF

Language Conformance Options

Data Type

See more details in Setting Data Types and Sizes.

39

Intel® Fortran Compiler User's Guide

Option

Description

Default

- aut odoubl e

Sets the default size of real numbers to 8 bytes;
same as - r 8.

OFF

-i{2] 4] 8}

Specifies that all quantities of i nt eger type
and unspecified ki nd occupy two bytes. All
quantities of | ogi cal type and unspecified
ki nd will also occupy two bytes. All logical
constants and all small integer constants
occupy two bytes.

-1 4: Alli nt eger and | ogi cal types of
unspecified ki nd will occupy four bytes.

-i 8: Alli nt eger and | ogi cal types of
unspecified ki nd will occupy eight bytes.

74

“r{4] 8] 16}

Defines the KI ND for real variables in 4
(default), 8, and 16 bytes.

- r 8: change the size and precision of default
REAL entities to DOUBLE PRECI SI ON. Same
as the - aut odoubl e.

- r 16: change the size and precision of default
REAL entities to REAL (KI ND=16).

-r4

Source Program

See more details in Source Program Features.

Option

Description Default

-1

Same as - onetri p. OFF

-132

Enables fixed form source lines to OFF
contain up to 132 characters.

-ansi _alias[-]

assumption of the program’s ANSI
conformance.

Provides cross-platform
compatibility .

Enables (default) or disables -ansi _al i as

- dps, - nodps

Enables (default) or disables DEC* | - dps
parameter statement recognition.

-extend_source

Enables extended (132-character) | OFF
source lines. Same as - 132.

-F

Specifies that all the source code OFF
is in fixed format; this is the default
except for files ending with the
suffix . f,.ftn,.for.

40

Intel® Fortran Compiler User's Guide

-FR

Specifies that all the source code
is in Fortran free format; this is the
default for files ending with the
suffix . f 90.

OFF

-| ower case

Controls the case of routine
names and external linker symbols
to all lowercase characters.

- nbs

Treats backslash (\) as a normal
graphic character, not an escape
character. This may be necessary
when transferring programs from
non-UNIX* environments, for
example from VAX* VMS*. For the
effects of the escape character,
see the Escape Characters.

OFF

-nus[file]

Do not append an underscore to
subroutine names listed in fi | e.
Useful when linking with C
routines.

OFF

-onetrip

Compiles DOloops at least once if
reached (by default, Fortran 95 DO
loops are not performed at all if
the upper limit is smaller than the
lower limit). Same as - 1.

OFF

- pad_source

Enforces the acknowledgment of
blanks at the end of a line.

OFF

- upper case

Maps routine names to all
uppercase characters.

f) Note

Do not use this option in
combination with - VaxI i b or
- posi xl i b.

OFF

-vVins

Enables support for extensions to
Fortran that were introduced by
Digital* VMS Fortran compilers.
The extensions are as follows:

e The compiler enables
shortened, apostrophe-
separated syntax for
parameters in I-O
statements.

e The compiler assumes that
the value specified for RECL
in an OPEN statement is

OFF

41

Intel® Fortran Compiler User's Guide

given in words rather than
bytes. This option also

implies - dps (on by default).

Arguments and Variables

See more details in Setting Arguments and Variables.

Option

Description

Default

-align

Analyze and reorder memory
layout for variables and arrays.

-align

-noal i gn

Disables - al i gn.

OFF

-auto

Makes all local variables
AUTOMNATI C. Causes all variables
to be allocated on the stack,
rather than in local static storage.

OFF

-auto_scal ar

Causes scalar variables of rank 0,
except for variables of the
COVPLEX or CHARACTER types, to
be allocated on the stack, rather
than in local static storage.
Enables the compiler to make
better choices concerning
variables that should be kept in
registers during program
execution. On by default.

ON

-common_ar gs

Assumes "by reference"
subprogram arguments may have
aliases of one another.

OFF

-inmplicitnone

Enables the default | MPLI CI T
NONE.

OFF

-safe_cray_ptr

Specifies that Cray pointers do
not alias with other variables.

OFF

-save

Forces the allocation of all
variables in static storage. If a
routine is invoked more than
once, this option forces the local
variables to retain their values
from the first invocation
terminated. Opposite of - aut o.

OFF

Enables the default | MPLICI T
NONE. Same as
-inplicitnone.

OFF

-zZero

Initializes all data to zero. It is
most commonly used in
conjunction with - save.

OFF

42

Intel® Fortran Compiler User's Guide

Common Blocks

See Allocating Common Blocks for more information.

Option Description Default
- dyncont bl k1, Dynamically allocates COVMON OFF
bl k2, ..." blocks at run time.
-Q occont' bl k1, Enables local allocation of OFF
bl k2, ..." given COVMON blocks at run
time.

Application Performance Optimizations Options

Setting Optimization Level

See the Optimization Levels section for more information.

Option Description Default

-0l IA-32 compiler: Optimizes for speed. OFF
Disables - f p option.

Itanium® compiler: Turns off software
pipelining to reduce code size. Optimizes
to favor code size. Enables the same
optimizations as - O2 except for loop

unrolling.

Generally, - Q2 is recommended over - OL.
-0 -2 Optimizes for speed. Disables - f p. option. | - Q2
-3 Enables - Q2 option with more aggressive OFF

optimization and sets high-level
optimizations, including loop
transformation, OpenMP, and prefetching.
High-level optimizations use the properties
of source code constructs such as loops
and arrays in applications written in high-
level programming languages.

Optimizes for maximum speed, but may
not improve performance for some
programs.

-0 Disables optimizations - OL, - Q2 and - O3. | OFF
Enables option - f p.

Floating-point Arithmetic Precision

See Floating-point Arithmetic Optimizations for more information.

Intel® Fortran Compiler User's Guide

_specul ati onnode
Itanium-based systems

on fp operations in one of the
following modes:

f ast : speculate on fp
operations;

saf e: speculate on fp
operations only when it is
safe;

strict: enables the
compiler's speculation on
floating-point operations
preserving floating-point status
in all situations; same as of f
in the current version.

of f : disables fp speculation.

Option Description Default
-fp_port Rounds floating-point results OFF
IA-32 only at assignments and casts.

Some speed impact.
-1FP_frma[-] Enables/disables the -1 FP_f ma
Itanium®-based systems contraction of floating-point

multiply and add/subtract

operations into a single

operation.
-I1PF_fp Sets the compiler to speculate | -1 PF_f pc64_

specul ati onf ast

-1PF_flt_eval nethodO
Itanium-based systems

-IPF_flt_eval nethodO
directs the compiler to
evaluate the expressions
involving floating-point
operands in the precision
indicated by the program. (-

| PF_flt _eval nethod2is
not supported in the current
version.)

OFF

-1FP_fltacc|-]
Itanium-based systems

Enables/disables the compiler
to apply optimizations that
affect floating-point accuracy.

-1FP_fltacc-

-

Maintains declared precision
and ensures that floating-point
arithmetic conforms more
closely to the ANSI and IEEE*
754 standards. See details in
the Maintaining and
Restricting FP_Arithmetic
Precision.

OFF

Intel® Fortran Compiler User's Guide

_rrpl

precision to be closer to
declared precision. Some
speed impact, but less than -
np. See details in the
Maintaining and Restricting FP
Arithmetic Precision.

Restricts floating-point OFF

- pc{ 32| 64| 80}
IA-32 only

significand precision control as
follows:

- pc 32 to 24-bit significand

- pc64 to 53-bit significand
(Default)

- pc 80 to 64-bit significand

Enables floating-point - pc64

-prec_div
IA-32 only

division-to-multiplication
optimization resulting in more
accurate division results.
Slight speed impact.

Disables floating point OFF

-rcd
IA-32 only

mode for floating-point-to-
integer conversions.

Disables changing of rounding | OFF

Processor Dispatch Support

See Processor Dispatch Extensions Support for more information.

Option Description Default
-tppl Targets optimization to the Intel® Itanium® OFF
Itanium®-based processor for best performance.
systems
-t pp2 Targets optimization to the Intel® Itanium® 2 -t pp2
Itanium-based processor for best performance. Generated
systems code is compatible with the Itanium processor.
-t ppS Optimizes for the Intel Pentium® processor. OFF
IA-32 only Enables best performance for Pentium®

processor
-t pp6 Optimizes for the Intel Pentium Pro, Pentium Il, | OFF
IA-32 only and Pentium Il processors.

Enables best performance for the above

processors.
-t pp7 Optimizes for the Pentium 4 and Xeon(TM) -t pp7
IA-32 only processors. Requires the RedHat version 7.1

and support of Streaming SIMD Extensions 2.

Enables best performance for Pentium 4

processor

45

Intel® Fortran Compiler User's Guide

-ax{i| MKl W
IA-32 only

Generates, in a single binary, code specialized
to the extensions specified by the codes:

i Pentium Pro, Pentium Il processors

M Pentium with MMX(TM) technology
processor

K Pentium Il processor (Streaming SIMD
Extensions)

W Pentium 4 and Xeon processors

In addition, - ax generates IA-32 generic code.
The generic code is usually slower.

OFF

-x{i |M KW
IA-32 only

Generate specialized code to run exclusively on
the processors supporting the extensions
indicated by the codes:

i Pentium Pro, Pentium Il processors

M Pentium with MMX technology processor

K Pentium Il processor

W Pentium 4 and Xeon processors

OFF

Interprocedural Optimizations

See Interprocedural Optimizations (IPO) section for more information.

Option

Description

Default

_|p

Enables single-file interprocedural
optimizations.
Enhances inline function expansion.

OFF

-ip_no_inlining

Disables full or partial inlining that
would result from the -i p
interprocedural optimizations. Requires
-ipor-ipo.

OFF

-ip_no_pinlining
IA-32 only

Disables partial inlining. Requires -i p
or - i po.

OFF

-i po

Enables interprocedural optimization
across files. Compile all objects over
entire program with multifile
interprocedural optimizations.
Enhances multifile optimization;
multifile inline function expansion,
interprocedural constant and function
characteristics propagation, monitoring
module-level static variables; dead
code elimination.

OFF

-ipo_c

Optimizes across files and produces a
multifile object file. This option
performs the same optimizations as -
i po, but stops prior to the final link
stage, leaving an optimized object file.

OFF

46

Intel® Fortran Compiler User's Guide

-i po_obj

Forces the generation of real object
files. Requires
-i po.

OFF

-ipo_S

Optimizes across files and produces a
multifile assembly file. This option
performs the same optimizations as -
i po, but stops prior to the final link
stage, leaving an optimized assembly
file.

OFF

-inline_debug_info

Preserve the source position of inlined
code instead of assigning the call-site
source position to inlined code.

OFF

~0{0] 1] 2}

Controls the compiler's inline
expansion. The amount of inline

expansion performed varies as follows:

- (bO0: disable inlining

- Ob1: disables inlining unless - i p or -
b2 is specified. Enables inlining of
functions.

- 2: Enables inlining of any function.
However, the compiler decides which
functions are inlined. This option
enables interprocedural optimizations
and has the same effect as specifying
the - i p option.

- b1

-nolib_inline

Disables inline expansion of intrinsic
functions.

OFF

Profile-guided Optimizations

See detailed Profile-guided Optimizations section.

Option Description

Default

ltanium® by

-fnsplit[-] Disables function splitting, which is enabled

compiler - prof _use.

OFF

-prof _dirdir Specifies the directory to hold profile
information in the profiling output files,
.dynand. dpi .

OFF

- Specifies file name for profiling summary
prof filefile | file.

OFF

- prof _gen Instruments the program for profiling: to get
the execution count of each basic block.

OFF

47

Intel® Fortran Compiler User's Guide

- prof _use Enables the use of profiling dynamic OFF
feedback information during optimization.
Profiles the most frequently executed areas
and increases effectiveness of IPO.

High-level Language Optimizations

See detailed High-level Language Optimizations (HLO) section.

Option Description Default
- Indicates there is absolutely no loop-carried |OFF
i vdep_paral l el memory dependency in the loop where
Itanium® compiler |l VDEP directive is specified.
-prefetch[-] Enables or disables prefetch insertion -prefetch
IA-32 only (requires
- B).
Reduces the wait time; optimum use is
determined empirically.
-scalar_rep[-] |[Enables (default) or disables scalar -
IA-32 only replacement performed during loop scal ar_rep
transformations (requires - O3).
Eliminates all loads and stores of that
variable
Increases register pressure.
-unrol I [n] n: set maximum number of times to unroll a |- unrol |
loop
n omitted: compiler decides whether to
perform unrolling or not.
n = 0: disables unroller.
Eliminates some code; hides latencies; can
increase code size.
For Itanium®-based applications, - unr ol |
[o] is used only for compatibility.
Parallelization
See detailed Parallelization section.
Option Description Default
- opennp Enables the parallelizer to OFF

generate multi-threaded code
based on the OpenMP*
directives.

Enables parallel execution on
both uni- and multiprocessor
systems. Requires - f pp.

48

Intel® Fortran Compiler User's Guide

-opennp_report{0] 1] 2}

Controls the OpenMP
parallelizer's diagnostic levels:
0 - no information

1 - loops, regions, and sections
parallelized (default)

2 - same as 1 plus master
construct, single construct, etc.

- opennp
_reportl

-opennp_st ubs

Enables to compile OpenMP
programs in sequential mode.
The OpenMP directives are
ignored and a stub OpenMP
library is linked (sequentially).

OFF

-parall el

Enables the auto-parallelizer to
generate multithreaded code for
loops that can be safely
executed in parallel.

OFF

-par _report{0] 1] 2| 3}

Controls the auto-parallelizer's
diagnostic levels:

0 - no information

1 - successfully auto-
parallelized loops

2 - successfully and
unsuccessfully auto-parallelized
loops

3 - same as 2 plus additional
information about any proven or
assumed dependences
inhibiting auto-parallelization.

- par
_reportl

- par _t hreshol d{ n}

Sets a threshold for the auto-
parallelization of loops based
on the probability of profitable
execution of the loop in parallel,
n=0 to 100.

n=75

Vectorization (IA-32 only)

See detailed Vectorization section.

Option

Description

Default

-ax{i | MKW
IA-32 only
the codes:

Generates, on a single binary, code
specialized to the extensions specified by

i Pentium Pro, Pentium Il processors

M Pentium with MMX technology processor
K Pentium Il processor

W Pentium 4 and Xeon(TM) processors

In addition, - ax generates IA-32 generic
code. The generic code is usually slower.

OFF

49

Intel® Fortran Compiler User's Guide

f) Note: - axi is not a vectorizer option.
-x{i | MK W Generate specialized code to run OFF
IA-32 only exclusively on the processors supporting
the extensions indicated by the codes:
i Pentium Pro, Pentium Il processors
M Pentium with MMX technology processor
K Pentium Il processor
W Pentium 4 and Xeon processors
£l Note: - xi is not a vectorizer option.
-vec_report Controls the diagnostic messages from the -vec
{0l 1] 2| 3| 4] 5} | vectorizer as follows: _reportl
IA-32 only n = 0: no information
n = 1: indicates vectorized /non-vectorizerd
loops
n = 2: indicates vectorized /non-vectorized
loops
n = 3: indicates vectorized /non-vectorized
loops and prohibit data dependence
information
n = 4: indicates non-vectorized loops
n = 5: indicates non-vectorized loops and
the reason why they were not vectorized
Optimization Reports (Itanium® Compiler)
See detailed Optimizer Report Generation.
These options are implemented with Itanium®-based systems only.
Option Description Default
-opt _report Generates optimizations report OFF
and directs to st derr unless
-opt _report _fileis
specified.
-opt _report Specifies the f i | enane to hold | OFF
_filefilenane the optimizations report.
-opt _report_| evel Specifies the detail level of the -opt _report
m n| med| max} optimizations report. _levelmn
-opt _report Specifies the optimization to OFF

_phasephase

generate the report for. Can be
specified multiple times on the
command line for multiple
optimizations.

50

Intel® Fortran Compiler User's Guide

-opt _report_hel p Prints to the screen all available | OFF
phases for -
opt _report_phase.
-opt _report_rout i ne Generates reports from all OFF
routine_substring routines with names containing

the substring as part of their
name. If not specified, reports
from all routines are generated.

Windows* to Linux* Options Cross-reference

This section provides cross-reference table of the Intel® Fortran Compiler options used on
the Windows* and Linux* operating systems. The options described can be used for
compilations targeted to either IA-32 or Itanium®-based applications or both. See
Conventions Used in the Options Quick Guide Tables.

o Options specific to I1A-32 architecture
o Options specific to the Itanium® architecture

All other options are available for both IA-32 and Itanium architectures.

f) Note

The table is based on the alphabetical order of compiler options for Linux.

£l Note

The value in the Default column is used for both Windows and Linux operating
systems unless indicated otherwise.

Windows Option Linux Option Description Default
/QOf[-] - Of _check Enables a software patch OFF
IA-32 only IA-32 only for Pentium® processor
Of erratum.
/1 -1 Executes any DOloop at OFF
least once.
/4L -72, -80, - Specifies 72, 80 or 132 [4L72
{ 72| 80| 132} 132 column lines for fixed form | - 72

source only. The compiler
might issue a warning for
non-numeric text beyond
72 for the

- 72 option.

/align -align Analyzes and reorders ON
memory layout for
variables and arrays.

51

/align-

Intel® Fortran Compiler User's Guide

-noal i gn

Disables .- al i gn

OFF

[Qansi _alias[-]

-ansi _alias

[-]

Enables (default) or
disables assumption of the
programs ANSI
conformance.

ON

/ Qaut o

-auto

Makes all local variables
AUTOMVATI C.

OFF

/ Qaut odoubl e

- aut odoubl e

Sets the default size of
real numbers to 8 bytes;
same as -r 8.

OFF

/ Qaut o_scal ar

aut o_scal ar

Makes scalar local
variables AUTOVATI C.

ON

I Qax{i| M Kl W
IA-32 only

- aX
{iIMKW
IA-32 only

Generates code that is
optimized for a specific
processor, but that will
execute on any IA-32
processor. Compiler
generates multiple
versions of some routines,
and chooses the best
version for the host
processor at runtime.
supporting the extensions
indicated by processor-
specific codes i
(Pentium® Pro), M
(Pentium with MMX(TM)
technology), K (Pentium
1), and W(Pentium 4 and
Xeon(TM)).

OFF

None

- Bdynam ¢

Used with - | nanme (see in
this table), enables
dynamic linking of libraries
at run time. Compared to
static linking, results in
smaller executables.

OFF

None

-Bstatic

Enables linking a user's
library statically.

OFF

/c

-C

Stops the compilation
process after an object file
(. 0) has been generated.

OFF

52

/C
IA-32 only

Intel® Fortran Compiler User's Guide

-C
IA-32 only

Enable extensive runtime
error checking. Equivalent
to: - CA,
-CB,-CS, -CY, or-CV
runtime diagnostics
options.

OFF

/ CA
IA-32 only

- CA
IA-32 only

Generates code check at
runtime to ensure that
referenced pointers and
allocatable arrays are not
nil. Should be used in
conjunction with - d{ n} .

OFF

/ CB
IA-32 only

-CB
IA-32 only

Generates code to check
that array subscript and
substring references are
within declared bounds.
Should be used in
conjunction with - d{ n} .

OFF

/ CS
IA-32 only

-CS
IA-32 only

Generates code to check
the shapes of array
arguments to intrinsic
procedures. Should be
used in conjunction with -
d{n}.

OFF

/ CU
IA-32 only

-CU
IA-32 only

Generates code that
causes a runtime error if
variables are used without
being initialized. Should be
used in conjunction with -
d{n}.

OFF

/ CV
IA-32 only

-CV
IA-32 only

On entry to a subprogram,
tests the correspondence
between the actual
arguments passed and the
dummy arguments
expected. Both calling and
called code must be
compiled with - CV for the
checks to be effective.
Should be used in
conjunction with

-d{n}.

OFF

/ C90

- C90

Links with an alternative
I/O library

(I'i bCEPCF90. a) that
supports mixed input and
output with C on the
standard streams.

OFF

53

[cerrs[-]

Intel® Fortran Compiler User's Guide

-cerrs[-]

Enables/disables errors
and warning messages to
be printed in a terse
format.

Windows
ON
Linux:
OFF

/cm

-cm

Suppresses all comment
messages.

OFF

/ Qconmon_ar gs

conmon_ar gs

Assumes by reference
subprogram arguments
may have aliases of one
another.

OFF

I Qcpp[n]

-cpp[n]

Same as - f pp.

OFF

[Qd_lines

-DD

Compiles debugging
statements indicated by
the letter D in column 1 of
the source code.

OFF

[Qdx_lines

- DX

Compiles debugging
statements indicated by
the letters X in column 1 of
the source code.

OFF

[Qdy_I|'ines

- DY

Compiles debugging
statements indicated by
the letters Y in column 1 of
the source code.

OFF

[d{n}
IA-32 only

- d{ n}
[IA-32 only

Sets diagnostics level as
follows:

- dO - displays procedure
name and line

- d1 - displays local scalar
variables

- d2 - local and common
scalars

- d>2 - display first n
elements of local and
COMMVON arrays, and all
scalars.

-do

/ Dnane
[={#| text}]

- Dnane
[={#| text}]

Defines a macro name
and associates it with the
specified value.

OFF

/ Qdps[-]

- dps’ -
nodps

Enable (default) or disable
DEC* parameter
statement recognition.

Windows
ON
Linux: -
dps

None

-dryrun

Show driver tool
commands but do not
execute tools.

OFF

None

- dynami c-
i nker
(file)

Specifiesinfil e a
dynamic linker of choice,
rather than default.

OFF

Intel® Fortran Compiler User's Guide

| E

Preprocesses the source
files and writes the results
to st dout. If the file
name ends with capital F,
the option is treated as

f pp.

OFF

THY[N s

-e90, -e95

Enables/disables issuing
of errors rather than
warnings for features that
are non-standard Fortran.

OFF

| EP

“EP

Preprocesses the source
files and writes the results
to stdout omitting the #line
directives.

OFF

/ Qext end_source

extend_source

Enables extended (132-
character) source lines.
Same as - 132.

OFF

/P

“F

Preprocesses the source
files and writes the results
to file.

OFF

/ Ca-

-falias

Assumes aliasing in
program.

ON

/ Ca

-fno-alias

Assumes no aliasing in
program.

OFF

[On

-ffnalias

Assumes aliasing within
functions.

ON

/ Ow

-f no-
fnalias

Assumes no aliasing
within functions, but
assumes aliasing across
calls.

OFF

/ FAC

-f code-asm

Produces assembly file
with optional code byte
annotations.

OFF

| FAs

-f sour ce-
asm

Produces assembly file
with optional high-level
source code annotations.

OFF

None

-fver bose-
asm

Produces assembly file
with compiler comments
including compiler version
and options. Enabled by
default when producing an
assembly file.

ON

None

f nover bose-
asm

Produces assembly file
without compiler
comments.

OFF

55

/ FI

Intel® Fortran Compiler User's Guide

-FI

Specifies that the source
code is in fixed format.
This is the default for
source files with the file
extensions . for, . f,
or.ftn.

OFF

[Fnsplit-

-fnsplit-
Itanium-based
systems

Disables function splitting,
which is enabled by
- prof _use.

OFF

/ Oy-
IA-32 only

-f p
IA-32 only

Disables the use of the
ebp register in
optimizations. Directs to
use the ebp-based stack
frame for all functions.

OFF

[&Fp_port

-fp_port
IA-32 only

Rounds floating-point
results at assignments and
casts. Some speed
impact.

OFF

I & pp{n}

-fpp{n}

Enables the Fortran
preprocessor (f pp) on all
Fortran source files prior to
compilation.

n=0 disable CVF and #
directives, equivalent to no
f pp.

n=1 enable CVF
conditional compilation
and # directives; when
fpp runs, - f pplisthe
default

n=2 enable only #
directives

n=3 enable only CVF
conditional directives

OFF

| FR

“FR

Specifies that the source
code is in Fortran 95 free
format. This is the default
for source files with

the . f 90 file extensions.

OFF

-tz
ltanium-based
systems

-ftz
Itanium-based
systems

Flushes denormal results
to zero.

OFF

1z, zZ7

-9

Generates symbolic
debugging information and
line numbers in the object
code for use by source-
level debuggers.

OFF

56

Intel® Fortran Compiler User's Guide

/help

- hel p

Prints help message.

OFF

T41{2] 4] 8)

-1{2] 4] 8}

Defines the default KI ND
for integer variables and
constants in 2, 4, and 8
bytes.

41 4
-i 4

None

-i _dynam c

Enables to link Intel-
provided libraries
dynamically.

OFF

[1dir

-ldir

Specifies an additional
directory to search for
include and module files
whose names do not begin
with a slash (/).

OFF

T4{Y| Nt d

i nplicitnone

Enables/disables the
| MPLI CI' T NONE.

OFF

/Qnline_
debug_info

-inline
_debug_info

Keep the source position
of inline code instead of
assigning the call-site
source position to inlined
code.

OFF

/Qp

_|p

Enables single-file
interprocedural
optimizations within a file.

OFF

/Q p_no
_inlining

-ip_no
_inlining

Disables full or partial
inlining that would result
fromthe -i p
interprocedural
optimizations. Requires -
I por-ipo.

ON

/Q p_no
_pinlining
IA-32 only

-ip_no_
pi nlining
IA-32 only

Disables partial inlining.
Requires -i p or - i po.

OFF

[Q PF_fma[-]
[tanium-based
systems

-1 PF_frma[-]
Itanium-based
systems

Enables/disables the
contraction of floating-
point multiply and add/
subtract operations into a
single operation.

ON

TQ PF_fp

ltanium-based
systems

_specul ati onnode

-1 PF_fp_

specul ati onnode

Iltanium-based
systems

Sets the compiler to
speculate on fp operations
in one of the following
modes:

f ast : speculate on fp
operations;

saf e: speculate on fp
operations only when it is
safe;

strict: enables the

node=
f ast

57

Intel® Fortran Compiler User's Guide

compiler's speculation on
floating-point operations
preserving floating-point
status in all situations;
of f : disables the fp
speculation.

/QPF flt eval
_nmet hodO
Itanium-based
systems

| PF_ flt_eval
_nmet hodO
Itanium-based
systems

| PF_flIt _eval nethodO
directs the compiler to
evaluate the expressions
involving floating-point
operands in the precision
indicated by the program.

OFF

[QPF_fltacc[-]
[tanium-based
systems

-1 PF_fltacc
[-]
Iltanium-based
systems

Enables/disables the
compiler to apply
optimizations that affect
floating-point accuracy.

OFF

/ Q po

-i po

Enables interprocedural
optimization across files.
Compile all objects over
entire program with
multifile interprocedural
optimizations.

OFF

/Q po_c

-ipo_c

Optimizes across files and
produces a multifile object
file. This option performs
optimizations as - i po, but
stops prior to the final link
stage, leaving an
optimized object file.

OFF

/ Q po_obj

-1 po_obj

Forces the generation of
real object files. Requires
- i po.

IA-32:
OFF
[tanium
Compilel
ON

/Q po_S

-ipo_S

Optimizes across files and
produces a multifile
assembly file. This option
performs optimizations as
- i po, but stops prior to
the final link stage, leaving
an optimized assembly
file.

OFF

/ Q vdep_par al | el
ltanium-based
systems

i vdep_paral | el
[tanium-based
systems

Indicates there is
absolutely no loop-carried
memory dependency in
the loop where | VDEP
directive is specified.

OFF

58

Intel® Fortran Compiler User's Guide

None -Kpic, - Generates position- OFF
KPI C independent code.
None -Ldir Instructs linker to search OFF
dir for libraries.
None -1 name Links with the library

indicated in nane.

/1ist -1 st Prints a source listing to OFF
st dout (typically, your
terminal screen) without
contents of | NCLUDE files.

/1ist /show include | -1list Prints a source listing to OFF
- st dout with contents of
show ncl ude i ncl ude files expanded.
/ Q ower case -1 ower case Changes routine names to | Windows
lowercase characters OFF
which are uppercase by Linux: Ol

default. (Linux: also
controls the external
symbol names in

lowercase.)
[Fnfil enane None Instructs the linker to OFF
produce a map file.
/ modul e[pat h], - modul e Specifies the directory -
/ nomodul e [pat h], where the module files nonodul
- nonodul e (extension . nod) are

placed. Omitting this
option or specifying -
nonodul e results in
placing the . nod files in
the directory where the
source files are being
compiled.

[Op[-] -np Maintains declared OFF
floating-point precision as
well as conformance to the
IEEE 754 standards for
floating-point arithmetic.
Optimization is reduced
accordingly.

| Qor ec -npl Restricts floating floating- OFF
point precision to be closer
to declared precision.
Some speed impact, but
less than - np.

59

Intel® Fortran Compiler User's Guide

/ nbs

- nbs

Treats backslash (\) as a
normal graphic character,
not an escape character.

OFF

/[Qnobss_init

-nobss_init

Disables placement of
zero-initialized variables in
BSS (using DATA section)

OFF

/GO -

nolib_inline

Disables inline expansion
of intrinsic functions.

ON

/ nol ogo

- nol ogo

Suppresses compiler
version information.

OFF

None

- Nus

Disables appending an
underscore to external
subroutine names.

OFF

/ us

None

Append an underscore to
external subroutine names

OFF

/X

Disables optimizations.

OFF

| Q2

Optimize for speed., but
disable some
optimizations that increase
code size for a small
speed benefit.

For Itanium compiler, - OL
turns off software
pipelining to reduce code
size.

ON

/ G3

Enables - Q2 option with
more aggressive
optimization, for example,
loop transformation.
Optimizes for maximum
speed, but may not
improve performance for
some programs.

OFF

TOb{ 0] 1] 2}

- {0] 1] 2}

Controls the compiler's
inline expansion. The
amount of inline expansion
performed varies as
follows:

- b0: disable inlining

- (bl: disables inlining
unless -i por-Qb2is
specified. Enables inlining
of functions.

- Gb2: Enables inlining of

-nl

60

Intel® Fortran Compiler User's Guide

any function. However, the
compiler decides which
functions are inlined. This
option enables
interprocedural
optimizations and has the
same effect as specifying
the - i p option.

/ Fofil enane -ofile Name the object file or OFF
directory for multiple files.
[Fafi | enane None Name assembly file or
directory for multiple files.
[Fefil enane None Name executable file or
directory.
/[Qonetrip -onetrip Executes any DOloop at OFF
least once. (Identical to
the - 1 option.).
/ Qopennp - opennp Enables the parallelizer to OFF
generate multithreaded
code based on the
OpenMP* directives. This
option implies that - f pp is
ON.
/ Qopennp - opennp Controls the OpenMP -openmy
_report{0] 1| 2} _report parallelizers diagnostic _report
{0] 1] 2} levels.
/ Qopennp_st ubs - Enables to compile OFF
opennp_st ubs OpenMP programs in
sequential
mode. The OpenMP
directives are ignored and
a stub OpenMP library is
linked (sequentially).
/ Qopt _report -opt _report Generates optimizations OFF
Itanium-based Itanium-based report and directs to
systems systems stderr unless
-opt _report _fileis
specified.
/ Qopt _report -opt _report Specifies the fi | enanme to | OFF
_filefilenane _filefilenane hold the optimizations
Itanium-based report.
systems Itanium-based
systems
/ Qopt _report -opt _report Prints to the screen all OFF
_help _help available phases for
Itanium-based [tanium-based - opt _report_phase.
systems systems

61

Intel® Fortran Compiler User's Guide

/ Qopt - opt Specifies the detail level of | - opt
_report_Ilevel _report_|Ievel the optimizations report. _report
{m n| med| max} {m n| med| max} -1 evel
Itanium-based [tanium-based mn
systems systems

/ Qopt _report -opt _report Specifies the optimization OFF

_phasephase _phasephase to generate the report for.

Itanium-based Itanium-based Can be specified multiple

systems systems times on the command
line for multiple
optimizations.

/ Qopt _report - Generates reports from all | OFF

_routineroutine opt _report _ routines with names

substring routineroutine | containing the substring

ltanium-based substring as part of their name. If

systems [tanium-based not specified, reports from

systems all routines are generated.

/P -P Preprocesses the f pp files | OFF
and writes the results to
files named according to
the compilers default file-
naming conventions.

[Qoad] -] - pad Enables/disables changing | OFF
variable and array memory
layout.

/ Qpad_source - pad_source Enforces the OFF
acknowledgment of blanks
at the end of a line.

/ Qoar al | el -parall el Enables the auto- OFF
parallelizer to generate
multi-threaded code for
loops that can be safely
executed in parallel.

| Qpar _ - par _ Controls the auto- - par

report{0| 1| 2| 3} report parallelizer's diagnostic _report

{0] 1] 2| 3} levels.
| Qpar - par Sets a threshold for the n=75
_threshol d{n} _threshol d auto-parallelization of

{n} loops based on the

probability of profitable
execution of the loop in
parallel, n=0 to 100. This
option is used for loops
whose computation work
volume cannot be
determined at compile-
time.

62

Intel® Fortran Compiler User's Guide

Qnstall,dir

for compiler installation.

| Qoc{ 32| 64| 80} - pc32 Enables floating-point I Qpcé4
IA-32 only - pc64 significand precision - pc64
- pc80 control as follows:
|IA-32 only - pc32 to 24-bit significand
- pc64 to 53-bit significand
- pc80 to 64-bit significand
None - pg Compile and link for OFF
IA-32 only function profiling with
Linux gprof tool.

[4{ Y| N} posi xlib -posixlib Enables/disables OFF
(Windows) linking to the
POSIX* library
(I i bPOSF90. a) in the
compilation.

/ Qorec_div -prec_div Disables floating point OFF

IA-32 only IA-32 only division-to-multiplication
optimization resulting in
more accurate division
results. Slight speed
impact.

| Qorefetch[-] -prefetch|- Enables or disables OFF

IA-32 only prefetch insertion (requires

IA-32 only - 33).
[Qorof _dirdir - Specifies the directory to OFF
prof _dirdir hold profile information in
the profiling output files,
* . dyn and *dpi .

/ Qor of _gen - prof _gen Instruments the program OFF
for profiling: to get the
execution count of each
basic block.

[Qorof _filefile - Specifies file name for OFF

prof _filefile profiling summary file.

[Qor of _use - prof _use Enables the use of OFF
profiling dynamic feedback
information during
optimization.

Iq -q Suppresses compiler OFF
output to standard error,
__stderr.

[/ dyncontonl - dyncom Enables dynamic OFF

[, con?] coml[, con?] allocation of given COMVON
blocks at run time.

None Sets dir as a root directory | OFF

63

Intel® Fortran Compiler User's Guide

/ Q ocati on,
t ool , path

-Q ocation,
tool, path

Specifies an alternate
version of a tool located at
path.

OFF

/ Q@ occom conil[,
con?,...com]

Q@ occom conl
[,

conk,...comm]j

Enables local allocation of
given COMVON blocks at
run time.

OFF

/ Qopt i on,
tool , opts

Qopti on, t ool ,
opts

Passes the options, opts,
to the tool specified by
tool.

OFF

None.

-gqp, -p

Compile and link for
function profiling with
UNIX* prof tool.

OFF

T 4R{ 4] 8] 16}

“r{4] 8] 16}

Defines the KI ND for real
variables in 4 (default), 8,
and 16 bytes.

- r 8: change the size and
precision of default REAL
entities to DOUBLE

PREC!I SI ON. Same as the
- aut odoubl e.

- r 16: change the size and
precision of default REAL
entities to REAL (KI ND=16)

-r8

/ Qrcd
IA-32 only

-rcd
IA-32 only

Disables changing of
rounding mode for
floating-point-to-integer
conversions.

OFF

/'S

-S

Produces an assembly
output file with optional
code.

OFF

| safe_cray_ptr

safe cray ptr

Specifies that Cray*
pointers do not alias with
other variables.

OFF

/ Qsave

-save

Saves all variables (static
allocation). Opposite of -
aut o.

OFF

[Qscal ar _rep|[-]
IA-32 only

-scal ar_rep
[-]
IA-32 only

Enables or disables scalar
replacement performed
during loop
transformations (requires
-).

OFF

[sox] -]

Intel® Fortran Compiler User's Guide

-sox|[-]
IA-32 only

Enables or disables
(default) saving of
compiler options and
version in the executable.
[tanium compiler:
accepted for compatibility
only.

OFF

None

-shar ed

Instructs the compiler to
build a Dynamic Shared
Object (DSO) instead of
an executable.

OFF

None

-static

Enables to link shared
libraries (. so) statically.

OFF

None

- synt ax

Enables syntax check
only. Same as -y.

OFF

[Tifile

-Tffile

Compile file as Fortran
source.

OFF

[/ GL
[ltanium-based
systems

-tppl
Itanium-based
systems

Targets optimization to the
Intel® Itanium® processor
for best performance.

OFF

| G2
[tanium-based
systems

-t pp2
Itanium-based
systems

Targets optimization to the
Intel® Itanium® 2
processor for best
performance. Generated
code is compatible with
the Itanium processor.

| Q2
-t pp2

I 5] 6| 7}
IA-32 only

-tpp{ 5] 6| 7}
IA-32 only

-t pp5 optimizes for the
Intel Pentium processor.
-t pp6 optimizes for the
Intel Pentium Pro, Pentium
[, and Pentium Il
processors.

-t pp7 optimizes for the
Intel Pentium 4 and Xeon
processors; requires the
support of Streaming
SIMD Extensions 2.

| G7
-t pp7

[4{ Y| N} d

Sets | MPLI CI T NONE by
default.

ON

/ Uname

- Unane

Removes a defined
macro; equivalent to an
#undef preprocessing
directive.

OFF

65

Intel® Fortran Compiler User's Guide

[Qunroll[n]

-unrol I [n]

- Use n to set maximum
number of times to unroll a
loop.

- Omit n to let the compiler
decide whether to perform
unrolling or not.

- Use n = 0 to disable
unroller.

The Itanium compiler
currently uses only n = 0;
all other values are NOPs.

ON

/ Qupper case

- upper case

Changes routine names to
all uppercase characters.

Windows
ON
Linux:
OFF

None

-use_asm

Generates an assembly
file and tells the assembler
to generate the object file.

OFF

/Vstring

Displays compiler version
information.

OFF

None

Shows driver tool
commands and executes
tools.

OFF

[4{Y| N}portlib

-Vaxlib

Enables/disables linking to
portlib library

(I i bPEPCF90. a) in the
compilation.

OFF

/| Quec_report{n}
IA-32 only

-vec_report
{n}
IA-32 only

Controls amount of
vectorizer diagnostic
information as follows:

n = 0: no information

n = 1: indicate vectorizer
loops

n =2:same as n =1 plus
non-vectorizer loops

n =3: same as n =1 plus
dependence information.
n = 4: indicate non-
vectorized loops

n =5: indicate non-
vectorized loops and and
the reason why they were
not vectorized.

66

Intel® Fortran Compiler User's Guide

I Qvis - Vs Enables support for 1/0 OFF
and DEC extensions to
Fortran that were
introduced by Digital* VMS
and Compag* Fortran
compilers.
['w -W Suppresses all warning OFF
messages.
'\ -W Disables display of OFF
warnings.
/' WL -W Displays warnings. ON
/w0, / wo5 -wWa0, - wo5 Suppresses warning OFF
messages about Fortran
features which are
deprecated or obsoleted in
Fortran 95.
/' V\B -V\B Issues a warning about OFF
compile time bound check
violation.
I QX{i| MKW -x{i | MKW Generates processor- OFF
IA-32 only IA-32 only specific code
corresponding to one of
codes: i , M K, and Wwhile
also generating generic IA-
32 code. This differs from
- ax{ n} in that this targets
a specific processor. With
this option, the resulting
program may not run on
processors older than the
target specified.
i = Pentium Pro &
Pentium Il processor
information
M= MMX(TM) instructions
K = streaming SIMD
extensions W= Pentium®
4 and Xeon new
instructions.
/X - X Removes standard OFF
directories from the
include file search.
None -y Enables syntax check OFF
only.
| Qzero -zero Implicitly initializes to zero | OFF
all data that is uninitialized
otherwise. Used in
conjunction with - save.

67

Intel® Fortran Compiler User's Guide

I Zp{ 1] 2| 4| 8| 16}

_Zp
{1] 2| 4] 8] 16}

Specifies alignment
constraint for structures on
1-, 2-, 4-, 8- or 16-byte
boundary.

Windows
OFF
Linux:
IA-32: -
Zp4
[tanium
Compilel
-Zp8

68

Intel® Fortran Compiler User's Guide

Getting Started with the Intel® Fortran
Compiler

Invoking Intel® Fortran Compiler

The Intel® Fortran Compiler has the following variations:

o Intel® Fortran Compiler for 32-bit Applications is designed for I1A-32 systems, and its
command is i f c. The IA-32 compilations run on any IA-32 Intel processor and
produce applications that run on 1A-32 systems. This compiler can be optimized
specifically for one or more Intel® 1A-32 processors, from Intel® Pentium® to Pentium
4 to Celeron(TM) and Xeon(TM) processors.

¢ Intel® Fortran Itanium® Compiler for Itanium®-based Applications, or native compiler,
is designed for Itanium architecture systems, and its command is ef c. This compiler
runs on Itanium-based systems and produces Itanium-based applications. Itanium-
based compilations can only operate on Itanium-based systems.
You can invoke compiler from:

e compiler command line

¢ makefile command line

Invoking from the Compiler Command Line

To invoke the Intel® Fortran Compiler from the command line requires these steps :
1. Set the environment variables

2. Issue the compiler command, i fc orefc

Setting the Environment Variables

Set the environment variables to specify locations for the various components. The Intel
Fortran Compiler installation includes shell scripts that you can use to set environment
variables. From the command line, execute the shell script that corresponds to your
installation. With the default compiler installation, these scripts are located at:

IA-32 systems:
/opt/intel/conpiler60/ia32/bin/ifcvars.sh

ltanium®-based systems:
/opt/intel/conpiler60/ia64/bin/efcvars. sh

69

Intel® Fortran Compiler User's Guide

Running the Shell Scripts
Torunthe i f cvars. sh script on 1A-32, enter the following on the command line:
pronpt>. /opt/intel/conpiler70/ia32/bin/ifcvars.sh

If you want the i f cvar s. sh to run automatically when you start Linux*, edit
your . bash_pr ofi | e file and add the following line to the end of your file:

set up environnment for Intel conpiler ifc
/opt/intel/conpiler70/ia32/bin/ifcvars.sh

The procedure is similar for running the ef cvar s. sh shell script on Itanium®-based
systems.

Command Line Syntax

The command for invoking the compiler depends on what processor architecture you are
targeting the compiled file to run on, 1A-32 or Itanium®-based applications. The following
describes how to invoke the compiler from the command line for each targeted architecture.

e Targeted for IA-32 architecture:

prompt>ifc [options] filel.f [file2.f . . .]
e Targeted for Itanium® architecture:

pronpt>efc [options] filel.f [file2.f]

£J Note

Throughout this manual, where applicable, command line syntax is given for both IA-
32- and Itanium-based compilations as seen above.

options Indicates one or more command-line options. The compiler
recognizes one or more letters preceded by a hyphen (-) as
an option.

Some options take arguments in the form of filenames,
strings, letters, or numbers. Except where otherwise noted,
you can enter a space between the option and its argument
(s) or you can combine them.

filel, file2 . . . | Indicates one or more files to be processed by the
compilation system. You can specify more than one fi | e.
Use a space as a delimiter for multiple files. See Compiler

Input Files.

£J Note
Specified options on the command line apply to all files. For example, in the following
command line, the - ¢ and - woptions apply to both files x. f andy. f:

70

Intel® Fortran Compiler User's Guide

pronmpt>ifc -c x.f -wy.f

pronpt>efc -c x.f -wy.f

Command Line with make

To specify a number of files with various paths and to save this information for multiple
compilations, you can use makefiles. To use a makefile to compile your input files using the
Intel® Fortran Compiler, make sure that / usr/ bi nand / usr/ | ocal / bi n are on your
path.

If you use the C shell, you can edit your . cshr c file and add

setenv PATH /usr/bin:/usr/local/bin:<your path>

Then you can compile as

make -f <Your nmakefile>

where - f is the make command option to specify a particular makefile.

For some versions of make, a default Fortran compiler macro F77 is available. If you want

to use it, you should provide the following settings in the startup file for your command shell:

e On an IA-32 system: F77 ifc

e On an Itanium®-based system: F77 efc

Input Files

The Intel® Fortran Compiler interprets the type of each input file by the filename extension;
for example, . a,.f,.for, .o, and so on.

Filename Interpretation | Action

filenane. a object library Passed to | d.

filenane.f Fortran Compiled by Intel® Fortran Compiler,
source assumes fixed-form source.

filename.ftn | Fortran source | Compiled by Intel Fortran Compiler;
assumes fixed form source.
filenanme. for | Fortran source | Compiled by Intel Fortran Compiler;
assumes fixed form source.
filenane.fpp | Fortran fixed- Preprocessed by the Intel Fortran
form source preprocessor f pp; then compiled by
the Intel Fortran Compiler.

71

Intel® Fortran Compiler User's Guide

filename.f90 | Fortran 90/95 Compiled by Intel Fortran Compiler;
source free-form source.

filenane. F Fortran fixed- Passed to preprocessor (f pp) and then
form source compiled by the Intel Fortran compiler

filenane.s IA-32 Passed to the assembler.
assembly file

filenane.s Itanium® Passed to the Intel Itanium assembler.
assembly file

filenane.o Compiled Passedto | d(1).
object file

You can use the compiler configuration file i f c. cf g for IA-32 or ef c. cf g for Itanium-
based applications to specify default directories for input libraries and for work files. To
specify additional directories for input files, temporary files, libraries, and for the assembler
and the linker, use compiler options that specify output file and directory names.

Default Behavior of the Compiler

By default, the compiler generates executable file(s) of the input file(s) and performs the
following actions:

o Searches for all files, including library files, in the current directory

o Passes options designated for linking as well as user-defined libraries to the linker
o Displays error and warning messages

e Supports the extended ANSI standard for the Fortran language.

o Performs default settings and optimizations using options summarized in the Default
Behavior of the Compiler Options section.

e For IA-32 applications, the compiler uses -t pp7 option to optimize the code for the
Pentium® 4 and Xeon(TM) processor; for ltanium®-based applications, the compiler
uses - t pp2 option to optimize the code for the Itanium® 2 processor.

For unspecified options, the compiler uses default settings or takes no action. If the
compiler cannot process a command-line option, that option is passed to the linker.

Default Behavior of the Compiler Options

If you invoke the Intel® Fortran Compiler without specifying any compiler options, the
default state of each option takes effect. The following tables summarize the options whose
default status is ON as they are required for Intel Fortran Compiler default operation. The
tables group the options by their functionality.

Per your application requirement, you can disable one or more options.

Intel® Fortran Compiler User's Guide

For the default states and values of all options, see the Compiler Options Quick Reference

Alphabetical table. The table provides links to the sections describing the functionality of the

options. If an option has a default value, such value is indicated. If an option includes an

optional minus [-], this option is ON by default.

The following tables list all options that compiler uses for its default execution.

Data Setting and Language Conformance

Default Option

Description

-72

- 72, - 80, - 132 specifies the column length for
fixed form source only. The compiler might issue
a warning for non-numeric text beyond 72 for
the - 72 option.

-align

Analyzes and reorders memory layout for
variables and arrays.

-ansi _alias[-]

Enables assumption of the program's ANSI
conformance.

-r4

Specifies the size of the real numbers to four
bytes.

-r{ 8| 16} works the same as - al i gn only with
specific settings: specifies the size of real
numbers to 8 (IA-32 systems, same as -

aut odoubl e) or 16 bytes for Itanium®
compiler.

-auto_scal ar

Makes scalar local variables AUTOVATI C.

- dps Enables DEC* parameter statement recognition.

-i 4 -1 { 2| 4| 8} defines the default KI ND for integer
variables and constants in 2, 4, and 8 bytes.

-l ower case Controls the case of routine names and external
linker symbols to all lowercase characters.

- pad Enables changing variable and array memory
layout.

- pc64 - pc{ 32| 64| 80} enables floating-point

IA-32 only significand precision control as follows: - pc32
to 24-bit significand, - pc64 to 53-bit significand,
and - pc80 to 64-bit significand.

-save Saves all variables in static allocation. Disables
- aut o, that is, disables setting all variables
AUTOVATI C.

-u Sets | MPLI CI' T NONE.

-us Appends an underscore to external subroutine

names.

73

Intel® Fortran Compiler User's Guide

IA-32: - Zp4 - Zp{ n} specifies alignment constraint for
Itanium compiler: - Zp8 | structures on 1-, 2-, 4-, 8-, or 16-byte boundary.
To disable, use

-align-.
Optimizations
Default Option Description
-fp Disables the use of the ebp register in
IA-32 only optimizations. Directs to use the ebp-

based stack frame for all functions.

-ip_no_inlining Disables full or partial inlining that would
result from the - i p interprocedural
optimizations. Requires -i p or - i po.

-1 PF_fma Enables the contraction of floating-point
[tanium® compiler multiply and add/subtract operations into a
single operation.

-1 PF_f p_specul ati on | Setsthe compiler to speculate on floating-

f ast point operations. -

Itanium compiler | PF_f p_specul ati onof f disables this
optimization.

-i po_obj Forces the generation of real object files.

Itanium compiler Requires - i po.
IA-32 systems: OFF

-0 -0, - Optimize for maximum speed.

- bl Disables inlining unless -i p or - (b2 is
specified.

-opennp_reportl Indicates loops, regions, and sections
parallelized.

- _ Specifies the minimal level of the
opt _report_level min | optimizations report.

-par_reportl Indicates loops successfully auto-
parallelized.

-t pp2 Optimizes code for the Intel® Itanium® 2

Itanium compiler processor for Itanium-based applications.

Generated code is compatible with the
Itanium processor.

-t pp7 Optimizes code for the Intel® Pentium® 4
IA-32 only and Xeon(TM) processor for 1A-32
applications.

Intel® Fortran Compiler User's Guide

-unrol | -unrol I [n] : omit n to let the compiler
decide whether to perform unrolling or not
(default).

Specify n to set maximum number of times
to unroll a loop.

The Itanium compiler currently uses only

n =0, -unroll 0 (disabled option) for

compatibility.
-vec_reportl Indicates loops successfully vectorized.
Compilation

Default Option Description

-falias Assumes aliasing in program.

-ffnalias Assumes aliasing within functions.

-fverbose-asm Produces assembly file with compiler
comments including compiler version and
options used.

-fppl When preprocessor runs, enables CVF

(for preprocessor only) | conditional and # directives.

- SOX- Disables saving of compiler options and
version in the executable. For Itanium-based
systems, accepted for compatibility only.

Messages and Diagnostics

Default Option Description

-cerrs Enables errors and warning messages to be
printed in a terse format. To disable, use
-cerrs-.

-do Displays only the procedure name and the
number of the line at which the failure
occurred.

-W Displays warnings.

Disabling Default Options
To disable an option, use one of the following as applies:

o Generally, to disable one or a group of optimization options, use - Q0 opti on. For
example:

IA-32 applications:

pronpt>ifc -Q2 -Q0 input _file(s)

75

Intel® Fortran Compiler User's Guide

Itanium-based applications:

pronpt>efc -OQ2 -Q0 input_file(s)

£J Note

The - @ option is part of a mutually-exclusive group of options that
includes - @, -0, - 01, - @, and - @3. The last of any of these options
specified on the command line will override the previous options from this

group.

e To disable options that include optional "-" shown as [-] , use that version of the
option in the command line, for example: - al i gn- .

e To disable options that have { n} parameter, use n=0 version, for example: -
unrol | 0.

f)] Note

If there are enabling and disabling versions of switches on the line, the last one takes
precedence.

Resetting Default Data Types

To reset data type default options, you need to indicate a new option which overrides the
default setting. For example:

IA-32 applications:

prompt>ifc -i2 input_file(s)
Itanium-based applications:
pronmpt>efc -i2 input_file(s)

Option - i 2 overrides default option - i 4.

Default Libraries and Tools

For the libraries provided with Intel® Fortran Compiler, see |1A-32 compiler libraries list and
[tanium® compiler libraries list.

The default tools are summarized in the table below.

76

Intel® Fortran Compiler User's Guide

Tool Default Provided with
Intel Fortran
Compiler

IA-32 Assembler Linux* Assembler, as No

[tanium® Intel® Itanium® Yes

Assembler Assembler

Linker No

You can specify alternate to default tools and locations for preprocessing, compilation,
assembly, and linking.

Assembler

By default, the compiler generates an object file directly without calling the assembler.
However, if you need to use specific assembly input files and then link them with the rest of
your project, you can use an assembler for these files.

IA-32 Applications

For 32-bit applications, Linux supplies its own assembler, as. For Itanium-based
applications, to compile to assembly files and then use an assembler to produce
executables, use the Itanium assembiler, i as.

Itanium®-based Applications

If you need to assemble specific input files and link them to the rest of your project object
files, produce object files using Intel® Itanium® assembler with i as command. For
example, if you want to link some specific input file to the Fortran project object file, do the
following:

1. Issue command using - S option to generate an assembly code file, fil e. s.
pronpt>efc -S -c file.f

2. To assemble the fi | e. s file, call Itanium® assembler with this command:

prompt >ias -Nso -p32 -o file.o file.s

where the following assembler options are used:

- Nso suppresses sign-on message

- p32 enables defining 32-bit elements as relocatable data elements. Kept for backward
compatibility

- of i | e indicates the output object file name

77

Intel® Fortran Compiler User's Guide

The above command generates an object file, fi | e. 0, which you can link with the object
file of the whole project.

Linker

The compiler calls the system linker, | d(1), to produce an executable file from object files.
The linker searches the environment variable LD LI BRARY PATHto find available libraries.

Compilation Phases

To produce the executable file fi | ename, the compiler performs by default the compile
and link phases. When invoked, the compiler driver determines which compilation phases
to perform based on the extension of the source filename and on the compilation options
specified in the command line.

The table that follows lists the compilation phases and the software that controls each
phase.

Phases Software | 1A-32 or Itanium®
Architecture

Preprocess fpp Both

(Optional)

Compile f 90com Both

Assemble I as [tanium architecture

Link I d Both

The compiler passes object files and any unrecognized filename to the linker. The linker
then determines whether the file is an object file (. 0) or a library (. a). The compiler driver
handles all types of input files correctly, thus it can be used to invoke any phase of
compilation.

Application Development Cycle

The relationship of the compiler to system-specific programming support tools is presented
in the Application Development Cycle diagram.

The compiler processes Fortran language source and generates object files. You decide
the input and output by setting options when you run the compiler. The figure shows how
the compiler fits into application development environment.

Application Development Cycle

78

Intel® Fortran Compiler User's Guide

Phasel:
Tranzkation

Fraze I
Linkace

Phasze Il
Executicn

s

e

Coampiler

Object

li

Js==r
Library

Sy stem

CIM0AT 4

79

Intel® Fortran Compiler User's Guide

Customizing Compilation Environment

You can customize the compilation process of your Fortran programs with the Fortran
Compilation Environment (FCE) included with the Intel® Fortran Compiler. FCE provides a
methodology of handling compilation according to the size and structure of your program. In
addition, the FCE provides a methodology for code reusability and other automated
features. The modular approach also facilitates several levels of use, from short programs
to complex and large-scale projects.

To customize the environment used during compilation, you can specify the variables,
options, and files as follows:

e Environment variables to specify paths where the compiler searches for special files
such as libraries and "include" files

o Configuration files to use the options with each compilation

e Response files to use the options and files for individual projects

¢ Include Files to use for your application

Environment Variables

There are a number of environment variables that control the compiler’s behavior. These
environment variables can be set in the startup file for your command shell, or your . | ogi n
file. Alternatively, you can invoke the setting variables script before running the compiler.

You can also set the PATHand LD _LI BRARY_PATH in your . | ogi n file only, there will no
longer be any need to execute the setting variables script before running the compiler.

The following variables are relevant to your compilation environment.

EFCCFG Specifies the configuration file that the
compiler should use instead of the
default configuration file for the
Itanium® compiler.

| FCCFG Specifies the configuration file that the
compiler should use instead of the
default configuration file for the I1A-32
compiler.

F_UFMIENDI AN Specifies the numbers of the units to
be used for little-endian-to-big-endian
conversion purposes.

LD_LI BRARY_PATH | Specifies the directory path for the
libraries loaded at run-time.

80

Intel® Fortran Compiler User's Guide

PATH Specifies the directory path for the
compiler executable files. Enables the
compiler to search for libraries or
include files. You can establish these
variables in the startup file for your
command shell. You can use the env
command to determine what
environment variables you already
have set.

T™P Specifies the directory in which to
store temporary files. If the directory
specified by TMP does not exist, the
compiler places the temporary files in
the current directory.

Configuration File Environment Variables

| FCCFGand EFCCFG environment variables specify the configuration file that the compiler
should use instead of the default configuration file. The default configuration files are

i fc. cf g for the 32-bit Intel Fortran compiler and ef c. cf g for the Itanium compiler in

the / bi n directory, and by default, the compiler always picks up the . cf g file from the
same directory where the compiler executable resides. However, if the user needs to use a
configuration file in a different location, they can use the | FCCFGor EFCCFG environment
variable and assign the directory and filename of the . cf g file that needs to be picked up
by the compiler.

Configuration Files

To decrease the time when entering command line options and ensure consistency of
often-used command-line entries, use the configuration files. You can insert any valid
command-line options into the configuration file. The compiler processes options in the
configuration file in the order they appear followed by the command-line options that you
specify when you invoke the compiler.

£l Note

Be aware that options placed in the configuration file will be included each time you
run the compiler. If you have varying option requirements for different projects, see
Response Files.

These files can be added to the directory where Intel® Fortran Compiler is installed.

Examples that follow illustrate sample . cf g files. The pound (#) character indicates that the
rest of the line is a comment.

IA-32 applications: ifc.cfg

You can put any valid command-line option into this file.

81

Intel® Fortran Compiler User's Guide

Sanple ifc.cfg file for 1A 32
appl i cations

#it

Define preprocessor macro MY _PRQIECT
- Dny_proj ect

#t

Set extended-1ength source |ines.
-132

#it

Set maxi mum fl oati ng-point significand
preci sion.

- pc80

#it

Link with alternate I/O library for
m xed output with the

C | anguage.

- C90

ltanium®-based applications: ef c. cf g

Sanple efc.cfg file for Itani un® based
appl i cations

#it

Define preprocessor macro MY_PRQIECT.
- Dny_proj ect

#it

Enabl e extended-1ength source |ines.
-132

#t

Link with alternate I/Olibrary for
m xed output with the

C | anguage.

- C90

Response Files

Use response files to specify options used during particular compilations for particular
projects, and to save this information in individual files. Response files are invoked as an
option on the command line. Options specified in a response file are inserted in the
command line at the point where the response file is invoked.

Response files are used to decrease the time spent entering command -line options, and to
ensure consistency by automating command-line entries. Use individual response files to
maintain options for specific projects; in this way you avoid editing the configuration file
when changing projects.

You can place any number of options or flenames on a line in the response file. Several
response files can be referenced in the same command line.

82

Intel® Fortran Compiler User's Guide

The syntax for using response files is as follows :

IA-32 applications:

pronpt>ifc @esponse_fil enane

pronpt>i fc @esponse_fil enanel @ esponse_fil enane2
ltanium®-based applications:

pronpt >efc @ esponse_fil enane

pronpt >efc @esponse_fil enanel @ esponse_fil enane2

£ Note

An "at" sign (@ must precede the name of the response file on the command line.

Include Files

Include files are brought into the program with the #i ncl ude preprocessor directive or the
I NCLUDE statement. In addition, you can define a specific location of include files with the
compiler options, - 1 di r and - X. See Searching for Include Files in Preprocessing.

83

Intel® Fortran Compiler User's Guide

Customizing Compilation Process

This section describes options that customize compilation process—preprocessing,
compiling, and linking. In addition, it discusses various compilation output and debug
options and also shows how little-endian-to-big-endian conversions are enabled for
unformatted sequential files.

You can find information on the link-time libraries used by compiler, compiler diagnostics,
and mixing C and Fortran in the corresponding sections.

Specifying Alternate Tools and Locations

The Intel® Fortran Compiler lets you specify alternate to default tools and locations for
preprocessing, compilation, assembly, and linking. Further, you can invoke options specific
to your alternate tools on the command line. This functionality is provided by - Q ocat i on
and - Qopt i on.

Specifying an Alternate Component
(-Q ocati on, t ool , pat h)

- Q@ ocat i on enables to specify the pathname locations of supporting tools such as the
assembler, linker, preprocessor, and compiler. This option's syntax is:

-Q ocation,tool, path

t ool Designates one or more of these
tools:

fpp Intel Fortran preprocessor
f Fortran compiler (f 90comn)
asm |A-32 assembler

i as Itanium® assembler

i nk Linker (1d(1))

pat h The location of the component.

Example:
pronpt>i fc -Q ocation, fpp,/usr/preproc myprog.f
Passing Options to Other Tools (- Qopti on, t ool , opt s)

- Qopt i on passes an option specified by opt s to t ool , where opt s is a comma-
separated list of options. The syntax for this option is:

-Qoption,tool, opts

Intel® Fortran Compiler User's Guide

t ool Designates one or more of these
tools:

fpp Intel Fortran preprocessor
f Fortran compiler (f 90comn)
I'ink Linker (1d(1))

opts Indicates one or more valid
argument strings for the
designated program.

If the argument contains a space or tab character, you must enclose the entire argument in
guotation characters (" "). You must separate multiple arguments with commas including
those in quotation marks.

The following example directs the linker to link with alternate 1/O library for mixed output
with the C language for respective targeted compilations.

IA-32 applications:
pronpt>ifc -Qoption,link,-C90 progl.f
[tanium®-based applications:

pronpt >efc - Qoption,link,-C90 progl.f

Preprocessing

This section describes the options you can use to direct the operations of the preprocessor.

Preprocessing performs such tasks as macro substitution, conditional compilation, and file
inclusion. You can use the preprocessing options to direct the operations of the
preprocessor from the command line. The compiler preprocesses files as an optional first
phase of the compilation.

The Intel® Fortran Compiler provides the f pp binary to enable preprocessing. If you want
to use another preprocessor, you must invoke it before you invoke the compiler. Source
files that use a . f pp or . F file extension are automatically preprocessed.

M\ caution

Using a preprocessor that does not support Fortran can damage your Fortran code,
especially with FORVAT statements. For example, FORVAT (\\1 4) changes the
meaning of the program because the backslash "\ " indicates end-of-record.

Preprocessor Options

Use the options in this section to control preprocessing from the command line. If you
specify neither option, the preprocessed source files are not saved but are passed directly
to the compiler. Table that follows provides a summary of the available preprocessing

85

Intel® Fortran Compiler User's Guide

options.

Option Description

-Al -] Removes all predefined macros.

- Dnane= Defines the macro name and associates it with
{#| text}] the specified value. The default (- Dnane) defines
a macro with value =1.

-E Directs the preprocessor to expand your source
module and write the result to standard output.

-EP Same as - E but does not include #line directives
in the output.
-F Preprocess to an indicated file.

- fpp{n} Uses the f pp preprocessor on Fortran source
files.

n=0: disable CVF and #di recti ves n=1: enable
CVF conditional compilation and #di r ecti ves
(default)

n=2: enable only #di recti ves,

n=3: enable only CVF conditional compilation
directives.

-P Directs the preprocessor to expand your source
module and store the result in a file in the current
directory.

- Unane Eliminates any definition currently in effect for the
specified macro.

-ldir Adds directory to the include file search path.

- X Removes standard directories from the include
file search path.

Preprocessing Fortran Files

You do not usually preprocess Fortran source programs. If, however, you choose to
preprocess your source programs, you must use the preprocessor f pp, or the
preprocessing capability of a Fortran compiler. It is recommended to use f pp, which is the
preprocessor supplied with the Intel® Fortran Compiler.

The compiler driver automatically invokes the preprocessor, depending on the source
filename suffix and the option specified. For example, to preprocess a source file that
contains standard Fortran preprocessor directives, then pass the preprocessed file to the
compiler and linker, enter the following command:

IA-32 applications:

pronpt >i f ¢ source. f pp/ source. F90

[tanium®-based applications:

86

Intel® Fortran Compiler User's Guide

pronpt >ef ¢ source. f pp/ source. F90

The . f pp or. F90 file extension invokes the preprocessor. Note the capital F in the file
extension to produce the effect.

f)] Note

Using the preprocessor can make debugging difficult. To get around this, you can
save the preprocessed file (- P), and compile it separately, so that the proper file
information is recorded for the debugger.

Enabling Preprocessing with CVF

You can enable the Preprocessor for any Fortran file by specifying the - f pp option. With -
f pp, the compiler automatically invokes the f pp (preprocessor) to preprocess files with
the.f,.ftn,.for or.f90 extension in the mode set by n:

n=0: disable CVF and #di recti ves

n=1: enable CVF conditional compilation and #di r ecti ves; - f pp1 is the default when
the preprocessor is invoked.

n=2: enable only #di recti ves

n=3: enable only CVF conditional compilation directives.

f) Note

Option - opennp automatically invokes the preprocessor.

String Constants for IA-32 Systems

Intel Fortran f pp conforms to cpp and accepts the cpp style directives. cpp prohibits the
use of a string constant value in #i f expression. So f pp won't support it either.

#define system"i a32"
#if system == "ja32"
void main() {
printf("ia32\n");

}

#el se

int main() {
printf("non ia32\n");
} #endi f

Preprocessing Only: -E, -EP, -F,and - P

Use either the -E, - P, or the - F option to preprocess your . f pp source files without
compiling them.

87

Intel® Fortran Compiler User's Guide

When you specify the - E option, the Intel® Fortran Compiler's preprocessor expands your
source file and writes the result to standard output. The preprocessed source contains

#| i ne directives, which the compiler uses to determine the source file and line number
during its next pass. For example, to preprocess two source files and write them to stdout,
enter the following command:

IA-32 applications:

prompt >ifc -E progl.fpp prog2.fpp

[tanium®-based applications:

prompt >efc -E progl.fpp prog2.fpp

When you specify the - P option, the preprocessor expands your source file and stores the
result in a file in the current directory. By default, the preprocessor uses the name of each
source file with the . f extension, and there is no way to change the default name. For
example, the following command creates two files named progl. f and prog2. f, which
you can use as input to another compilation:

IA-32 applications:

prompt >ifc -P progl.fpp prog2.fpp

Itanium-based applications:

prompt >efc -P progl.fpp prog2.fpp

The - EP option can be used in combination with - E or - P. It directs the preprocessor to not

include #| i ne directives in the output. Specifying - EP alone is the same as specifying - E
and - EP.

A\ caution

When you use the - P option, any existing files with the same name and extension are
not overwritten and the system returns the error message invalid preprocessor output
file.

Searching for Include and . nod Files
Include files are brought into the program with the #i ncl ude preprocessor directive or the
I NCLUDE statement. To locate such included files, the compiler searches by default for the

standard include files in the directories specified in the | NCLUDE environment variable. In
addition, you can specify the compiler options, - | and - X.

Specifying and Removing Include Directory Search: -1, - X

You can use the - | option to indicate the location of include files and .mod files. To prevent

88

Intel® Fortran Compiler User's Guide

the compiler from searching the default path specified by the I NCLUDE environment
variable, use - X option.

You can specify these options in the configuration files, i f c. cf g for IA-32 or ef c. cf g for
Itanium®-based applications or on the command line.

Specifying an Include Directory, -1 dir

Included files are brought into the program with a #i ncl ude preprocessor directive or a
Fortran | NCLUDE statement. Use the - | di r option to specify an alternative directory to
search for include files.

Files included by the Fortran | NCLUDE statement are normally referenced in the same
directory as the file being compiled. The - | option may be used more than once to extend
the search for an | NCLUDE file into other directories.

Directories are searched for include files in this order:

directory of the source file that contains the include

directories specified by the -1 option

current working directory

o directories specified with the | NCLUDE environment variable

Compiling an Input File from a Different Directory

If you need to compile an input file that resides in a directory other than default (that is, the
directory where you issue a compilation command) and if your code contains an | NCLUDE
statement, you must use the - | di r option on your command line. For example:

IA-32 applications:

prompt>ifc -Idir dir/file.f90

[tanium®-based applications:

prompt >efc -1dir dir/file.f90

where di r is the directory path where the file, fi | e. f 90 , you need to compile resides.

Specifying the . nod Files Directory

The programs that require modules located in multiple directories can be compiled using
the - 1 di r option to locate the . nod files (modules) that should be included in the program.
For specifying the directory to locate . nod files, see Searching and Locating the .mod Files
in Large-Scale Projects.

89

Intel® Fortran Compiler User's Guide

Removing Include Directories, - X

Use the - X option to prevent the compiler from searching the default path specified by the
I NCLUDE environment variable.

You can use the - X option with the - | option to prevent the compiler from searching the
default path for include files and direct it to use an alternate path. For example, to direct the
compiler to search the path / al t /i ncl ude instead of the default path, do the following:
IA-32 applications:

pronpt>ifc -X -1/alt/include newrin. f

Itanium-based applications:

pronpt>efc -X -1/alt/include newrin. f

Defining Macros

You can use the / D option to define the assertion and macro names to be used during
preprocessing. The - Unanme option disable macros.

Use the - D option to define a macro. This option performs the same function as the
#def i ne preprocessor directive. The format of this option is:

-Dnane[=val ue(t ext]

where
nane The name of the macro to define.
val ue Indicates a value to be substituted
[=t ext] for name.

If you do not enter a val ue, nane is setto 1. The val ue should be enclosed in the
quotation marks if it contains spaces or special characters.

Preprocessing replaces every occurrence of nanme with the specified val ue. For example,
to define a macro called Sl ZE with the val ue 100 use the following command:

IA-32 applications: pronpt >i f ¢ - DSI ZE=100 progl. f
ltanium®-based applications: pr onpt >ef ¢ - DSI ZE=100 progl. f

Preprocessing replaces all occurrences of Sl ZE with the specified value before passing the
preprocessed source code to the compiler. Suppose the program contains the declaration:

REAL VECTOR(S| ZE)

90

Intel® Fortran Compiler User's Guide

In the code sent to the compiler, the value 100 replaces Sl ZE in this declaration, and in
every other occurrence of the name S| ZE.

Predefined Macros

The predefined macros available for the Intel® Fortran Compiler are described in the table
below. The Default column describes whether the macro is enabled (ON) or disabled (OFF)
by default. The Disable column lists the option which disables the macro.

Macro Name Default Architecture | Description - When Used

__EFC ON ltanium Identifies the Intel Fortran
architecture Compiler

__IFC ON |A-32 Identifies the Intel Fortran

Compiler

__linux__ ON IA-32 Defined for Linux* applications

_M I A64_li nux ON ltanium® Defined for Itanium-based Linux
architecture applications

_M | X86=n ON,n=700 | IA-32 Defined based on the processor

option you specify:

n=500 if you specify - t pp5
n=600 if you specify -t pp6
n=700 if you specify -t pp7
_PGO_I NSTRUMENT | OFF Both Defined when you compile with -

prof _gen or-prof_genx
options.

Suppressing Macros
The - U option directs the preprocessor to suppress an automatic definition of a macro. Use

the - Unane option to suppress any macro definition currently in effect for the specified
name. The - Uoption performs the same function as an #undef preprocessor directive.

Preprocessor Macro for OpenMP*

A preprocessor macro is defined which may be useful for running OpenMP* depending on
the compiler environment:

_OPENMP

This macro has the form YYYYMM where YYYY is the year and MM is the month of the
OpenMP Fortran specification supported.

Compilation

91

Intel® Fortran Compiler User's Guide

This section describes all the Intel® Fortran Compiler options that determine the
compilation and linking process and their output. By default, the compiler converts source
code directly to an executable file. Appropriate options enable you to control the process
and obtain desired output file produced by the compiler.

Having control of the compilation process means, for example, that you can create a file at
any of the compilation phases such as assembly, object, or executable with - P or - ¢
options. Or you can name the output file or designate a set of options that are passed to
the linker with the - S, - 0 options. If you specify a phase-limiting option, the compiler
produces a separate output file representing the output of the last phase that completes for
each primary input file.

You can use the command line options to display and check for certain aspects of the
compiler's behavior. You can use these options to see which options and files are passed
by the compiler driver to the component executables f 90comand | d(1) (option - sox| -

D).

Linking is the last phase in the compilation process discussed in a separate section. See
the Linking options.

A group of options monitors the outcome of Intel compiler -generated code without
interfering with the way your program runs. These options control some computation
aspects, such as allocating the stack memory, setting or modifying variable settings, and
defining the use of some registers.
The options in this section provide you with the following capabilities:

e GCC* compatibility

e controlling compilation

e Mmonitoring data settings

¢ specifying the output files or directories

Finally, the output options are summarized in Compiler Output Options Summary.

Controlling Compilation

You can control and modify the compilation process with the option sets as follows.
Controlling Compilation Phases

You can control which compilation phases you need to include in the compilation process.

e The - ¢ option directs the compiler to compile, assemble and generate object file(s),
but do not link.

92

Intel® Fortran Compiler User's Guide

e The - S option stops compiler at generating assembly files.

o If you need to link additional files and/or libraries, you use the - | nane option. For
example, if you want to link | i bm a, the command is:

IA-32 compiler:

pronpt>ifc a.f -Im

Itanium® compiler:

pronpt>efc a.f -Im
Aliasing

The following options manage compiler aliasing:

e -falias assumes aliasing in a program
e -fno-alias assumes no aliasing in a program
e -ffnalias assumes aliasing within functions

-fno-fnal i as assumes no aliasing within functions, but assumes aliasing across
calls

Translating Other Code to Fortran

The / Tf fi | e option enables you to treat a text file as if it contains Fortran code. This
option is used if you have a Fortran file that has other than the . f/. f or/. f 90 extension or
no extension, and you need to compile it.

For example:

pronpt>ifc -Tfa.f95 b.f

The above command will compile both a. f 95 and b. f files as Fortran, link them, and
create executable a.

Profiling Support

Profiling information identifies those parts of your program where improving source code
efficiency would most likely improve runtime performance.

The options supporting profiling are - p and - gp, and - pg. (- pg is used for 1A-32 only)

- p and - gp set up profiling by periodically sampling the value of the program counter for

93

Intel® Fortran Compiler User's Guide

use with the postprocessor pr of tool.

These options only affect loading. When loading occurs, these options replace the standard
runtime startup routine option with the profiling runtime startup routine. When profiling
occurs, an output file is produced, which contains execution-profiling data for use with the
postprocessor pr of command.

- pg (IA-32 only) sets up profiling for gpr of tool, which produces a call graph showing the
execution of the program. When programs are linked with the - pg option and then run,
these files produced:

« afile containing a dynamic call graph and profile.

¢ a file containing a summarized dynamic call graph and profile.

To display the output, run gpr of on the file containing a dynamic call graph and profile.

Saving Compiler Version and Options Information, - sox| -]

You can save the compiler version and options information in the executable with - sox.
The size of the executable on disk is increased slightly by the inclusion of these information
strings. The default is - sox- .

The - sox option forces the compiler to embed in each object file a string that contains
information on the compiler version and compilation options for each source file that has
been compiled. When you link the object files into an executable file, the linker places each
of the information strings into the header of the executable. It is then possible to use a tool,
such as a strings utility, to determine what options were used to build the executable file.

£J Note
For Itanium®-based applications, the - sox option is accepted for compatibility, but it
does not have any effect.

Monitoring Data Settings

The options described below provide monitoring the outcome of Intel compiler -generated
code without interfering with the way your program runs.

Specifying Structure Tag Alignments
Use the - Zp{ n} option to determine the alignment constraint for structure declarations, on
n-byte boundary (n = 1, 2, 4, 8, 16). Generally, smaller constraints result in smaller data

sections while larger constraints support faster execution.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in
the file progl. f, use the following command:

IA-32 systems: pronpt >i f¢c -Zp2 progl.f

94

Intel® Fortran Compiler User's Guide

The default for IA-32 systems is - Zp4.

ltanium®-based systems: pronpt >ef ¢ -Zp2 progl. f
The default for Itanium-based systems is - Zp8.

The - Zp16 option enables you to align Fortran structures such as common blocks. For
Fortran structures, see STRUCTURE statement in Chapter 10 of Intel® Fortran
Programmer's Language Reference Manual.

The - al i gn option applies mainly to structures and analyzes and reorders memory layout
for variables and arrays and basically functions as - Zp{ n} . You can disable either option
with

-noal i gn.

The - pad option is effectively not different from - al i gn when applied to structures and
derived types. However, the scope of - pad is greater because it applies also to common
blocks, derived types, sequence types, and Vax structures.

Allocation of Zero-initialized Variables, - nobss i ni t

By default, variables explicitly initialized with zeros are placed in the BSS section. But using
the

-nobss_i ni t option, you can place any variables that are explicitly initialized with zeros in
the DATA section if required.

Correcting Computations for 1A-32 Processors, - Of _check (IA-32 Systems)

Specify the - Of _check option to avoid the incorrect decoding of the instructions that have
2-byte opcodes with the first byte containing Of . In rare cases, the Pentium® processor can
decode these instructions incorrectly.

The ebp Register Usage (IA-32 Systems)

The - f p option disables the use of the ebp register in optimizations. The option directs to
use the ebp-based stack frame for all functions. For details on the correlation between the
ebp register use for optimizations and debugging, see -fp Option and Debugging.

The - f p option is disabled by default or when - OL or -O2 (see optimization-level options)
are specified.

Flushing to Zero Denormal Values, -ftz (Itanium®-based Systems)

Option - f t z flushes denormal results to zero when the application is in the gradual
underflow mode. Use this option if the denormal values are not critical to application
behavior.

Flushing the denormal values to zero with - f t z may improve performance of your
application.

95

Intel® Fortran Compiler User's Guide

The default status of -ft z is OFF. By default, the compiler lets results gradually
underflow.

Little-endian-to-Big-endian Conversion (IA-32)

The little-endian-to-big-endian conversion feature is intended for Fortran unformatted
input/output operations. It enables the development and processing of files with big-endian
data organization on the 1A-32-based processors, which usually process the data in the little
endian format.

The feature also enables processing of the files developed on processors that accept big-
endian data format and producing the files for such processors on IA-32-based little-endian
systems.
The little-endian-to-big-endian conversion is accomplished by the following operations:

e The VWWRI TE operation converts little endian format to big endian format.

e The READ operation converts big endian format to little endian format.

The feature enables the conversion of variables and arrays (or array subscripts) of basic
data types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment Variable
In order to use the little-endian-to-big-endian conversion feature, specify the numbers of the
units to be used for conversion purposes by setting the F_UFMIENDI AN environment

variable. Then, the READ/VRI TE statements that use these unit numbers, will perform
relevant conversions. Other READ/MRI TE statements will work in the usual way.

In the general case, the variable consists of two parts divided by a semicolon. No spaces
are allowed inside the F_UFMIENDI AN value. The variable has the following syntax:

F_UFMTENDI AN=MODE | [MODE;] EXCEPTI ON

where:

MODE = big | little

EXCEPTION = big: ULIST | little:ULIST | ULIST
ULIST = U| ULIST,U

U = decimal | deciml -decimal

o MODE defines current format of data, represented in the files; it can be omitted.
The keyword | i t t | e means that the data have little endian format and will not be
converted. For IA-32 systems, this keyword is a default.
The keyword bi g means that the data have big endian format and will be converted.
This keyword may be omitted together with the colon.

96

Intel® Fortran Compiler User's Guide

e EXCEPTI ONis intended to define the list of exclusions for MODE; it can be omitted.
EXCEPTI ONkeyword (I i tt| e or bi g) defines data format in the files that are
connected to the units from the EXCEPTI ON list. This value overrides MODE value for
the units listed.

e Each list member Uis a simple unit number or a number of units. The number of list
members is limited to 64.

deci mal is a non-negative decimal number less than 232,

Converted data should have basic data types, or arrays of basic data types. Derived data
types are disabled.

Command lines for variable setting with different shells:
Sh: export F_UFMIENDI AN=MODE; EXCEPTI ON

Csh: setenv F_UFMIENDI AN MODE; EXCEPTI ON

FINote
Environment variable value should be enclosed in quotes if semicolon is present.
Another Possible Environment Variable Setting

The environment variable can also have the following syntax:

F_UFMTENDI AN=U[, U]
Command lines for the variable setting with different shells:
e Sh: export F_UFMIENDI AN=ul[, u]
e Csh: setenv F_UFMIENDI AN ul[, u]

See error messages that may be issued during the little endian — big endian conversion.
They are all fatal. You should contact Intel if such errors occur.

Little-to-Big Endian Conversion Usage Examples
1. F_UFMTENDI AN=bi g

All input/output operations perform conversion from big-endian to little-endian on
READ and from little-endian to big-endian on WRI TE.

2. F_UFMTENDI AN="littl e; bi g: 10, 20"

or F_UFMTENDI AN=bi g: 10, 20
or F_UFMTENDI AN=10, 20

97

Intel® Fortran Compiler User's Guide

In this case, only on unit numbers 10 and 20 the input/output operations perform big -
little endian conversion.

3. F_UFMTENDI AN="big; little: 8"

In this case, on unit number 8 no conversion operation occurs. On all other units, the
input/output operations perform big-little endian conversion.

4. F_UFMTENDI AN=10- 20

Define 10, 11, 12 ... 19, 20 units for conversion purposes; on these units, the
input/output operations perform big-little endian conversion.

5. Assume you set F_UFMIENDI AN=10, 100 and run the following program.

i nteger*4 cc4
i nteger*8 cc8
i nteger*4 c4
i nteger*8 c8
c4 = 456
c8 789

C prepare a little endian representation of
dat a

open(11,file="lit.tnp',form=" unformatted')
wite(1ll) c8

wite(ll) c4

cl ose(11)

C prepare a big endian representation of data
open(10,file="big.tnp' ,form" unformatted')

wite(l0) c8
wite(l1l0) c4

cl ose(10)

C read big endian data and operate with them
on

C little endian nmachi ne.

open(100,file="big.tnmp',form=" unformatted')
read(100) cc8
read(100) cc4

C Any operation with data, which have been
read

C Co.
cl ose(100)

98

Intel® Fortran Compiler User's Guide

stop
end

Now compare | i t. t np and bi g. t np files with the help of od utility.
>o0d -t x4 lit.tnp

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004

0000034

> o0d -t x4 big.tnp

0000000 08000000 00000000 15030000 08000000

0000020 04000000 c8010000 04000000
0000034

You can see that the byte order is different in these files.
Specifying Compilation Output

When compiling and linking a set of source files, you can use the - o or - S option to give
the resulting file a name other than that of the first source or object file on the command
line.

-C Compile to object only (. 0), do not link.

-S Produce assembly file or directory for multiple
assembly files. The compilation stops at producing
the assembly file.

-ofile Produce an output file based on the phase options
used previously: none, - ¢ or - S. If no phase option
has been used, produces an executable and places
it in specified fi | e. Combined with - S, indicates
assembly file or directory for multiple assembly files.
Combined with - ¢, indicates object file name or
directory for multiple object files.

If you are processing a single file, you can use the - of i | e option to specify an alternate
name for an object file (. 0), an assembly file (. s) or an executable file. You can also use
these options to override the default filename extensions: . o and . s.

See Compilation Output options summary.

Default Output Files

The default command line does not include any options and has a Fortran source file as its
input argument:

Intel® Fortran Compiler User's Guide

IA-32 compiler:

pronpt>i fc a.f90

[tanium® compiler:

pronpt >efc a.f90

The default compiler command produces an a. out executable file. If the - ¢ option was
used, the compiler command also produces an object file, a. 0, and places it in the current
directory.

You can compile more than one input files:

IA-32 compiler:

pronmpt>ifc x.f90 y.f90 z.f90

Itanium compiler:

pronpt>efc x.f90 y.f90 z.f90

The above command will do the following:

compile and link three input source files

produce three object files and assign the names of the respective source files: x. o,
y.o0,and z. o

produce an executable file and assign to it the default name a. out

¢ place all the files in the current directory.

To generate assembly files, use the - S option. The compilation stops at producing the
assembly file.

Specifying Executable Files

You can use the - of i | e option to specify an alternate name for an executable file. This is
especially useful when compiling and linking a set of input files. You can use the -of i | e
option to give the resulting file a name other than that of the first input file (source or object)
on the command line.

In the next example, the command produces an executable file named outfi | e as a result
of compiling and linking two source files.

IA-32 compiler:

100

Intel® Fortran Compiler User's Guide

pronpt>ifc -ooutfile filel.f90 file2.f90
[tanium® compiler:
pronpt >efc -ooutfile filel.f90 file2.f90

Without the - oout fi | e option, the command above produces an executable file named
a.out, the default executable file name.

Specifying Object Files

The compiler command always generates and keeps object files of the input source files
and by default places them in the current directory. You can use the - of i | e options to
specify an alternate name for an object file.

For example:

IA-32 compiler:

prompt>ifc -ofile.o x.f90

[tanium® compiler:

prompt >efc -ofile.o x.f90

In the above example, - 0 assigns the name fi | e. o to an output object file rather than the
default x. o.

To generate object files, specify a different object file name, and suppress linking, use - c
and - o combination.

IA-32 applications:

prompt>ifc -c -ofile.o x.f90

Itanium compiler:

pronmpt >efc -c -ofile.o x.f90

- 0 assigns the name fi | e. o0 to an output object file rather than the default (x. 0)
- ¢ directs the compiler to suppress linking.

Specifying Assembly Files

You can use the - S option to generate an assembly file. The compilation stops at producing
the assembly file. To specify an alternate name for this assembly file, use the - of i | e

101

Intel® Fortran Compiler User's Guide

option .

IA-32 compiler:

pronpt>ifc -S -ofile.s x.f90
[tanium® compiler:

pronpt>efc -S -ofile.s x.f90

In the above example, -Stells the compiler to generate an assembly file, while - of i | e. s
assigns to it the name f i | e. s rather than the default x. s.

The option - S tells compiler to:
e generate an assembly file of the source file
e use the name of the source file as a default assembly output file name

o place this file in the current directory.

£J Note
The - S option stops the compiler upon generating and saving the assembly files.

Without the - S option, the compiler proceeds to generating object files without saving
the assembly files.

Producing Assembly Files with Annotations and Comments

Options - f code- asmand - f sour ce- asmproduce annotations in assembly files as
follows:

e - f code- asmand inserts code byte information in the assembly file

e - f sour ce- asmand inserts high-level source code in the assembly file
In addition, the options - f ver bose- asmand -f nover bose- asmenable and disable,
respectively, inserting comments containing compiler version and options used in the

assembly file. The - f ver bose- asmoption is enabled by default when producing an
assembly file with - f code- asmor - f sour ce- asm

Compiler Output Options Summary

If no errors occur during processing, you can use the output files from a particular phase as
input to a later compiler invocation. The executable file is produced when you do not specify
any phase-limiting option. The filename of the first source or object file specified with an
absent suffix, is the default for the executable object file from the linker.

102

Intel® Fortran Compiler User's Guide

The table below describes the options to control the output.

Last Phase Option Compiler Compiler Output
Completed Input
preprocessing | - P, - E, or | source files preprocessed files, see
-EP Preprocessing
compile only -C source Compile to object only (. 0),
do not link.
assembly -S source Compile to assembly file
only only (. s) and stop.
compilation, -0, nane | source, Assigns a name of your
linking, or -0, nanme | assembly, or | choice to an output file
assembly object files
syntax -y source files diagnostic list
checking preprocessed
files
source files
preprocessed
linking (default) files executable file, map file
assembly
files
object files
libraries

Using the Assembler to Produce Object Code

By default the compiler generates an object file directly without going through the
assembler. But if you want to link some specific input file to the Fortran project object file,
you can use the - use_asmoption to tell the compiler to use the Linux* Assembler for IA-32
systems or Itanium® Assembler for Itanium®-based systems.

pronpt>ifc -use_asmfilel.f

pronpt>efc -use_asmfilel.f

The above command generates an fi | el. o object file which you can link with the Fortran
object file(s) of the whole project.

Listing Options

The following options produce a source listing to the standard output, which by default is
the screen.

e The -11i st option writes a listing of the source file to standard output (typically, your
terminal screen), including any error or warning messages. The errors and warnings are

103

Intel® Fortran Compiler User's Guide

also output to standard error, st derr.

e The-1list -show ncl ude prints a source listing to st dout with contents of
i ncl ude files expanded.

Linking

This topic describes the options that enable you to control and customize the linking with
tools and libraries and define the output of the linking process. See the summary of linking

options.

f) Note

These options are specified at compile time and have effect at the linking time.

Options to Link to Tools and Libraries

The following options enable you to link to various tools and libraries:

- Bdynami ¢ Used with - | nane (see below), enables dynamic
linking of libraries at run time. Compared to static
linking, results in smaller executables.

-Bstatic Enables linking a user's library statically.

- C90 Link with alternate 1-O library for mixed output with
the C language.

-i _dynam c | Enables to link the shared object versions of the
Intel-provided libraries dynamically.

- | nane Link with a library indicated in name. For example,
- | mindicates to link with the math library.

-Ldir Instructs linker to search di r for libraries.

-posixlib Enables or disable linking with POSIX* library.

-shared Instructs the compiler to build the Dynamic Shared
Object (DSO) instead of an executable.

-static Enables to link shared libraries (. so) statically at

compile time. Compared to dynamic linking,
results in larger executables.

When - st ati ¢ is not used:
e /lib/ld-1inux.so.2islinkedin

e libmlibcxa,andl i bc are linked
dynamically

o all other libraries are linked statically

When - st ati c is used:

104

Intel® Fortran Compiler User's Guide

e /[lib/ld-1inux.sl.2isnotlinked in

o all other libraries are linked statically

-Vaxlib Enable or disable linking with portability library.

Controlling Linking and its Output

| -Ldir | Instruct linker to search for di r libraries.

See Libraries for more information on using them.
Suppressing Linking

Use the - ¢ option to suppress linking. Entering the following command produces the object
flesfile.oandfil e2. o, but does not link these files to produce an executable file.

IA-32 compiler:
pronmpt>ifc -c file.f file2.f
I[tanium® compiler:

pronpt>efc -c file.f file2.f

£l Note

The preceding command does not link these files to produce an executable file.
Debugging

This section describes the basic command line options that you can use as tools to debug
your compilation and to display and check compilation errors. The options in this section
enable you to:

e support for symbolic debugging

e compile only designated lines and debug statements

e check the source files for syntax errors before creating output file

Support for Symbolic Debugging

Use the - g option to direct the compiler to generate code to support symbolic debugging.
For example:

IA-32 applications: pronpt>ifc -g progl.f

105

Intel® Fortran Compiler User's Guide

ltanium®-based applications: pronpt >ef ¢ -g progl.f

The compiler lets you generate code to support symbolic debugging while the - OL, or - Q2
optimization options are specified on the command line along with - g.

If you specify the - OL, or - Q2 options with the - g option, you can receive these results:

« some of the debugging information returned may be inaccurate as a side -effect of
optimization.

o for IA-32 applications, - OL, or - 2 options disable the - f p option. See -fp Option
and Debugging.

Debugging and Assembling

The compiler does not support the generation of debugging information in assembly files. If
you specify the - g option with - S, the assembly listing file is generated without debugging
information, but if you further produce an object file, it will contain debugging information. If

you link the object file and then use the GDB debugger on it, you will get full symbolic
representation.

Compiling Source Lines with Debugging Statements, - DD

This option is useful for the inclusion or exclusion of debugging lines. Use the - DD option to
compile source lines containing user debugging statements.

The - DD Option
Debugging statements included in a Fortran program source are indicated by the letter D in
column 1. The - DD option instructs the compiler to treat a D in column 1 of Fortran source

as a space character. The rest of that line is then parsed as a normal Fortran statement.

For example, to compile any debugging statements in program pr ogl. f , enter the
following command:

pronmpt >ifc -DD progl.f

The above command causes the debugging statement

D PRINT *, "I=",I

embedded in the progl. f to execute and print lines designated for debugging.

By default, the compiler takes no action on these statements. In the following example, if -
DD is not specified (default), the Dline is ignored:

106

Intel® Fortran Compiler User's Guide

do 10i =1, n
a(i) = b(i)

D wite (*,*) a(i)

10 conti nue

But when - DD is specified, the compiler sees a wr i t e statement as if the code is:

do 10i =1, n
a(i) = b(i)
wite (*,*) a(i)

10 conti nue

The - DX and - DY Options

Two additional distinctions to compile source lines containing user debugging statements
are also available with these variations of the - DD option:

e - DX compiles debug statements indicated by a X (not an x) in column 1; if this option

is not set these lines are treated as comments.

e - DY compiles debug statements indicated by a Y (not an y) in column 1; if this option

is not set these lines are treated as comments.

Parsing for Syntax Only

Use the -y or - synt ax option to stop processing source files after they have been parsed

for Fortran language errors. This option gives you a way to check quickly whether sources
are syntactically and semantically correct. The compiler creates no output file. In the

following example, the compiler checks a file named pr ogl. f . Any diagnostics appear on

the standard error output and in a listing, if you have requested one.
IA-32 applications: pronpt >ifc -y progl.f

ltanium®-based applications: pronpt >efc -y progl.f

Debugging and Optimizations

It is best to make your optimization and/or debugging choices explicit:

e If you need to debug your program excluding any optimization effect, use the - Q0
option, which turns off all the optimizations.

o If you need to debug while still use optimizations, you can specify the - Ol or - Q2
options on the command line along with - g.

If you do not make your optimization choice explicit when - g is specified, the - g option
implicitly disables optimization (as if - Q0 were specified).

107

Intel® Fortran Compiler User's Guide

- f p Option and Debugging (IA-32 only)

The - f p option disables use of the ebp register in optimizations, and can result in slightly
less efficient code. With this option, the compiler generates code for I1A-32-targeted
compilations without turning off optimization, so that a debugger can still produce a stack
backtrace.

If you specify the - OL or - Q2 options, the - f p option is disabled. If you specify the - Q0
option, - f p is enabled. Remember that the - f p option affects 1A-32 applications only.

Summary

Refer to the table below for the summary of the effects of using the - g option with the
optimization options.

These Imply these results

options

-g debugging information produced, - Q0 enabled,
- f p enabled for IA-32-targeted compilations.

-g -1 debugging information produced, - Ol

optimizations enabled, - f p disabled for 1A-32-
targeted compilations

-g -2 debugging information produced, - O2
optimizations enabled, - f p disabled for 1A-32-
targeted compilations

-g -@B -fp | debugging information produced, - O3
optimizations enabled, - f p enabled for 1A-32-
targeted compilations.

-g -ip limited debugging information produced, -i p
option enabled.

108

Intel® Fortran Compiler User's Guide

Fortran Language Options

The Intel® Fortran Compiler implements Fortran language-specific options, which enable
you to set or specify:

e set data types and sizes

define source program characteristics

set arguments and variables

allocate common blocks

For the size or number of Fortran entities the Intel® Fortran Compiler can process, see
Maximum Size and Number table.

Setting Integer and Floating-point Data Types
See the summary of these options.

Integer Data

The -1 2,-14, and -i 8 options specify that all quantities of | NTEGER type and unspecified
Kl ND occupy two, four or eight bytes, respectively. All quantities of LOGd CAL type and
unspecified KI ND also occupy two, four or eight bytes, respectively.

All logical constants and all small integer constants occupy two, four or eight bytes,
respectively.

The default is four bytes, -i 4.

Floating-point Data

The -r{ 4| 8] 16} option defines the KI ND for real variables in 4, 8, and 16 bytes. The
default is - r 4.

The - r 8, - aut odoubl e, and - r 16 options specify floating-point data.

The - r 8 option directs the compiler to treat all variables, constants, functions and intrinsics
as DOUBLE PRECI SI ON, and all complex quantities as DOUBLE COWVPLEX. The -

aut odoubl e option has the same effect as the - r 8 option.

The - r 16 option directs the compiler to treat all variables, constants, functions and

intrinsics as DOUBLE PRECI SI ON, and all complex quantities as DOUBLE COVPLEX. This
option changes the default size of real numbers to 16 bytes.

109

Intel® Fortran Compiler User's Guide

Source Program Features

The options that enable the compiler to process a source program in a beneficial way for or
required by the application, can be divided in two groups described in the two sections
below. See a summary of these options.

Program Structure and Format

DOloops

The - onet ri p option directs the compiler to compile DOloops at least once. By default
Fortran DOloops are not performed at all if the upper limit is smaller than the lower limit.
The option - 1 has the same effect. This supports old programs from the Fortran —66
standard, when all DOloops executed at least once.

Fixed Format Source

The - FI option specifies that all the source code is in fixed format; this is the default except
for files ending with the extension. f, . for,.ftn.

- 132 permits fixed form source lines to contain up to 132 characters. The -
ext end_sour ce, option has the same effectas - 132.

Free Format Source

-FR options Specifies that all the source code is in Fortran free format; this is the default for
files ending with the suffix . f 90.

Character Definitions

The - pad_sour ce option enforces the acknowledgment of blanks at the end of a line.

The - us option appends an underscore to external subroutine names. - nus disables
appending an underscore to an external subroutine name.

The - nus[fi |l e] option directs to not append an underscore to subroutine names listed in
file. Useful when linking with C routines.

The - nbs option directs the compiler to treat backslash (\) as a normal graphic character,
not an escape character. This may be necessary when transferring programs from non -
UNIX* environments, for example from VAX* VMS*. See Escape Characters.

Compatibility with Platforms and Compilers

This group discusses options that enable compatibility with other compilers.

110

Intel® Fortran Compiler User's Guide

Cross-platform

The - ansi _al i as[-] enables (default) or disables assumption of the program’s ANSI
conformance. Provides cross-platform compatibility. This option is used to make
assumptions about out-of-bound array references and pointer references. For gcc
compatibility, the - ansi _al i as option is accepted. The option is ON by default.

The option directs the compiler to assume the following:
o Arrays are not accessed out of arrays' bounds.
¢ Pointers are not cast to non-pointer types and vice-versa.

o References to objects of two different scalar types cannot alias. For example, an
object of type i nt eger cannot alias with an object of type r eal or an object of type
r eal cannot alias with an object of type doubl e preci si on.

If your program satisfies the above conditions, setting the - ansi _al i as option will help
the compiler better optimize the program. However, if your program may not satisfy one of
the above conditions, the option must be disabled, as it can lead the compiler to generate
incorrect code.

DEC* VMS

The - dps, option enables (default) or disables DEC* parameter statement recognition.
Basically, the

- dps option determines how the compiler treats the alternate syntax for PARAMETER
statements, which is:

PARAMETER par 1=expl [, par2=exp2]

This form does not have parentheses around the assignment of the constant to the
parameter name. With this form, the type of the parameter is determined by the type of the
expression being assigned to it and not by any implicit typing.

By default, the compiler allows the alternate syntax for PARAMETER statements, - dps. To
disable this form, specify - nodps.

The - virs option enables support for extensions to Fortran that were introduced by Digital*
VMS Fortran compilers. The extensions are as follows:

e The compiler permits shortened, apostrophe-separated syntax for parameters in 1/0
statements. For example, a statement of the form: WRI TE(4' 7) FQOis permitted
and is equivalent to WRI TE(UNI T=4, REC= 7) FOQO.

e The compiler assumes that the value specified for RECL in an OPEN statement is

given in words rather than bytes. This option also implies - dps, even though - dps is
on by default.

111

Intel® Fortran Compiler User's Guide

C Language

The - | ower case maps external routine names and symbol names (linker) to lowercase
alphabetic characters. This option is useful when mixing Fortran with C programs.

The - upper case maps external names to uppercase alphabetic characters.

f)] Note

Do not use the - upper case option in combination with - Vaxl i b or - posi xl i b.

Escape Characters

For compatibility with C usage, the backslash (\) is normally used in Intel® Fortran
Compiler as an escape character. It denotes that the following character in the string has a
significance which is not normally associated with the character. The effect is to ignore the
backslash character, and either substitute an alternative value for the following character or
to interpret the character as a quoted value.

The escape characters recognized, and their effects, are described in the table below.
Thus, ' I SN\' T' is a valid string. The backslash (\) is not counted in the length of the
string.

Escape Characters and Their Effect

Escape Effect

Character

\'n new line

\'t horizontal tab

\'v vertical tab

\'b backspace

\ f form feed

\0 null

\' apostrophe (does not terminate
a string)

\" double quote (does not
terminate a string)

\\ \ (a single backslash)

\ X X, where x is any other character

Line Terminators

This information is useful for recent Linux* users after working with Windows*. The line
terminators are different between Linux and Windows. On Windows, line terminators are

\ r\ n while on Linux they are just \ n. Typically, a file transfer program will take care of this
issue for you if you transfer the file in text mode. |If the file is transferred in binary mode (but
the file is really text file), the problem will not be resolved by FTP.

112

Intel® Fortran Compiler User's Guide

Setting Arguments and Variables

These options can be divided into two major groups discussed below. See a summary of
these options.

Automatic Allocation of Variables to Stacks
-aut o

This option makes all local variables AUTOVATI C. Causes all variables to be allocated on
the stack, rather than in local static storage. Variables defined in a procedure are otherwise
allocated to the stack only if they appear in an AUTOVATI C statement, or if the procedure is
recursive and the variables do not have the SAVE or ALLOCATABLE attributes. The option
does not affect variables that appear in an EQUI VALENCE or SAVE statement, or those that
are in COVMON. May provide a performance gain for your program, but if your program
depends on variables having the same value as the last time the routine was invoked, your
program may not function properly.

-auto scal ar

This option causes scalar variables of rank 0, except for variables of the COVPLEX or
CHARACTER types, to be allocated on the stack, rather than in local static storage. Does not
affect variables that appear in an EQUI VALENCE or SAVE statement, or those that are in
COVMON. - aut o_scal ar may provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the routine was
invoked, your program may not function properly. Variables that need to retain their values
across subroutine calls should appear in a SAVE statement. This option is similar to - aut o,
which causes all local variables to be allocated on the stack. The difference is that -

aut o_scal ar allocates only variables of rank O on the stack.

- aut o_scal ar enables the compiler to make better choices about which variables should
be kept in registers during program execution. This option is on by default.

-save and - zero

Forces the allocation of all variables in static storage. If a routine is invoked more than
once, this option forces the local variables to retain their values from the last invocation
terminated. This may cause a performance degradation and may change the output of your
program for floating-point values as it forces operations to be carried out in memory rather
than in registers which in turn causes more frequent rounding of your results. Opposite of -
aut 0. To disable - save, set - aut 0. Setting - save turns off both - aut o and - aut o-
scal ar.

The - zer o option presets uninitialized variables to zero. It is most commonly used in

conjunction with
- save.

113

Intel® Fortran Compiler User's Guide

Alignment, Aliases, Implicit None

Alignment

The - al i gn option is a front-end option that changes alignment of variables in a COVMON
block.

Example:

COVMON / BLOCK1/ CH, DOUB, CHL, | NT
| NTEGER | NT

CHARACTER(LEN=1) CH, CH1L

DOUBLE PRECI SI ON DOUB
END

The - al i gn option enables padding inserted to assure alignment of DOUB and | NT on
natural alignment boundaries. The - noal i gn option disables padding.

Aliases

The - conmon_ar gs option assumes that the "by-reference" subprogram arguments may
have aliases of one another.

Implicit None

The -uand-inplicitnone options set | MPLI CI T NONE as the default.

Preventing CRAY* Pointer Aliasing

Option - saf e_cray_pt r specifies that the CRAY* pointers do not alias with other
variables. The default is OFF.

Consider the following example.
poi nter (pb, b)
pb = getstorage()

doi =1, n
b(i) = a(i) + 1
enddo

When - saf e_cray_ptr is not specified (default), the compiler assumes that b and a are
aliased. To prevent such an assumption, specify this option, and the compiler will treat b
(i) and a(i) asindependent of each other.

However, if the variables are intended to be aliased with CRAY pointers, using the -

saf e_cray_ptr option produces incorrect result. For the code example below, -
saf e_cray_ptr should not be used.

114

Intel® Fortran Compiler User's Guide

pb = loc(a(2))
do i=1, n
b(i) = a(i) +1
enddo

Allocating Common Blocks

The following two options are used for the common blocks:

- Qdyncont bl k1, bl k2 ..." | Dynamically allocates COMMON blocks
at runtime. See section Dynamic
Common Option that follows.

- Q occont bl k1, bl k2, Enables local allocation of given

) COMMVON blocks at run time. See
Allocating Memory to Dynamic COMVION
Blocks.

Dynamic Common Option

The - Qdyncomoption dynamically allocates COMMON blocks at runtime. This option on the
compiler command line designates a COVMON block to be dynamic, and the space for its
data is allocated at runtime, rather than compile time. On entry to each routine containing a
declaration of the dynamic COMMON block, a check is made of whether space for the
COMMON block has been allocated. If the dynamic COMMON block is not yet allocated, space
is allocated at the check time.

The following example of a command-line specifies the dynamic common option with the
names of the COMMON blocks to be allocated dynamically at runtime:

IA-32 applications:

pronpt >i f ¢ - Qdyncont BLK1, BLK2, BLK3" test.f

ltanium®-based applications:
pronpt >ef ¢ - Qdyncont BLK1, BLK2, BLK3" test.f

where BLK1, BLK2, and BLK3 are the names of the COVMON blocks to be made dynamic.

Allocating Memory to Dynamic Common Blocks

The runtime library routine, f 90_dyncom performs memory allocation. The compiler calls
this routine at the beginning of each routine in a program that contains a dynamic COVMON
block. In turn, this library routine calls _FTN _ALLOC() to allocate memory. By default, the
compiler passes the size in bytes of the COVMON block as declared in each routine to
f90_dyncom and thenonto FTN ALLQOC() . If you use the nonstandard extension having
the COMMON block of the same name declared with different sizes in different routines, you
may get a runtime error depending upon the order in which the routines containing the

115

Intel® Fortran Compiler User's Guide

COMMON block declarations are invoked.

The runtime library contains a default version of _FTN_ALLOC() , which simply allocates

the requested number of bytes and returns.

Why Use a Dynamic Common

One of the primary reasons for using dynamic COVMMON is to enable you to control the
COVMON block allocation by supplying your own allocation routine. To use your own
allocation routine, you should link it ahead of the runtime library routine. This routine must

be written in the C language to generate the correct routine name.

The routine prototype is as follows:

void FTN ALLOC(void **nmem int *size, char *nane);

where

nmem

is the location of the base pointer of the COVMON block
which must be set by the routine to point to the block
memory allocated.

si ze

is the integer number of bytes of memory that the
compiler has determined are necessary to allocate for
the COVMON block as it was declared in the program.
You can ignore this value and use whatever value is
necessary for your purpose.

F) Note

You must return the size in bytes of the space you
allocate. The library routine that calls _FTN _ALLOC()
ensures that all other occurrences of this common block
fit in the space you allocated. Return the size in bytes of
the space you allocate by modifying the size parameter.

namne

is the name of the common block being dynamically
allocated.

Rules of Using Dynamic Common Option

The following are some limitations that you should be aware of when using the dynamic

common option:

o If you use the technique of implementing your own allocation routine, then you should
specify only one dynamic COVMON block on the command line. Otherwise, you may

not know the name of the COMMON block for which you are allocating storage.
¢ An entity in a dynamic COMMON may not be initialized in a DATA statement.

¢ Only named COMMON blocks may be designated as dynamic COMVON.

116

Intel® Fortran Compiler User's Guide

¢ An entity in a dynamic COMMON must not be used in an EQUI VALENCE expression with
an entity in a static COMMON or a DATA-initialized variable.

117

Intel® Fortran Compiler User's Guide

Compiler Optimizations

The variety of optimizations used by the Intel® Fortran Compiler enable you to enhance the
performance of your application. Each optimization is performed by a set of options, see
Compiler Options by Functional Groups Overview and Application Performance
Optimizations Options section.

In addition to optimizations invoked by the compiler command line options, the compiler
includes features which enhance your application performance such as directives,
intrinsics, runtime library routines and various utilities. These features are discussed in the
Optimization Support Features section.

Optimization Levels

Each of the command-line options: - O- O1, - @2 and - O3 turn on several compiler
capabilities. See the summary of these options.

The following table provides a summary of the optimizations that the compiler applies when
you invoke
- O, - O1 and/or - @2, or - G3 optimizations.

Option Optimization Affected Aspect of
Program

-0, - global register allocation register use

-0, -2 instruction scheduling instruction reordering

-0, - register variable detection register use

-0, -2 common subexpression constants and expression
elimination evaluation

-0, -2 dead-code elimination instruction sequencing

-0, -2 variable renaming register use

-0, - copy propagation register use

-0, -2 constant propagation constants and expression

evaluation

-0, -2 strength reduction- simplification instruction,
induction variable selection-sequencing

-0, -2 tail recursion elimination calls, further optimization

-0 -2 software pipelining for calls, further optimization
Itanium-based application

-2 loop unrolling; inlining of calls, further optimization
intrinsics

-3 prefetching, scalar memory access, instruction
replacement, parallelism, predication,
loop transformations software pipelining

118

Intel® Fortran Compiler User's Guide

Setting Optimization Levels

For 1A-32 and Itanium® architectures, these options behave in a different way. To specify
the optimizations for your program, use options depending on the target architecture as

explained in the tabl

[tanium® Compiler

es that follow.

Option Effect

-01 Optimizes to favor code size. Enables the same optimizations
as - Oexcept for loop unrolling and software pipelining. At -
Q1 the global code scheduler is tuned to favor code size.

-0 -2 Turn the software pipelining ON. Generally, - Oor - O2 are
recommended over - OL.

IA-32 Compiler

Option Effect

-0-01,-2 Optimize to favor code speed. Disable option - f p. The
- Q2 option is ON by default. Inlines intrinsics.
Example: large database applications, code with many
branches and not dominated by loops

-3 Enables - Q2 option with more aggressive optimization.

Optimizes for maximum speed, but does not guarantee
higher performance unless loop and memory access
transformation take place. In conjunction with - axK and
- XK options, this option causes the compiler to perform
more aggressive data dependency analysis than for -
2. This may result in longer compilation times.

IA-32 and Itanium Compilers

For IA-32 and Itanium architectures, the options can behave in a different way. To specify
the optimizations for your program, use options depending on the target architecture as

follows.
Option Effect
-2 ON by default. - @2 turns ON intrinsics inlining. Used

for best overall performance on typical integer
applications that do not make heavy use of floating
point math. Enables the following capabilities for
performance gain:

e constant propagation

119

Intel® Fortran Compiler User's Guide

e COpY propagation
o dead-code elimination
o global register allocation

¢ global instruction scheduling and control
speculation

e loop unrolling
e optimized code selection
e partial redundancy elimination

¢ strength reduction/induction variable
simplification

 variable renaming
e predication

o software pipelining

-3 Enables - Q2 option with more aggressive optimization.
Optimizes for maximum speed, but may not improve
performance for some programs. Used mostly for
applications that make heavy use of floating-point
calculations on large data sets.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your program:

-0 Disables optimizations - O1, - O2, and-
or - 3. Enables - f p option.
-np Restricts optimizations that cause

some minor loss or gain of precision in
floating-point arithmetic to maintain a
declared level of precision and to
ensure that floating-point arithmetic
more nearly conforms to the ANSI and
IEEE* standards. See - np option for
more detalils.

-nolib_inline Disables inline expansion of intrinsic
functions.

120

Intel® Fortran Compiler User's Guide

For more information on ways to restrict optimization, see Interprocedural Optimizations

with -Qoption.

Floating-point Arithmetic Precision

The options described in this section all provide optimizations with varying degrees of
precision in floating-point (FP) arithmetic for IA-32 and Itanium® compiler. See the FP
arithmetic precision options summary.

The - np and - npl options are used by both architectures. These options improve
floating-point precision, but also affect the application performance. See more details
about these options in Improving/Restricting FP Arithmetic Precision.

The FP options provide optimizations with varying degrees of precision in floating-point
arithmetic. The option that disables these optimizations is - Q0.

- np Option

Use - np to limit floating-point optimizations and maintain declared precision. For example,
the Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. This change can alter the results of
floating point division computations slightly. The - np switch may slightly reduce execution
speed. See Improving/Restricting FP_Arithmetic Precision for more detail.

- npl Option

Use the - np1 option to restrict floating-point precision to be closer to declared precision
with less impact to performance than with the - np option. The option will ensure the out-of-
range check of operands of transcendental functions and improve accuracy of floating -point
compares.

Floating-point Arithmetic Precision for IA-32 Systems
- prec_di v Option

The Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. Use - pr ec_di v to disable floating point
division-to-multiplication optimization resulting in more accurate division results. May have
speed impact.

- pc{ 32| 64| 80} Option
Use the - pc{ 32| 64| 80} option to enable floating-point significand precision control.
Some floating-point algorithms, created for specific 32- and Itanium®-based systems, are

sensitive to the accuracy of the significand or fractional part of the floating -point value. Use
appropriate version of the option to round the significand to the number of bits as follows:

121

Intel® Fortran Compiler User's Guide

- pc32: 24 bits (single precision)

- pc64: 53 bits (double precision)

- pc80: 64 bits (extended precision)

The default version is - pc64 for full floating-point precision.

This option enables full optimization. Using this option does not have the negative

performance impact of using the - np option because only the fractional part of the floating -
point value is affected. The range of the exponent is not affected.

FlNote

This option only has effect when the module being compiled contains the main
program.

& Caution

A change of the default precision control or rounding mode (for example, by using the
- pc32 option or by user intervention) may affect the results returned by some of the
mathematical functions.

Rounding Control,-rcd, -fp_port

The Intel Fortran Compiler uses the - r cd option to disable changing of rounding mode for
floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. This means that
values are rounded during floating-point calculations. However, the Fortran language
requires floating-point values to be truncated when a conversion to an integer is involved.
To do this, the compiler must change the rounding mode to truncation before each floating -
point conversion and change it back afterwards.

The - r cd option disables the change to truncation of the rounding mode for all floating -
point calculations, including floating-point-to-integer conversions. Turning on this option can
improve performance, but floating-point conversions to integer will not conform to Fortran
semantics.

You can also use the - f p_port option to round floating-point results at assignments and
casts. This option has some speed impact.

Floating-point Arithmetic Precision for Itanium®-based
Systems

122

Intel® Fortran Compiler User's Guide

The following Intel® Fortran Compiler options enable you to control the compiler
optimizations for floating-point computations on Itanium®-based systems.

Contraction of FP Multiply and Add/Subtract Operations

-1 PF_f ma[-] enables or disables the contraction of floating-point multiply and
add/subtract operations into a single operations. Unless - np is specified, the compiler tries
to contract these operations whenever possible. The - np option disables the contractions.

-1 PF_frma and -1 PF_f ma- can be used to override the default compiler behavior. For
example, a combination of - np and - | PF_f ma enables the compiler to contract operations:

pronpt>efc -nmp -1 PF_frma nyprog.f
FP Speculation

-1 PF_f p_specul ati onnode sets the compiler to speculate on floating-point operations
in one of the following nodes:

f ast : sets the compiler to speculate on floating-point operations; this is the default.

saf e: enables the compiler to speculate on floating-point operations only when it is safe;
stri ct: enables the compiler's speculation on floating-point operations preserving floating-
point status in all situations. In the current version, this mode disables the speculation of

floating-point operations (same as of f).

of f : disables the speculation on floating-point operations.

FP Operations Evaluation

-1 PF_flt _eval nethod{O0| 2} option directs the compiler to evaluate the expressions
involving floating-point operands in the following way:

-1 PF_flt_eval net hodO directs the compiler to evaluate the expressions involving
floating-point operands in the precision indicated by the variable types declared in the
program.

-1 PF_flt_eval net hod2 is not supported in the current version.

Controlling Accuracy of the FP Results

-1 PF_fltacc[-] enables the compiler to apply optimizations that affect floating -point
accuracy. The defaultis-1 PF_fltacc-.

The Itanium® compiler may reassociate floating-point expressions to improve application
performance. Use - | PF_f | t acc or - np to disable this behavior.

123

Intel® Fortran Compiler User's Guide

Improving/Restricting FP Arithmetic Precision

The - np and - npl options maintain and restrict, respectively, floating-point precision, but
also affect the application performance. The - npl option causes less impact on
performance than the - np option. - npl ensures the out-of-range check of operands of
transcendental functions and improve accuracy of floating -point compares.

The - np option restricts some optimizations to maintain declared precision and to ensure
that floating-point arithmetic conforms more closely to the ANSI and IEEE* standards. This
option causes more frequent stores to memory, or disallow some data from being register
candidates altogether. The Intel architecture normally maintains floating point results in
registers. These registers are 80 bits long, and maintain greater precision than a double -
precision number. When the results have to be stored to memory, rounding occurs. This
can affect accuracy toward getting more of the "expected” result, but at a cost in speed.
The - pc{ 32| 64| 80} option (IA-32 only) can be used to control floating point accuracy and
rounding, along with setting various processor IEEE flags.

For most programs, specifying this option adversely affects performance. If you are not sure
whether your application needs this option, try compiling and running your program both
with and without it to evaluate the effects on performance versus precision.

Specifying this option has the following effects on program compilation:

e On IA-32 systems, floating-point user variables declared as floating-point types are
not assigned to registers.

e On Itanium®-based systems, floating-point user variables may be assigned to
registers. The expressions are evaluated using precision of source operands. The
compiler will not use Floating-point Multiply and Add (FMA) function to contract
multiply and add/subtract operations in a single operation. The contractions can be
enabled by using - | PF_f ma option. The compiler will not speculate on floating-point
operations that may affect the floating-point state of the machine. See Floating-point
Arithmetic Precision for Itanium-based Systems.

o Floating-point arithmetic comparisons conform to IEEE 754.

e The exact operations specified in the code are performed. For example, division is
never changed to multiplication by the reciprocal.

e The compiler performs floating-point operations in the order specified without
reassociation.

e The compiler does not perform the constant folding on floating-point values. Constant
folding also eliminates any multiplication by 1, division by 1, and addition or
subtraction of 0. For example, code that adds 0.0 to a number is executed exactly as
written. Compile-time floating-point arithmetic is not performed to ensure that floating-
point exceptions are also maintained.

124

Intel® Fortran Compiler User's Guide

For 1A-32 systems, whenever an expression is spilled, it is spilled as 80 bits
(EXTENDED PRECI SI ON), not 64 bits (DOUBLE PRECI SI ON). Floating-point
operations conform to IEEE 754. When assignments to type REAL and DOUBLE
PRECI SI ON are made, the precision is rounded from 80 bits (EXTENDED) down to 32
bits (REAL) or 64 bits (DOUBLE PRECI SI ON). When you do not specify - 0, the extra
bits of precision are not always rounded away before the variable is reused.

Even if vectorization is enabled by the - xK option, the compiler does not vectorize
reduction loops (loops computing the dot product) and loops with mixed precision
types. Similarly, the compiler does not enable certain loop transformations. For
example, the compiler does not transform reduction loops to perform partial
summation or loop interchange.

Targeting a Processor and Extensions

Support

This section describes targeting a processor and processor dispatch options, the feature for
IA-32 only. The options - t pp{ 5| 6] 7} optimizes for the IA-32 processors, and the options

-t ppl and - t pp2 optimize for the Itanium® processor family. The options
{i|M KW and-ax{i| M K| W provide support to generate code that is specific to
processor-instruction extensions. See the summary of options supporting Targeting a

Processor and Extensions Support.

-tpp{1] 2}

- t ppl—Itanium® processor
-t pp2—Itanium® 2 processor

-tpp{ 3] 6] 7}

- t pp5—Pentium® processor.
-t pp6—Pentium® Pro, Pentium® I, and
Pentium® Il

processors.
-t pp7—Pentium® 4 and Xeon(TM) processors.
Requires the RedHat* version 7.1 and support of
Streaming SIMD Extensions 2. Default

-x{i | MKW

Generates specialized code to run exclusively on
the processors supporting the extensions
indicated by the i , M K, Wcodes.

-ax{i |[M KW

Generates specialized code to run exclusively on
the processors supporting the extensions
indicated by the i , M K, Wcodes while also
generating generic IA-32 code.

For example, on Pentium® IIl processor, if you have mostly integer code and only a small
portion of floating-point code, you may want to compile with - axMrather than - axK
because MMX(TM) technology extensions perform the best with the integer data.

The - ax and - x options are backward compatible with the extensions supported. On Intel®

125

Intel® Fortran Compiler User's Guide

Pentium® 4 and Xeon processors, you can gear your code to any of the previous
processors specified by K, M or i .

Targeting a Processor, -t pp{ n}

The Intel® Fortran Compiler lets you choose whether to optimize the performance of your
application for specific processors or to ensure your application can execute on a range of
processors.

Optimizing for a Specific Processor Without Excluding Others

Use the - t pp{ n} option to optimize your application's performance for specific processors.
Regardless of which - t pp{ n} suboption you choose, your application is optimized to use
all the benefits of that processor with the resulting binary file still capable of running on any
of the processors listed.

To optimize for... Use...

Itanium® processor -t pp2 (Itanium-
based systems)

Itanium® 2 processor. -t pp2 (default for
Itanium-based
systems)

Pentium® processor and Pentium® -t ppS

processor with MMX(TM) technology
Pentium® Pro, Pentium® Il and Pentium® | -t pp6

[Il processors
Intel® Pentium® 4 and Xeon(TM) -t pp7 (default for IA-
processors 32 systems)

For example, the following commands compile and optimize the source program pr og. f
for the Pentium® 4 processor:

pronpt >i fc prog.f

pronpt>ifc -tpp7 prog.f

By default, the Itanium® compiler targets optimization to the Itanium 2 processor as
recommended for the best performance on Itanium® processor systems. The generated
code is compatible with the Intel® Itanium® 2 processor.

pronpt >efc prog.f

The above command targets optimization to the Itanium 2 processor. However if you intend
to target your application specifically to the Intel® Itanium® processor, use the -t ppl

option:

pronpt>efc -tppl prog.f

126

Intel® Fortran Compiler User's Guide

Exclusive Specialized Code with - x{i | M K| W

The - x{i | M K| W option specifies the minimum set of processor extensions required to
exist on processors on which you execute your program as follows:

i Pentium® Pro, Pentium Il processors

M Pentium® with MMX(TM) technology processor
K Pentium® Ill processor

W Pentium® 4 and Xeon(TM) processors.

The resulting code can contain unconditional use of the specified processor extensions.
When you use

-x{i | M K| W, the code generated by the compiler might not execute correctly on IA-32
processors that lack the specified extensions.

The following example compiles the program nypr og. f, using the i extension. This
means the program will require Pentium Pro, Pentium Il processors, and later architectures
to execute.

pronpt>ifc -Q2 -tpp6 -xi nyprog.f

The resulting program, my pr og, might not execute on a Pentium processor, but will execute
on Pentium® Pro, Pentium Il, and Pentium Il processors.

M\ caution

If a program compiled with - x{i | M K| W is executed on a processor that lacks the
specified extensions, it can fail with an illegal instruction exception, or display other
unexpected behavior.

- X Summary

To Optimize for... Use this option

Pentium Pro and Pentium Il processors, which | - Xi
use the CMOV and FCMOV, and FCOM

instructions

Pentium processors with MMX(TM) - XM
technology instructions

Pentium Ill processor with the Streaming - XK
SIMD Extensions, implies i and Minstructions
Pentium 4 and Xeon processors with the - XW

Streaming SIMD Extensions 2, implies i , M
and K instructions

You can specify more than one code with the - x option. For example, if you specify - X MK,
the compiler will decide whether the resulting executable will benefit better from the MMX
technology (M or the Streaming SIMD Extensions (K). It is the developer's responsibility to

127

Intel® Fortran Compiler User's Guide

use the option's version corresponding to the processor generation.

Specialized Code with -ax{i | M K| W

With - ax{i | M K| W you can instruct the compiler to compile your application so that
processor-specific extensions are included in the compilation but only used if the processor
supports them as follows:

i Pentium® Pro, Pentium® Il processors

M Pentium® with MMX™ technology processor
K Pentium® IIl processor

W Pentium® 4 and Xeon processors

When the compiled application is run, it detects the extensions supported by the processor.
o If the processor supports the specialized extensions, the extensions are executed.

o If the processor does not support the specialized code, the extensions are not
executed and a more generic version of the code is executed instead.

Applications compiled with - ax{i | M K| W have increased code size, but the performance
of such code is better than standard optimized code, although slightly slower than if
compiled with the - x{i | M K| W due to the latter's smaller overhead of checking for which
processor the application is being run on.

£ Note
Applications that you compile to optimize themselves for specific processors in this
way will execute on any Intel 32-bit processor. Such compilations are, however
subject to any exclusive specialized code restrictions you impose during compilation
with the -x option.

- ax Summary

To Optimize for... Use this
option
Pentium® Pro and Pentium Il - axi

processors, which use the CMOV and
FCMOV, and FCOM instructions

Pentium processors with MMX(TM) - axM
technology instructions
Pentium Ill processor with the -axK

Streaming SIMD Extensions, implies i
and Minstructions

Pentium 4 processor with the - axW
Streaming SIMD Extensions 2, implies
i, M and Kinstructions

128

Intel® Fortran Compiler User's Guide

Checking for Performance Gain

The - ax{i | M K| W option directs the compiler to find opportunities to generate special
versions of functions that use instructions supported on the specified processors. If the
compiler finds such an opportunity, it first estimates whether generating a processor -
specific version of a function results in a performance gain. If this is the case, the compiler
generates both a processor-specific version of a function and a generic version of this
function that will run on any IA-32 architecture processor.

You can specify more than one code with the - ax option. For example, if you specify -

ax MK, the compiler will decide whether the resulting executable will benefit better from the
MMX technology (M or the Streaming SIMD Extensions (K). At runtime, one of the two
versions is chosen to execute depending on the processor the program is currently running

on. In this way, the program can get large performance gains on more advanced
processors, while still working properly on older processors. It is the developer's
responsibility to use the option's version corresponding to the processor generation.

The disadvantages of using - ax{i | M K| W are:

e The size of the binary increases because it contains processor-specific and generic
versions of the code.

e The runtime checks to determine which code to run slightly affect performance.

Combining Processor Target and Dispatch Options

The following table shows how to combine processor target and dispatch options to compile
applications with different optimizations and exclusions.

Optimize ...while optimizing without exclusion for...

exclusively | pentium® | Pentium® | Pentium® | Pentium® | Pentium® | Penti

for... Processor | Processor | Pro [1 4, Xe
with MMX Processor | Processor | Processor | (TM)
(TM) Proce
technology

Pentium -t pp5 -t pp5 -t pp6 -t pp6 -t pp6 -t pp

Processor

Pentium N-A -t pp5, -t pp6 -t pp6, -t pp6, -t pp

Processor -xM - XM -xM - XM

with MMX

technology

Pentium N-A N-A -t pp6, -t pp6, -t pp6, -tpp

Pro - Xi - Xi - Xi - Xi

Processor

Pentium Il N-A N-A N-A -t pp6, -t ppé, -tpp

Processor -Xi M -xXi M -Xi M

129

Intel® Fortran Compiler User's Guide

Pentium Il N-A N-A N-A N-A -t pp6, -tpp
Processor - xK - XK

Pentium 4, N-A N-A N-A N-A N-A -tpp
Xeon - XW
Processors

Example of -x and -ax Combinations
If you wanted your application to
¢ always require the MMX technology extensions

e use Pentium Pro processor extensions when the processor it is run on offers it, and to
not use them when it does not

you could generate such an application with the following command line:

pronpt>ifc -02 -tpp6 -xM-xi nyprog.f

- xMabove restricts the application to running on Pentium processors with MMX technology
or later processors. If you wanted to enable the application to run on earlier generations of

Intel® 1A-32 processors as well, you would use the following command line:

pronpt>ifc -02 -tpp6 -axM nyprog.f

Interptocedural Optimizations

Use -i p and - i po to enable interprocedural optimizations (IPO), which enable the
compiler to analyze your code to determine where you can benefit from the optimizations
listed in tables that follow. See IPO options summary.

IA-32 and Itanium®-based applications

Optimization Affected Aspect of Program

inline function expansion calls, jumps, branches, and loops

interprocedural constant arguments, global variables, and

propagation return values

monitoring module-level further optimizations, loop

static variables invariant code

dead code elimination code size

propagation of function call deletion and call movement

characteristics

multifile optimization affects the same aspects as - i p,
but across multiple files

IA-32 applications only

130

Intel® Fortran Compiler User's Guide

Optimization Affected Aspect of Program

passing arguments in calls, register usage

registers

loop-invariant code motion further optimizations, loop invariant
code

Inline function expansion is one of the main optimizations performed by the interprocedural
optimizer. For function calls that the compiler believes are frequently executed, the compiler
might decide to replace the instructions of the call with code for the function itself.

With - i p, the compiler performs inline function expansion for calls to procedures defined
within the current source file. However, when you use - i po to specify multifile IPO, the
compiler performs inline function expansion for calls to procedures defined in separate files.

To disable the IPO optimizations, use the - Q0 option.

Multifile IPO

Multifile IPO obtains potential optimization information from individual program modules of a
multifile program. Using the information, the compiler performs optimizations across
modules.

Building a program is divided into two phases: compilation and linkage. Multifile [IPO
performs different work depending on whether the compilation, linkage or both are
performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (1 R) of
the source code in the object file, which includes summary information used for
optimization.

By default, the compiler produces "mock" object files during the compilation phase of
multifile IPO. Generating mock files instead of real object files reduces the time spent in the
multifile IPO compilation phase. Each mock object file contains the | Rfor its corresponding
source file, but no real code or data. These mock objects must be linked using the -i po
option in i f c/ef ¢ or using the xi | d tool. (See Creating a Multifile IPO Executable with
xild.)

Fl Note

Failure to link "mock" objects with i f c/ef ¢ and - i po or xi | d will result in linkage
errors. There are situations where mock object files cannot be used. See Compilation
with Real Object Files for more information.

Linkage Phase

131

Intel® Fortran Compiler User's Guide

When you specify - i po, the compiler is invoked a final time before the linker. The compiler
performs multifile IPO across all object files that have an IR.

£l Note

The compiler does not support multifile IPO for static libraries (. a files). See
Compilation with Real Object Files for more information.

- i po enables the driver and compiler to attempt detecting a whole program automatically.
If a whole program is detected, the interprocedural constant propagation, stack frame
alignment, data layout and padding of common blocks perform more efficiently, while more
dead functions get deleted. This option is safe.

Creating a Multifile IPO Executable with Command Line

Enable multifile IPO for compilations targeted for I1A-32 architecture and for compilations
targeted for Itanium® architecture as follows in the example below.

Compile your source files with - i po as follows:

Compile source files to produce object files:
pronpt>ifc -ipo -c a.f b.f c.f

Produces a. o, b. 0, and c. o object files containing Intel compiler intermediate
representation (I R) corresponding to the compiled source files a. f, b. f,and c. f. Using -
c to stop compilation after generating . o files is required. You can now optimize
interprocedurally.

Link object files to produce application executable:
pronpt>ifc -oipo file -ipo a.o b.o c.o

The i f c command performs IPO for objects containing | R and creates a new list of object
(s) to be linked. The i f c command calls GCC | d to link the specified object files and
produce i po_fi | e. exe specified by the - o option. Multifile IPO is applied only to the
source files that have an | R, otherwise the object file passes to link stage.

The - onane option stores the executable in i po_fi | e. Multifile IPO is applied only to the
source files that have an IR, otherwise the object file passes to link stage.

For efficiency, combine steps 1 and 2:

pronpt>ifc -ipo -oipo file a.f b.f c.f

For Itanium®-based applications, use the same steps with the ef ¢ command.
Instead of i f ¢ or ef ¢, you can use the xi | d tool.

For a description of how to use multifile IPO with profile information for further optimization,

132

Intel® Fortran Compiler User's Guide

see Example of Profile-Guided Optimization.

Creating a Multifile IPO Executable Using xi | d

Use the Intel® linker, xi | d, instead of step 2 in Creating a Multifile IPO Executable with
Command Line. The Intel linker xi | d performs the following steps:

1. Invokes the Intel compiler to perform multifile IPO if objects containing | R are found.
2. Invokes GCC | d to link the application.

The command-line syntax for xi | d is the same as that of the GCC linker:

pronmpt >xi | d [<options>] <LINK commandl i ne>

where:

e [<opti ons>] (optional) may include any GCC linker options or options supported
only by xi | d.

e <LI NK_commandl! i ne> is your linker command line containing a set of valid
arguments to the | d.

To place the multifile IPO executable in i po_fi | e, use the option - of i | enane, for
example:

pronpt>xild -oipo file a.o b.o c.o
xi | d calls Intel compiler to perform IPO for objects containing | Rand creates a new list of

object(s) to be linked. Then xi | d calls | d to link the object files that are specified in the
new list and produce i po_fi | e executable specified by the - of i | enamne option.

FJ Note

The - i po option can reorder object files and linker arguments on the command line.
Therefore, if your program relies on a precise order of arguments on the command
line, - i po can affect the behavior of your program.

Usage Rules
You must use the Intel linker xi | d to link your application if:

e Your source files were compiled with multifile IPO enabled. Multifile IPO is enabled by
specifying the - i po command-line option

e You normally would invoke the GCC linker (I d) to link your application.

133

Intel® Fortran Compiler User's Guide

The xi | d Options

The additional options supported by xi | d may be used to examine the results of multifile
IPO. These options are described in the following table.

-qipo_fa[file.s] Produces assembly listing for the multifile

IPO compilation. You may specify an
optional name for the listing file, or a
directory (with the backslash) in which to
place the file. The default listing name is
i po_out.s.

-qipo_fo[file.O] Produces object file for the multifile IPO

compilation. You may specify an optional
name for the object file, or a directory (with
the backslash) in which to place the file.
The default object file name is i po_out . o.

-i po_fcode-asm Add code bytes to assembly listing

-i po_fsource-asm Add high-level source code to assembly
listing

-i po_fsource-asm Enable and disable, respectively, inserting

-1 po_f noverbose-asm comments containing version and options

used in the assembly listing for xi | d.

Compilation with Real Object Files

In certain situations you might need to generate real object files with - i po. To force the
compiler to produce real object files instead of "mock" ones with IPO, you must specify -
i po_obj in addition to -1 po.

Use of - i po_obj is necessary under the following conditions:

The objects produced by the compilation phase of - i po will be placed in a static
library without the use of xi ar . The compiler does not support multifile IPO for static
libraries, so all static libraries are passed to the linker. Linking with a static library that
contains "mock" object files will result in linkage errors because the objects do not
contain real code or data. Specifying

-i po_obj causes the compiler to generate object files that can be used in static
libraries.

Alternatively, if you create the static library using xi ar , then the resulting static library
will work as a normal library.

The objects produced by the compilation phase of - i po might be linked without the -
i po option and without the use of xi ar .

You want to generate an assembly listing for each source file (using - S) while
compiling with - i po. If you use - i po with - S, but without - i po_obj , the compiler

134

Intel® Fortran Compiler User's Guide

issues a warning and an empty assembly file is produced for each compiled source
file.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar . Given a list of objects,
the library manager will insert the objects into a named library to be used in subsequent link
steps.

prompt >xi ar cru user.a a.obj b.obj

The above command creates a library named user . a that contains the a. o and b. o
objects.

If, however, the objects have been created using -i po - ¢, then the objects will not contain
a valid object but only the intermediate representation (I R) for that object file. For example:

pronpt>ifc -ipo -c a.f b.f

will produce a. o and b. o that only contains | Rto be used in a link time compilation. The
library manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xi | d - ar . This program will invoke the
compiler on the | R saved in the object file and generate a valid object that can be inserted
in a library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xi | d.

Analyzing the Effects of Multifile IPO, -i po_c,-i po_S

The -i po_c and -i po_S options are useful for analyzing the effects of multifile IPO, or
when experimenting with multifile IPO between modules that do not make up a complete
program.

Use the - i po_c option to optimize across files and produce an object file. This option
performs optimizations as described for - i po, but stops prior to the final link stage, leaving
an optimized object file. The default name for this file is i po_out . 0. You can use the - o
option to specify a different name. For example:

pronpt>ifc -tpp6 -ipo_c -ofilenanme a.f b.f c.f
Use the - i po_S option to optimize across files and produce an assembly file. This option
performs optimizations as described for - i po, but stops prior to the final link stage, leaving

an optimized assembly file. The default name for this file is i po_out . s. You can use the -
o option to specify a different name. For example:

135

Intel® Fortran Compiler User's Guide

pronpt>ifc -tpp6 -ipo_S -ofilenane a.f b.f c.f

For more information on inlining and the minimum inlining criteria, see Criteria for Inline
Function Expansion and Controlling Inline Expansion of User Functions.

Using - i p with - Qopt i on Specifiers

You can adjust the Intel® Fortran Compiler's optimization for a particular application by
experimenting with memory and interprocedural optimizations.

Enter the - Qopt i on option with the applicable keywords to select particular inline
expansions and loop optimizations. The option must be entered witha -i p or-i po
specification, as follows:

-i p[-Qoption,tool, opts]

where t ool is Fortran (f) and opt s are - Qopt i on specifiers (see below). Also refer to
Criteria for Inline Function Expansion to see how these specifiers may affect the inlining
heuristics of the compiler.

See Passing Options to Other Tools (-Qoption,tool,opts) for details about - Qopt i on.

- Qopt i on Specifiers

If you specify -ip or -ipo without any - Qopt i on qualification, the compiler
e expands functions in line
e propagates constant arguments
e passes arguments in registers

e monitors module-level static variables.

You can refine interprocedural optimizations by using the following - Qopt i on specifiers.

To have an effect, the - Qopt i on option must be entered with either -i p or -i po also
specified, as in this example:

-ip -Qoption,f,ip_specifier

wherei p_specifier is one of the -Qoption specifiers described in
the table that follows.

136

Intel® Fortran Compiler User's Guide

- Qopt i on Specifiers

-ip_args_in_regs=0

Disables the passing of arguments in
registers. By default, external
functions can pass arguments in
registers when called locally. Normally,
only static functions can pass
arguments in registers, provided the
address of the function is not taken
and the function does not use a
variable number of arguments.

-ip_ninl_max_stats=n

Sets the valid number of intermediate
language statements for a function
that is expanded in line. The number n
is a positive integer. The number of
intermediate language statements
usually exceeds the actual number of
source language statements. The
default value for n is 230.

-ip_ninl _mn_stats=n

Sets the valid min number of
intermediate language statements for
a function that is expanded in line. The
number n is a positive integer. The
default value for
ip_ninl_mn_statsis:

IA-32 compiler:
ip_ninl_mn_stats=7

Itanium® compiler:
ip_ninl_mn_stats =15

ip_ninl_max_total stats=n

Sets the maximum increase in size of
a function, measured in intermediate
language statements, due to inlining.
The number n is a positive integer.
The default value for n is 2000.

The following command activates procedural and interprocedural optimizations on source.f

and sets the maximum increase in the number of intermediate language statements to five

for each function:

pronpt>ifc -ip -Qoptionf,-ip_ninl_max_stats=5 source.f

Criteria for Inline Function Expansion

For a routine to be considered for inlining, it has to meet certain minimum criteria. There are
criteria to be met by the call-site, the caller, and the callee. The call-site is the site of the call
to the function that might be inlined. The caller is the function that contains the call-site. The
callee is the function being called that might be inlined.

137

Intel® Fortran Compiler User's Guide

Minimum call-site criteria:

e The number of actual arguments must match the number of formal arguments of the
callee.

e The number of return values must match the number of return values of the callee.
e The data types of the actual and formal arguments must be compatible.

o No multilingual inlining is permitted. Caller and callee must be written in the same
source language.

Minimum criteria for the caller:

o At most 2000 intermediate statements will be inlined into the caller from all the call -
sites being inlined into the caller. You can change this value by specifying the option

-Qoptionf,-ip_inline_mx_total stats=new val ue
e The function must be called if it is declared as static. Otherwise, it will be deleted.
Minimum criteria for the callee:
e Does not have variable argument list.
¢ Is not considered infrequent due to the name. Routines which contain the following
substrings in their names are not inlined: abort, al | oca, deni ed, err,exit,fail,
fatal ,fault,halt,init,interrupt,invalid,quit,rare,stop,tineout,

trace, trap, and war n.

¢ Is not considered unsafe for other reasons.

Selecting Routines for Inlining

Once these criteria are met, the compiler picks the routines whose inline expansions will
provide the greatest benefit to program performance. This is done using the default
heuristics. The inlining heuristics used by the compiler differ based on whether you use
profile-guided optimizations (- pr of _use) or not.

When you use profile-guided optimizations with - i p or - i po, the compiler uses the
following heuristics:

o The default heuristic focuses on the most frequently executed call sites, based on the
profile information gathered for the program.

o By default, the compiler does not inline functions with more than 230 intermediate

statements. You can change this value by specifying the option -
Qoption,f,/ip_ninl_mx_stats=new val ue.

138

Intel® Fortran Compiler User's Guide

e The default inline heuristic will stop inlining when direct recursion is detected.

o The default heuristic always inlines very small functions that meet the minimum inline

criteria.

Default for Itanium®-based applications: i p_ninl _mn_stats = 15.

Default for IA-32 applications: i p_ninl _mn_stats = 7.

These limits can be modified with the option - Qopti on, f, /i p_ni nl _m n_st at s=new

val ue. See

-Qoption Specifiers and Profile-Guided Optimization (PGO).

When you do not use profile-guided optimizations with -i p or - i po, the compiler uses

less aggressive inlining heuristics: it inlines a function if the inline expansion does not
increase the size of the final program.

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the

options shown in the following summary.

Option

Effect

-ip_no_inlining

This option is only useful if - i p or -

i po is also specified. In such case, -
i p_no_i nlini ng disables inlining
that would result from the -i p
interprocedural optimizations, but has
no effect on other interprocedural
optimizations.

-inline_debug info

Preserve the source position of
inlined code instead of assigning the
call-site source position to inlined
code.

IA-32 only: Disables partial inlining; can be used
-i p_no_pinlining if -i por-ipois also specified.
-h{0]| 1] 2} Controls the compiler's inline

expansion. The amount of inline
expansion performed varies as
follows:

- (bO0: disables inline expansion of
user-defined functions

- Ob1: disables inlining unless - i p or
- b2 is specified. Enables inlining of
functions.

139

Intel® Fortran Compiler User's Guide

- b2: Enables inlining of any
function. However, the compiler
decides which functions are inlined.
This option enables interprocedural
optimizations and has the same
effect as specifying the - i p option.

Inline Expansion of Library Functions

By default, the compiler automatically expands (inlines) a number of standard and math
library functions at the point of the call to that function, which usually results in faster
computation.

However, the inlined library functions do not set the er r no variable when being expanded
inline. In code that relies upon the setting of the er r no variable, you should use the -

nol i b_i nl i ne option. Also, if one of your functions has the same name as one of the
compiler-supplied library functions, then when this function is called, the compiler assumes
that the call is to the library function and replaces the call with an inlined version of the
library function.

So, if the program defines a function with the same name as one of the known library
routines, you must use the - nol i b_i nl i ne option to ensure that the user-supplied
function is used.

-nol i b_i nl i ne disables inlining of all intrinsics.

Your results can vary slightly using the preceding optimizations.

f) Note

Automatic inline expansion of library functions is not related to the inline expansion
that the compiler does during interprocedural optimizations. For example, the
following command compiles the program sum f without expanding the math library
functions:

IA-32 applications:

prompt>ifc -ip -nolib_inline sumf

[tanium®-based applications:

prompt >efc -ip -nolib_inline sumf

For information on the Intel-provided intrinsic functions, see Additional Intrinsic Functions in
the Reference section.

Profile-guided Optimizations

140

Intel® Fortran Compiler User's Guide

Profile-guided optimizations (PGO) tell the compiler which areas of an application are most
frequently executed. By knowing these areas, the compiler is able to be more selective and
specific in optimizing the application. For example, the use of PGO often enables the
compiler to make better decisions about function inlining, thereby increasing the
effectiveness of interprocedural optimizations. See PGO Options summary.

Instrumented Program

Profile-guided Optimization creates an instrumented program from your source code and
special code from the compiler. Each time this instrumented code is executed, the
instrumented program generates a dynamic information file. When you compile a second
time, the dynamic information files are merged into a summary file. Using the profile
information in this file, the compiler attempts to optimize the execution of the most heavily
travelled paths in the program.

Unlike other optimizations such as those strictly for size or speed, the results of IPO and
PGO vary. This is due to each program having a different profile and different opportunities
for optimizations. The guidelines provided help you determine if you can benefit by using

IPO and PGO. You need to understanding the principles of the optimizations and the
unique aspects of your source code.

Added Performance with PGO
In this version of the Intel® Fortran Compiler, PGO is improved in the following ways:
o Register allocation uses the profile information to optimize the location of spill code.
¢ For indirect function calls, branch prediction is improved by identifying the most likely
targets. With the Pentium® 4 and Xeon(TM) processors' longer pipeline, improving

branch prediction translates into high performance gains.

e The compiler detects and does not vectorize loops that execute only a small number
of iterations, reducing the run time overhead that vectorization might otherwise add.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to
predict at compile time. An example is the code with intensive error-checking in which the
error conditions are false most of the time. The "cold" error-handling code can be placed

such that the branch is hardly ever mispredicted. Minimizing "cold" code interleaved into the
"hot" code improves instruction cache behavior.

PGO Phases
The PGO methodology requires three phases:

1. Instrumentation compilation and linking with - pr of _gen

141

Intel® Fortran Compiler User's Guide

2. Instrumented execution by running the executable; as a result, the dynamic-information
files (. dyn) are produced.

3. Feedback compilation with - pr of _use

The flowcharts below illustrate this process for IA-32 compilation and Itanium®-based
compilation. A key factor in deciding whether you want to use PGO lies in knowing which
sections of your code are the most heavily used. If the data set provided to your program is
very consistent and it elicits a similar behavior on every execution, then PGO can probably
help optimize your program execution. However, different data sets can elicit different
algorithms to be called. This can cause the behavior of your program to vary from one
execution to the next.

IA-32 Phases of Basic Profile-Guided Optimization

S e

1. Inetrumented Compilation: w| Ottput exscutabls files with

ife -praf_gen a.f instrumertad code:

A.out

P
1 Cutput dynamic information
2. Inzirumented Exscution; files with unique namse for
a.aue ¥ gach exscution:

8 hex digite. dyn

A N
3. Feadback Compilation: o | Creates and uses merged
ife -praf use -my epticn a.f T\ dynamic information
gummary fila:
pgopti.dpi

Prefile-Guided
Crptimized Code

Phases of Basic Profile-Guided Optimization for Itanium®-based applications

142

Intel® Fortran Compiler User's Guide

P
1. Inetrumented Comipilation: w| Cuiput executable files with
efe -praf gen a.f instrumented code;
a.out

A
¥ Cutput dymamic information
7 |nefrumanted Exacution: files with unique namss for

. | gach exscution:
d.alL

8 hex digits.dyn

A N
1. Feedback Compilation: o | Creates and uses menged
efe -prof use -my optien a.f ™| dynamic information
gurnrmary file:

pgopti.dpi

Profile-Guided
Ciptirmized Code

Basic PGO Options

The options used for basic PGO optimizations are:

e -prof _gen[x] for generating instrumented code

e - prof _use for generating a profile-optimized executable
In cases where your code behavior differs greatly between executions, you have to ensure
that the benefit of the profile information is worth the effort required to maintain up-to-date

profiles. In the basic profile-guided optimization, the following options are used in the
phases of the PGO:

Generating Instrumented Code, - prof _gen[x]

The - pr of _gen[x] option instruments the program for profiling to get the execution count

Af AnAlh hania WlAAL 1+ ia vicnAad inh nhacnAa 1 AfF thaAa DN A nAtriiar thAa AAarnanidlAar A rvAaAdT AR

143

Intel® Fortran Compiler User's Guide

Ul €aull vadsIiv UIUUA. 1L 1D UdTU 11l PIHadt 1L Ul UIT F'Oouv W ininuuctL uic vulliplic! w pruuuvce
instrumented code in your object files in preparation for instrumented execution. Parallel
make is automatically supported for - pr of _genx compilations.

Generating a Profile-optimized Executable, - prof _use

The - pr of _use option is used in phase 3 of the PGO to instruct the compiler to produce a
profile-optimized executable and merges available dynamic-information (. dyn) files into a
pgopti . dpi file.

f) Note:

The dynamic-information files are produced in phase 2 when you run the
instrumented executable.

If you perform multiple executions of the instrumented program, - pr of _use merges the
dynamic-information files again and overwrites the previous pgopti . dpi file.

Disabling Function Splitting, - f nspl i t- (Itanium® Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by - pr of _use in
phase 3 to improve code locality by splitting routines into different sections: one section to
contain the cold or very infrequently executed code and one section to contain the rest of
the code (hot code).

You can use - f nspl i t - to disable function splitting for the following reasons:

e Most importantly, to get improved debugging capability. In the debug symbol table, it
is difficult to represent a split routine, that is, a routine with some of its code in the hot
code section and some of its code in the cold code section.

The -f nspl i t - option disables the splitting within a routine but enables function
grouping, an optimization in which entire routines are placed either in the cold code
section or the hot code section. Function grouping does not degrade debugging
capability.

e Another reason can arise when the profile data does not represent the actual program
behavior, that is, when the routine is actually used frequently rather than infrequently.

f) Note

For Itanium®-based applications, if you intend to use the - pr of _use option with
optimizations at the - O3 level, the - O3 option must be on. If you intend to use the -
pr of _use option with optimizations at the - Q2 level or lower, you can generate the
profile data with the default options.

See an example of using PGO.

144

Intel® Fortran Compiler User's Guide

AUvdliteu FouvU UpLulils
The options controlling advanced PGO optimizations are:
e -prof _dirdirnane
e -prof _filefilenane.
Specifying the Directory for Dynamic Information Files
Use the - pr of _di rdi r nane option to specify the directory in which you intend to place
the dynamic information (. dyn) files to be created. The default is the directory where the
program is compiled. The specified directory must already exist.
You should specify - pr of _di r di r nanme option with the same directory name for both the

instrumentation and feedback compilations. If you move the . dyn files, you need to specify
the new path.

Specifying Profiling Summary File
The - prof _fil efil enane option specifies file name for profiling summary file.
Guidelines for Using Advanced PGO
When you use PGO, consider the following guidelines:
e Minimize the changes to your program after instrumented execution and before

feedback compilation. During feedback compilation, the compiler ignores dynamic
information for functions modified after that information was generated.

f) Note

The compiler issues a warning that the dynamic information does not correspond to a
modified function.

o Repeat the instrumentation compilation if you make many changes to your source
files after execution and before feedback compilation.

o Specify the name of the profile summary file using the - prof _fil efil enanme option

See PGO Environment Variables.

PGO Environment Variables

The environment variables determine the directory in which to store dynamic information
files or whether to overwrite pgopt i . dpi . Refer to your operating system documentation
for instructions on how to specify environment variables and their values.

145

Intel® Fortran Compiler User's Guide

The PGO environment variables are described in the table below.

Variable

Description

PROF_DI R

Specifies the directory in which dynamic information
files are created. This variable applies to all three
phases of the profiling process.

PROF_DUMP_| NTERVAL

Initiates interval profile dumping in an instrumented
user application.

PROF_NO_CLOBBER

Alters the feedback compilation phase slightly. By
default, during the feedback compilation phase, the
compiler merges the data from all dynamic information
files and creates a new pgopti . dpi file, even if one
already exists. When this variable is set, the compiler
does not overwrite the existing pgopti . dpi file.
Instead, the compiler issues a warning and you must
remove the pgopti . dpi file if you want to use
additional dynamic information files.

See also the documentation for your operating system for instructions on how to specify

environment variables.

Example of Profile-Guided Optimization

The following is an example of the basic PGO phases:

1. Instrumentation Compilation and Linking—Use - pr of _gen to produce an
executable with instrumented information. Use also the - pr of _di r option as

recommended for most programs, especially if the application includes the source files

located in multiple directories. - pr of _di r ensures that the profile information is generated
in one consistent place. For example:

IA-32 applications:

pronpt>ifc -prof_gen -prof _dir/usr/profdata -c al.f a2.f a3.f

prompt>ifc al.o a2.0 a3.o0

[tanium®-based applications:

pronpt >efc -prof _gen -prof _dir/usr/profdata -c al.f a2.f a3.f

prompt >efc al.o a2.0 a3.o0

In place of the second command, you could use the linker (I d) directly to produce the
instrumented program. If you do this, make sure you link with the | i bi r c. a library.

2. Instrumented Execution—Run your instrumented program with a representative set of

146

Intel® Fortran Compiler User's Guide

garta 1o create a aynamic informaton Tie.

pronpt >al
The resulting dynamic information file has a unique name and . dyn suffix every time you
run al. The instrumented file helps predict how the program runs with a particular set of

data. You can run the program more than once with different input data.

3. Feedback Compilation—Compile and link the source files with - pr of _use to use the
dynamic information to optimize your program according to its profile:

IA-32 applications:
pronpt>ifc -prof _use -ipo al.f a2.f a3.f
Itanium-based applications:
pronpt >efc -prof _use -ipo al.f a2.f a3.f
Besides the optimization, the compiler produces a pgopti . dpi file. You typically specify

the default optimizations (- Q2) for phase 1, and specify more advanced optimizations (- i p
or - i po) for phase 3. This example used - Q2 in phase 1 and the - i po in phase 3.

Fl Note

The compiler ignores the - i p or the - i po options with - pr of _gen.

See Basic PGO Options.

Merging the .dyn Files
To merge the . dyn files, use the pr of ner ge utility.
The pr of nmer ge Utility

The compiler executes pr of ner ge automatically during the feedback compilation phase
when you specify - pr of _use.

The command-line usage for pr of nmer ge is as follows:

IA-32 applications:

pr onpt >pr of merge [-nol ogo] [-prof_dirdirnane]
ltanium®-based applications:

pr onpt >pr of nerge -em -p64 [-nol ogo] [-prof_dirdirnane]

where - nraof di rdi r nane i a nr of ner ne itilitv antion

147

Intel® Fortran Compiler User's Guide

e~ Mo~ R T el - Rl halll S A AT T

This merges all . dyn files in the current directory or the directory specified by - pr of _di r,
and produces the summary file pgopti . dpi .

The - prof _fil efil ename option enables you to specify the name of the . dpi file.
The command-line usage for pr of mer ge with - prof _fil ef i | enamne is as follows:
IA-32 applications:

pronpt >prof merge [-nol ogo] [-prof filefil enane]

Itanium -based applications:

pronpt >prof merge -em -p64 [-nol ogo] [-prof filefilenane]

where / prof _fil efil enane is a prof nmer ge utility option.

Dumping Profile Data

This subsection provides an example of how to call the C PGO API routines from Fortran.
For complete description of the PGO API support routines, see PGO API: Profile
Information Generation Support.

As part of the instrumented execution phase of profile -guided optimization, the
instrumented program writes profile data to the dynamic information file (. dyn file). The file
is written after the instrumented program returns normally from mai n() or calls the
standard exit function. Programs that do not terminate normally, can use the

PGOPTI _Pr of _Dunp function. During the instrumentation compilation
(- pr of _gen) you can add a call to this function to your program. Here is an example:

| NTERFACE
SUBROUTI NE PGOPTI _PROF_DUMP()

| MS$ATTRI BUTES

C, ALI AS: ' PGOPTI _Prof _Dunp' : : PGOPTI _PROF_DUMP
END SUBROUTI NE

END | NTERFACE

CALL PGOPTI _PROF_DUMP()

Fl Note

You must remove the call or comment it out prior to the feedback compilation with -
prof use.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file for each routine to look up the profile
summary information associated with that routine. By default, this prevents you from:

148

Intel® Fortran Compiler User's Guide

¢ Using the profile summary file (. dpi) if you move your application sources.

e Sharing the profile summary file with another user who is building identical application
sources that are located in a different directory.

Source Relocation

To enable the movement of application sources, as well as the sharing of profile summary
files, use the pr of mer ge with - src_ol d and - sr c_new options. For example:

IA-32 Compiler:
pronpt >prof merge -prof _dir c:/work -src_old c:/work/sources -
src_new d:/project/src

Itanium Compiler:
pronpt >prof merge -em -p64 -prof _dir c:/work
-src_old c:/work/sources -src_new d:/project/src

The above command will read the c: / wor k/ pgopti . dpi file. For each routine
represented in the pgopti . dpi file, whose source path begins with the

c: / wor k/ sour ces prefix, pr of mer ge replaces that prefix with d: / pr oj ect/ src. The
c:/wor k/ pgopti . dpi fileis updated with the new source path information.

F] Notes

e You can execute profmerge more than once on a given pgopti.dpi file. You may need
to do this if the source files are located in multiple directories. For example:

profmerge -src_old "c:/programfiles" -src_new "e:/program
files”

profmerge -src_old c:/proj/application -src_new d:/app

¢ In the values specified for - src_ol d and - sr c_new, uppercase and lowercase
characters are treated as identical. Likewise, forward slash (/) and backward slash
(\) characters are treated as identical.

o Because the source relocation feature of pr of mer ge modifies the pgopt i . dpi file,

you may wish to make a backup copy of the file prior to performing the source
relocation.

PGO API Support

The Profile Information Generation Support (Profile IGS) enables you to control the
generation of profile information during the instrumented execution phase of profile-guided
optimizations.

149

Intel® Fortran Compiler User's Guide

Normally, profile information is generated by an instrumented application when it terminates
by calling the standard exi t () function.

To ensure that profile information is generated, the functions described in this section may
be necessary or useful in the following situations:

¢ The instrumented application exits using a non-standard exit routine.
e The instrumented application is a non-terminating application: exi t () is never called.
e The application requires control of when the profile information is generated.

A set of functions and an environment variable comprise the Profile IGS.

The Profile IGS Functions

The Profile IGS functions are available to your application by inserting a header file at the
top of any source file where the functions may be used.

#i ncl ude "pgouser. h"

FJ Note

The Profile IGS functions are written in C language. Fortran applications need to call
C functions.

The rest of the topics in this section describe the Profile IGS functions.

FJ Note

Without instrumentation, the Profile IGS functions cannot provide PGO API support.

The Profile IGS Environment Variable
The environment variable for Profile IGS is PROF_DUMP_| NTERVAL. This environment
variable may be used to initiate Interval Profile Dumping in an instrumented user

application. See the recommended usage of _PGOPTI _Set | nterval Prof Dunp()
for more information.

Dumping Profile Information

The PGOPTI _Prof _Dunp() function dumps the profile information collected by the
instrumented application and has the following prototype:

voi d _PGOPTI _Prof _Dunp(void);

The profile information is generated in a . dyn file (generated in phase 2 of the PGO).

150

Intel® Fortran Compiler User's Guide

Recommended usage

Insert a single call to this function in the body of the function which terminates the user
application. Normally, _PGOPTI _Pr of _Dunp() should be called just once.

It is also possible to use this function in conjunction with the _PGOPTI _Pr of _Reset ()
function to generate multiple . dyn files (presumably from multiple sets of input data).

Example

/* selectively collect profile

i nformation

for the portion of the application
i nvolved in processing input data
*/

i nput _data = get i nput_data();
while (input_data) {
_PGOPTI _Prof Reset();
process_dat a(i nput data);
_PGOPTI _Prof _Dunp();

i nput _data = get _input_data();

}

Resetting the Dynamic Profile Counters

The PGOPTI _Prof Reset () function resets the dynamic profile counters and has the
following prototype:

void PGOPTI _Prof Reset(void);
Recommended usage

Use this function to clear the profile counters prior to collecting profile information on a
section of the instrumented application. See the example under _PGOPTI _Pr of _Dunp() .

Dumping and Resetting Profile Information

The PGOPTI _Prof _Dunp_And_Reset () function dumps the profile information to a

new . dyn file and then resets the dynamic profile counters. Then the execution of the
instrumented application continues. The prototype of this function is:

void _PGOPTI _Prof Dunp_And_Reset (void);

This function is used in non-terminating applications and may be called more than once.
Recommended usage

Periodic calls to this function enables a non-terminating application to generate one or more

profile information files (. dyn files). These files are merged during the feedback phase
(nhase 3) of profile-auided ontimizations. The direct use of this function enables vour

151

Intel® Fortran Compiler User's Guide

épplicatién to control precisély when the profile information is generated.

Interval Profile Dumping

The PGOPTI _Set Interval Prof Dunp() function activates Interval Profile Dumping
and sets the approximate frequency at which dumps occur. The prototype of the function
call is:

void _PGOPTI _Set Interval _Prof _Dunp(int interval);
This function is used in non-terminating applications.

The i nt er val parameter specifies the time interval at which profile dumping occurs and is
measured in milliseconds. For example, if interval is set to 5000, then a profile dump and
reset will occur approximately every 5 seconds. The interval is approximate because the
time-check controlling the dump and reset is only performed upon entry to any instrumented
function in your application.

£J Note
1. Setting interval to zero or a negative number will disable interval profile dumping.

2. Setting a very small value for interval may cause the instrumented application to
spend nearly all of its time dumping profile information. Be sure to set interval to a
large enough value so that the application can perform actual work and substantial
profile information is collected.

Recommended usage

This function may be called at the start of a non-terminating user application, to initiate
Interval Profile Dumping. Note that an alternative method of initiating Interval Profile
Dumping is by setting the environment variable, PROF_DUMP_| NTERVAL, to the desired
interval value prior to starting the application.

The intention of Interval Profile Dumping is to allow a non-terminating application to be
profiled with minimal changes to the application source code.

High-level Language Optimizations (HLO)

High-level optimizations exploit the properties of source code constructs (for example, loops
and arrays) in the applications developed in high-level programming languages, such as
Fortran and C++. The high-level optimizations include loop interchange, loop fusion, loop
unrolling, loop distribution, unroll-and-jam, blocking, data prefetch, scalar replacement, data
layout optimizations and loop unrolling techniques.

The option that turns on the high-level optimizations is - O3. See high-level language
options summary. The scope of optimizations turned on by - O3 is different for IA-32 and

152

Intel® Fortran Compiler User's Guide

Itanium®-based applications. See Setting Optimization Levels.

IA-32 and Itanium®-based applications

-3 Enable - O2 option plus more aggressive
optimizations, for example, loop transformation
and prefetching. - O3 optimizes for maximum
speed, but may not improve performance for
some programs.

IA-32 applications

-3 In addition, in conjunction with the vectorization
options, - ax{M K| W and - x{M K| W, - 3
causes the compiler to perform more aggressive
data dependency analysis than for - Q2. This
may result in longer compilation times.

Loop Transformations

All these transformations are supported by data dependence. These techniques also
include induction variable elimination, constant propagation, copy propagation, forward
substitution, and dead code elimination. The loop transformation techniques include:

loop normalization

loop reversal

loop interchange and permutation

loop skewing

loop distribution

e loop fusion

e scalar replacement
These techniques also include induction variable elimination, constant propagation, copy
propagation, forward substitution, and dead code elimination. In addition to the loop

transformations listed for both 1A-32 and Itanium® architectures above, the Itanium
architecture enables to implement collapsing techniques.

Scalar Replacement (IA-32 Only)

The goal of scalar replacement is to reduce memory references. This is done mainly by
replacing array references with register references.

While the compiler replaces some array references with register references when - OL or -
(P ig canecified maore anares<ive renlacement i nerfarmed when - MR (-« al ar ren)isg

153

Intel® Fortran Compiler User's Guide

e e ey i g ot = e st s v et an s i eey wC oy e

specified. For example, with - O3 the compiler attempts replacement when there are loop-
carried dependences or when data-dependence analysis is required for memory
disambiguation.

-scal ar_rep[-] Enables (default) or disables scalar replacement
performed during loop transformations (requires -
).

Loop Unrolling with -unrol | [n]
The - unr ol | [n] option is used in the following way:

e -unr ol | nspecifies the maximum number of times you want to unroll a loop. The
following example unrolls a loop at most four times:

pronmpt>ifc -unroll4 a.f
To disable loop unrolling, specify n as 0. The following example disables loop unrolling:
pronmpt>ifc -unroll 0 a.f

e -unrol | (n omitted) lets the compiler decide whether to perform unrolling or not.

e -unrol | 0 (n =0) disables unroller.

Itanium® compiler currently uses only n = 0; any other value is NOP.

Benefits and Limitations of Loop Unrolling

The benefits are:
¢ Unrolling eliminates branches and some of the code.

o Unrolling enables you to aggressively schedule (or pipeline) the loop to hide latencies
if you have enough free registers to keep variables live.

e The Pentium® 4 or Xeon(TM) processors can correctly predict the exit branch for an
inner loop that has 16 or fewer iterations, if that number of iterations is predictable
and there are no conditional branches in the loop. Therefore, if the loop body size is
not excessive, and the probable number of iterations is known, unroll inner loops for:
- Pentium 4 or Xeon processor, until they have a maximum of 16 iterations
- Pentium 11l or Pentium Il processors, until they have a maximum of 4 iterations

The potential costs are:

154

Intel® Fortran Compiler User's Guide

e Excessive unrolling, or unrolling of very large loops can lead to increased code size.

o If the number of iterations of the unrolled loop is 16 or less, the branch predictor
should be able to correctly predict branches in the loop body that alternate direction.

For more information on how to optimize with - unr ol | [n], refer to Intel® Pentium® 4 and
Intel® Xeon(TM) Processor Optimization Reference Manual.

Memory Dependency with IVDEP Directive

The -i vdep_par al | el option discussed below is used for Itanium®-based applications
only.

The -i vdep_par al | el option indicates there is absolutely no loop-carried memory
dependency in the loop where | VDEP directive is specified. This technique is useful for
some sparse matrix applications.

For example, the following loop requires - i vdep_par al | el in addition to the directive
| VDEP to indicate there is no loop-carried dependencies.

I DI R$I VDEP

do i=1,n
e(ix(2,i))=e(ix(2,i))+1.0
e(ix(3,i))=e(ix(3,i))+2.0
enddo

The following example shows that using this option and the | VDEP directive ensures there
is no loop-carried dependency for the store into a() .

I DI R$I VDEP

do i=1,n

a(b(j)) = a(b(j))+1
enddo

See | VDEP directive for 1A-32 applications.

Prefetching

The goal of - pr ef et ch insertion is to reduce cache misses by providing hints to the
processor about when data should be loaded into the cache. The prefetching optimizations
implement the following options:

-prefetch[-] Enable or disable (- pr ef et ch-)
prefetch insertion. This option requires
that - O3 be specified. The default with -
B is - prefetch.

155

Intel® Fortran Compiler User's Guide

To facilitate compiler optimization:
e Minimize use of global variables and pointers.
e Minimize use of complex control flow.
e Use the const modifier, avoid r egi st er modifier.
e Choose data types carefully and avoid type casting.

For more information on how to optimize with - pref et ch[-], refer to Intel® Pentium® 4
and Intel® Xeon(TM) Processor Optimization Reference Manual.

Parallelization

For shared memory parallel programming, the Intel® Fortran Compiler supports both the
OpenMP* API and an automatic parallelization capability.

The compiler supports the OpenMP Fortran version 2.0 API specification and provides
symmetric multiprocessing (SMP), which relieves the user from having to deal with the low-
level details of iteration space partitioning, data sharing, and thread scheduling and
synchronization; it also provides the performance gain from shared memory, multiprocessor
systems.

The auto-parallelization feature of the Intel Fortran Compiler automatically translates serial
portions of the input program into equivalent multithreaded code. Automatic parallelization
determines the loops that are good worksharing candidates, performs the dataflow analysis
to verify correct parallel execution, and partitions the data for threaded code generation as
is needed in programming with OpenMP directives.

The following table lists the options that perform OpenMP and auto -parallelization support.

Option Description

- opennp Enables the parallelizer to generate
multithreaded code based on the OpenMP
directives. Default: OFF.
-opennp_report{0| 1| 2} Controls the OpenMP parallelizer's
diagnostic levels. Default: -
opennp_report1l.

- opennp_st ubs Enables compilation of OpenMP programs
in sequential mode. The OpenMP
directives are ignored and a stub OpenMP
library is linked. Default: OFF.

- paral | el Enables the auto-parallelizer to generate
multithreaded code for loops that can be
safely executed in parallel. Default: OFF.
-par threshol d{ n} Sets a threshold for the auto-

156

Intel® Fortran Compiler User's Guide

parallelization of loops based on the
probability of profitable execution of the
loop in parallel, n=0 to 100. n=0 implies
"always." Default: n=75.

- par _repor t{0] 1] 2| 3} Controls the auto-parallelizer's diagnostic
levels.
Default: - par _report 1.

£ Note

When both - opennp and - par al | el are specified on the command line, the -
par al | el option is only honored in routines that do not contain OpenMP directives.
For routines that contain OpenMP directives, only the - opennp option is honored.

Important component of the parallelization programming is the Intel Fortran Compiler's
vectorizer. The vectorizer detects operations in the program that can be done in parallel,
and then converts the sequential program to process 2, 4, 8 or up to 16 elements in one
operation, depending on the data type. In some cases auto-parallelization and vectorization
can be combined for better performance results.

Parallelization with OpenMP*

The Intel® Fortran Compiler supports the OpenMP* Fortran version 2.0 API specification.
OpenMP provides symmetric multiprocessing (SMP) with the following major features:

¢ Relieves the user from having to deal with the low-level details of iteration space
partitioning, data sharing, and thread scheduling and synchronization.

o Provides the benefit of the performance available from shared memory,
multiprocessor systems.

The Intel Fortran Compiler performs transformations to generate multithreaded code based
on the user's placement of OpenMP directives in the source program making it easy to add
threading to existing software. The Intel compiler supports all of the current industry -
standard OpenMP directives, except wor kshar e, and compiles parallel programs
annotated with OpenMP directives.

In addition, the Intel Fortran Compiler provides Intel-specific extensions to the OpenMP
Fortran version 2.0 specification including runtime library routines and environment
variables.

£J Note

As with many advanced features of compilers, you must properly understand the
functionality of the OpenMP directives in order to use them effectively and avoid
unwanted program behavior.

See parallelization options summary for all options of the OpenMP feature in the Intel

157

Intel® Fortran Compiler User's Guide

Fortran Compiler. For complete information on the OpenMP standard, visit the
www.openmp.org web site. For complete Fortran language specifications, see the OpenMP
Fortran version 2.0 specifications.

Parallel Processing with OpenMP

To compile with OpenMP, you need to prepare your program by annotating the code with
OpenMP directives in the form of the Fortran program comments. The Intel Fortran
Compiler first processes the application and produces a multithreaded version of the code
which is then compiled. The output is a Fortran executable with the parallelism
implemented by threads that execute parallel regions or constructs. See Programming with

OpenMP.

Performance Analysis

For performance analysis of your program, you can use the VTune(TM) analyzer to show
performance information. You can obtain detailed information about which portions of the
code that require the largest amount of time to execute and where parallel performance
problems are located.

Programming with OpenMP

The Intel® Fortran Compiler accepts a Fortran program containing OpenMP directives as
input and produces a multithreaded version of the code. When the parallel program begins
execution, a single thread exists. This thread is called the master thread. The master thread
will continue to process serially until it encounters a parallel region.

Parallel Region and Constructs

A parallel region is a block of code that must be executed by a team of threads in parallel.
In the OpenMP Fortran API, a parallel construct is defined by placing OpenMP directives
par al | el atthe beginning and end par al | el atthe end of the code segment. Code
segments thus bounded can be executed in parallel.

A structured block of code is a collection of one or more executable statements with a
single point of entry at the top and a single point of exit at the bottom.

The Intel Fortran Compiler supports worksharing and synchronization constructs. Each of
these constructs consists of one or two specific OpenMP directives and sometimes the
enclosed or following structured block of code. For complete definitions of constructs, see
the OpenMP Fortran version 2.0 specifications.

At the end of the parallel region, threads wait until all team members have arrived. The
team is logically disbanded (but may be reused in the next parallel region), and the master
thread continues serial execution until it encounters the next parallel region.

Worksharing Construct

158

Intel® Fortran Compiler User's Guide

A worksharing construct divides the execution of the enclosed code region among the
members of the team created on entering the enclosing parallel region. When the master
thread enters a parallel region, a team of threads is formed. Starting from the beginning of
the parallel region, code is replicated (executed by all team members) until a

wor kshar i ng construct is encountered. A worksharing construct divides the execution of
the enclosed code among the members of the team that encounter it.

The OpenMP sect i ons or do constructs are defined as wor kshar i ng constructs
because they distribute the enclosed work among the threads of the current team. A

wor kshar i ng construct is only distributed if it is encountered during dynamic execution of
a parallel region. If the wor kshar i ng construct occurs lexically inside of the parallel region,
then it is always executed by distributing the work among the team members. If the

wor kshar i ng construct is not lexically (explicitly) enclosed by a parallel region (that is, it is
or phaned), then the wor kshar i ng construct will be distributed among the team members
of the closest dynamically-enclosing parallel region, if one exists. Otherwise, it will be
executed serially.

When a thread reaches the end of a wor kshar i ng construct, it may wait until all team
members within that construct have completed their work. When all of the work defined by

the worksharing construct is finished, the team exits the worksharing construct and
continues executing the code that follows.

Parallel Processing Directive Groups
The parallel processing directives include the following groups:
Worksharing
e The do and end do directives specify parallel execution of loop iterations.

e The sect i ons directive specifies parallel execution for arbitrary blocks of sequential
code. Each sect i on is executed once by a thread in the team.

e The si ngl e directive defines a section of code where exactly one thread is allowed
to execute the code; threads not chosen to execute this section ignore the code.

Synchronization and mast er

Synchronization is the interthread communication that ensures the consistency of shared
data and coordinates parallel execution among threads. Shared data is consistent within a
team of threads when all threads obtain the identical value when the data is accessed. A
synchronization construct is used to insure this consistency of the shared data.

e The OpenMP synchronization directives are cri ti cal , ordered, at om c, f| ush,
and barri er.

o Within a narallel reaion or a wnr kshar i na constriiet onlv one thread at a time is

159

Intel® Fortran Compiler User's Guide

- e R I L R L I R R I Bt lD 2ttt it

aIIowed to execute the code Wlthln acri t i cal construct

e The or der ed directive is used in conjunction with a do or sect i ons construct to
impose a serial order on the execution of a section of code.

e The at om c directive is used to update a memory location in an uninterruptable
fashion.

e The f | ush directive is used to insure that all threads in a team have a consistent
view of memory.

e Abarri er directive forces all team members to gather at a particular point in code.
Each team member that executes a bar ri er waits at the bar ri er until all of the
team members have arrived. A barri er cannot be used within wor kshar i ng or
other synchronization constructs due to the potential for deadlock.

e The mast er directive is used to force execution by the master thread.

See the list of OpenMP Directives and Clauses.

Data Sharing

Data sharing is specified at the start of a parallel region or wor kshar i ng construct by
using the shar ed and pri vat e clauses. All variables in the shar ed clause are shared
among the members of a team. It is the application’s responsibility to:

e synchronize access to these variables. All variables in the pri vat e clause are private
to each team member. For the entire parallel region, assuming t team members,
there are t +1 copies of all the variables in the pri vat e clause: one global copy that
is active outside parallel regions and a pri vat e copy for each team member.

e initialize pri vat e variables at the start of a parallel region, unless the
firstprivate clause is specified. In this case, the pri vat e copy is initialized from
the global copy at the start of the construct at which the fi r st pri vat e clause is
specified.

e update the global copy of a pri vat e variable at the end of a parallel region.
However, the | ast pri vat e clause of a DOdirective enables updating the global
copy from the team member that executed serially the last iteration of the loop.

In addition to shar ed and pr i vat e variables, individual variables and entire conmron
blocks can be privatized using the t hr eadpr i vat e directive.

Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. Orphaning is a situation when directives related to a

narallal raninn ara nAat ramiiirad tA Acnnnir lavieaalhvyr wnthin A cinAala AraAararm 11nit Nirantivine

160

Intel® Fortran Compiler User's Guide

[JGI alicl ICQIUII aic 11uL ICL1UIICU VU ULvuLuli |C/\|\.,a||y vviLlL i a DIIIUIC IJIUQIG.III UlliL. IITULLUVCTO
suchascritical,barrier,sections,single, nmaster, and do, can occur by
themselves in a program unit, dynamically “binding” to the enclosing parallel region at run
time.

Orphaned directives enable parallelism to be inserted into existing code with a minimum of
code restructuring. Orphaning can also improve performance by enabling a single parallel
region to bind with multiple do directives located within called subroutines. Consider the
following code segment:

I $onp parall el
call phasel

cal | phase2

I $onp end parall el

subrouti ne phasel

I $onp do private(i) shared(n)
doi =1, n

call some_work(i)

end do

I $onp end do

end

subrouti ne phase2

I $onp do private(j) shared(n)
doj =1, n

call nore_work(j)

end do

I $onp end do

end

Orphaned Directives Usage Rules

¢ An orphaned wor kshar i ng construct (secti on, si ngl e, do) is executed by a
team consisting of one thread, that is, serially.

¢ Any collective operation (wor kshar i ng construct or bar ri er) executed inside of a
wor kshar i ng construct is illegal.

e ltisillegal to execute a collective operation (wor kshar i ng construct or barri er)
from within a synchronization region (cri ti cal /or der ed).

e The opening and closing directives of a directive pair (for example, do - end do)
must occur in a single block of the program.

o Private scoping of a variable can be specified at a wor kshar i ng construct. Shared
scoping must be specified at the parallel region. For complete details, see the
OpenMP Fortran version 2.0 specifications.

161

Intel® Fortran Compiler User's Guide

Preparing Code for OpenMP Processing

The following are the major stages and steps of preparing your code for using OpenMP.
Typically, the first two stages can be done on uniprocessor or multiprocessor systems; later
stages are typically done only on multiprocessor systems.

Before Inserting OpenMP Directives

Before inserting any OpenMP parallel directives, verify that your code is safe for parallel
execution by doing the following:

e Place local variables on the stack. This is the default behavior of the Intel Fortran
Compiler when - opennp is used.

e Use - aut o or similar (- aut o_scal ar) compiler option to make the locals automatic.
Avoid using compiler options that inhibit stack allocation of local variables. By default
(- aut o_scal ar) local scalar variables become shared across threads, so you may
need to add synchronization code to ensure proper access by threads.

Analyze
The analysis includes the following major actions:
o Profile the program to find out where it spends most of its time. This is the part of the

program that benefits most from parallelization efforts. This stage can be
accomplished using basic PGO options.

o Wherever the program contains nested loops, choose the outer-most loop, which has
very few cross-iteration dependencies.

Restructure

e To restructure your program for successful OpenMP implementation, you can perform
some or all of the following actions:

1. If achosen loop is able to execute iterations in parallel, introduce a paral | el do
construct around this loop.

2. Try to remove any cross-iteration dependencies by rewriting the algorithm.
3. Synchronize the remaining cross-iteration dependencies by placing cri ti cal
constructs around the uses and assignments to variables involved in the

dependencies.

4. List the variables that are present in the loop within appropriate shar ed, pri vat e,
| astprivate,firstprivate,orreduction clauses.

5. List the do index of the parallel loop as pri vat e. This step is optional.

162

Intel® Fortran Compiler User's Guide

6. common block elements must not be placed on the pri vat e list if their global scope
is to be preserved. The t hr eadpr i vat e directive can be used to privatize to each
thread the common block containing those variables with global scope.

t hr eadpri vat e creates a copy of the conmon block for each of the threads in the
team.

7. Any /O in the parallel region should be synchronized.
8. ldentify more parallel loops and restructure them.

9. If possible, merge adjacent par al | el do constructs into a single parallel region
containing multiple do directives to reduce execution overhead.

Tune

The tuning process should include minimizing the sequential code in critical sections and
load balancing by using the schedul e clause or the onp_schedul e environment variable.

f) Note

This step is typically performed on a multiprocessor system.

Parallel Processing Thread Model

This topic explains the processing of the parallelized program and adds more definitions of
the terms used in the parallel programming.

The Execution Flow

As mentioned in previous topic, a program containing OpenMP Fortran APl compiler
directives begins execution as a single process, called the master thread of execution. The
master thread executes sequentially until the first parallel construct is encountered.

In OpenMP Fortran API, the PARALLEL and END PARALLEL directives define the parallel
construct. When the master thread encounters a parallel construct, it creates a team of
threads, with the master thread becoming the master of the team. The program statements
enclosed by the parallel construct are executed in parallel by each thread in the team.
These statements include routines called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the
construct. The dynamic extent includes the static extent as well as the routines called from
within the construct. When the END PARALLEL directive is encountered, the threads in the
team synchronize at that point, the team is dissolved, and only the master thread continues
execution. The other threads in the team enter a wait state.

You can specify any number of parallel constructs in a single program. As a result, thread
teams can be created and dissolved many times during program execution.

163

Intel® Fortran Compiler User's Guide

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that
are not in the lexical extent of the parallel construct, but are in the dynamic extent, are
called orphaned directives. Orphaned directives allow you to execute major portions of your
program in parallel with only minimal changes to the sequential version of the program.
Using this functionality, you can code parallel constructs at the top levels of your program
call tree and use directives to control execution in any of the called routines. For example:

subroutine F
I$OVP parallel...
 call G
:sijbroutine G

| $OVP DO. . .

The ! $OMP DOis an orphaned directive because the parallel region it will execute in is not
lexically present in G.

Data Environment Directive

A data environment directive controls the data environment during the execution of parallel
constructs.

You can control the data environment within parallel and worksharing constructs. Using
directives and data environment clauses on directives, you can:

¢ Privatize named common blocks by using THREADPRI VATE directive
o Control data scope attributes by using the THREADPRI VATE directive's clauses.
The data scope attribute clauses are:
o COPYIN
o DEFAULT
o PRIVATE
o FIRSTPRIVATE
o LASTPRIVATE

o REDUCTION

164

Intel® Fortran Compiler User's Guide

o SHARED

You can use several directive clauses to control the data scope attributes of variables for
the duration of the construct in which you specify them. If you do not specify a data scope
attribute clause on a directive, the default is SHARED for those variables affected by the

directive.

For detailed descriptions of the clauses, see the OpenMP Fortran version 2.0

specifications.

Pseudo Code of the Parallel Processing Model

A sample program using some of the more common OpenMP directives is shown in the
code example that follows. This example also indicates the difference between serial

regions and parallel regions.

program mai n

I $onp parall el

I $onp sections
' $onp section

' $onp section
 $onmp end
sections

' $onp do
do
end do
I $onp end do
nowai t

I $onp end

par al | el

end

I Begin Serial Execution

I Only the nmaster thread executes

I Begin a Parallel Construct, forma
t eam

I This is Replicated Code where each
team ! nenber executes the sane code

I Begin a Worksharing Construct
One unit of work

I
I
I Anot her unit of work
I
I

Wait until both units of work
conpl ete
I More Replicated Code
I Begin a Wrksharing Construct,

| each iteration is a unit of work

I Work is distributed anong the team
I
I

End of Worksharing Construct,
nowait is

I specified

I More Replicated Code

| End of Parallel Construct, disband
team! and continue with seri al
executi on

| Possibly nore Parallel Constructs
I End serial execution

165

Intel® Fortran Compiler User's Guide

Compiling with OpenMP, Directive Format, and
Diagnostics

To run the Intel® Fortran Compiler in OpenMP mode, you need to invoke the Intel compiler
with the

- opennp option:

IA-32 applications:

ifc -opennp input _file(s)

[tanium®-based applications:

efc -opennmp input_file(s)

Before you run the multithreaded code, you can set the number of desired threads to the
OpenMP environment variable, OVP_NUM THREADS. See the OpenMP Environment
Variables section for further information. The Intel Extensjon Routines topic describes the

OpenMP extensions to the specification that have been added by Intel in the Intel® Fortran
Compiler.

- opennp Option

The - opennp option enables the parallelizer to generate multithreaded code based on the
OpenMP directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems.

The - opennp option works with both - Q0 (no optimization) and any optimization level of -
oL,
- 2 (default) and - G3. Specifying - Q0 with - opennp helps to debug OpenMP applications.

When you use the - opennp option, the compiler sets the - aut o option (causes all
variables to be allocated on the stack, rather than in local static storage.) for the compiler
unless you specified it on the command line.

OpenMP Directive Format and Syntax

The OpenMP directives use the following format:

<prefix> <directive> [<clause> [[,] <clause> . . .]]
where the brackets above mean:
e <xxx>: the prefix and directive are required

e [<xxx>] : if a directive uses one clause or more, the clause(s) is required

a [1 eommas hetween the < | alise><s are nntinnAal

166

Intel® Fortran Compiler User's Guide

CLh g mmrrie mmrrmmrs e € i e e s

For fixed form source input, the prefix is ! $onp or c$onp
For free form source input, the prefix is ! $onp only.

The prefix is followed by the directive name; for example:

' $omp paral | el

Since OpenMP directives begin with an exclamation point, the directives take the form of
comments if you omit the - opennp option.

Syntax for Parallel Regions in the Source Code

The OpenMP constructs defining a parallel region have one of the following syntax forms:
' $onp <directive>

<structured bl ock of code>

'$omp end <directive>

or

' $onp <directive>

<structured bl ock of code>

or

' $onp <directive>

where <di r ect i ve> is the name of a particular OpenMP directive.

OpenMP Diagnostics

The - opennp_report{0| 1| 2} option controls the OpenMP parallelizer's diagnostic
levels 0, 1, or 2 as follows:

- opennp_r eport 0 = no diagnostic information is displayed.

-opennp_report 1 =display diagnostics indicating loops, regions, and sections
successfully parallelized.

-opennp_report 2 =same as - opennp_r eport 1 plus diagnostics indicating mast er

constructs, si ngl e constructs, criti cal constructs, or der ed constructs, at omi ¢
directives, etc. successfully handled.

167

Intel® Fortran Compiler User's Guide

The default is - opennp_r eport 1.

OpenMP Directives and Clauses

This topic provides a summary of the OpenMP directives and clauses. For detailed

descriptions, see the OpenMP Fortran version 2.0 specifications.

OpenMP Directives

end sections

Directive Description

paral | el Defines a parallel region.

end parall el

do Identifies an iterative wor kshar i ng construct in which

end do the iterations of the associated loop should be
executed in parallel.

sections Identifies a non-iterative wor kshar i ng construct that

specifies a set of structured blocks that are to be
divided among threads in a team.

end single

section Indicates that the associated structured block should
be executed in parallel as part of the enclosing
sections construct.

single Identifies a construct that specifies that the associated

structured block is executed by only one thread in the
team.

paral |l el do
end parallel do

A shortcut for a par al | el region that contains a
single do directive.

£l Note

The paral | el do or do OpenMP directive must be
immediately followed by a do statement (do- st nt as
defined by R818 of the ANSI Fortran standard). If you
place another statement or an OpenMP directive
between the par al | el do or do directive and the do
statement, the Intel Fortran Compiler issues a syntax
error.

parall el Provides a shortcut form for specifying a parallel region
sections containing a single sect i ons construct.

end parall el

sections

mast er Identifies a construct that specifies a structured block
end naster that is executed by only the mast er thread of the

team.

critical [l ock]
end critical
[| ock]

Identifies a construct that restricts execution of the

associated structured block to a single thread at a time.

Each thread waits at the beginning of the critical

~rAanctriint 11intil nA Athar thraad ic avarniitinAa a Aritinal

168

Intel® Fortran Compiler User's Guide

LCUIIDUULL ULILT TIVU ULUITIE ulTau 15 TATuLULTYy a viiuval

construct with the same | ock argument.

barrier Synchronizes all the threads in a team. Each thread
waits until all of the other threads in that team have
reached this point.

atom c Ensures that a specific memory location is updated

atomically, rather than exposing it to the possibility of
multiple, simultaneously writing threads.

flush [(1ist)]

Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the
threads in a team have a consistent view of certain
objects in memory. The optional | i st argument
consists of a comma-separated list of variables to be
flushed.

ordered
end ordered

The structured block following an or der ed directive is
executed in the order in which iterations would be
executed in a sequential loop.

t hreadpri vate
(list)

Makes the named conmon blocks or variables private
to athread. The | i st argument consists of a comma-
separated list of conmon blocks or variables.

OpenMP Clauses

Clause

Description

private (list)

Declares variablesin | i st to be
privat e To each thread in a team.

firstprivate (list) Same as pri vat e, but the copy of

each variable in the | i st is
initialized using the value of the
original variable existing before the
construct.

|astprivate (list) Same as pri vat e, but the original

variables in | i st are updated using
the values assigned to the
corresponding pri vat e variables in
the last iteration in the do construct
loop or the last sect i on construct.

copyprivate (list) Uses private variablesin | i st to

broadcast values, or pointers to
shared objects, from one member of
a team to the other members at the
end of a single construct.

nowai t

Specifies that threads need not wait
at the end of wor kshari ng
constructs until they have completed
execution. The threads may proceed
past the end of the wor kshari ng

169

Intel® Fortran Compiler User's Guide

constructs as soon as there is no
more work available for them to
execute.

shared (Ilist)

Shares variables in | i st among all
the threads in a team.

default (node)

Determines the default data-scope
attributes of variables not explicitly
specified by another clause. Possible
values for node are pri vat e,

shar ed, or none.

reduction
({operator|intrinsic}:list)

Performs a reduction on variables that
appear in | i st with the operator
oper at or or the intrinsic procedure
name i ntrinsic; operator isone
of the following: +, *, . and. , . or .,
.eqv.,.neqv.;intrinsicrefers
to one of the following: max, m n,

i and,ior,orieor.

ordered
end ordered

Used in conjunction with a do or
sect i ons construct to impose a
serial order on the execution of a
section of code. If or der ed
constructs are contained in the
dynamic extent of the do construct,
the ordered clause must be present
on the do directive.

if
(scal ar _| ogi cal _expressi on)

The enclosed parallel region is
executed in parallel only if the

scal ar _| ogi cal _expressi on
evaluates to . t r ue. ; otherwise the
parallel region is serialized.

num t hr eads
(scal ar _i nt eger _expr essi on)

Requests the number of threads
specified by

scal ar _i nt eger _expr essi on for
the parallel region.

schedul e (type[, chunk])

Specifies how iterations of the do
construct are divided among the
threads of the team. Possible values
for the t ype argument are st ati c,
dynami c, gui ded, and runt i ne.
The optional chunk argument must
be a positive scalar integer
expression.

copyin (list)

Specifies that the master thread's
data values be copied to the
t hr eadpri vat e's copies of the

common blocks or variables specified
inl i et atthe haninninn nf the

170

Intel® Fortran Compiler User's Guide

LML U MU yiininay v uae

| ‘ parallel region.

OpenMP Support Libraries

The Intel Fortran Compiler with OpenMP support provides a production support library,

I i bgui de. |'i b. This library enables you to run an application under different execution
modes. It is used for normal or performance-critical runs on applications that have already
been tuned.

Execution modes

The compiler with OpenMP enables you to run an application under different execution
modes that can be specified at run time. The libraries support the serial, turnaround, and
throughput modes. These modes are selected by using the knp_1 i br ary environment
variable at run time.

Serial
The serial mode forces parallel applications to run on a single processor.
Turnaround

In a dedicated (batch or single user) parallel environment where all processors are
exclusively allocated to the program for its entire run, it is most important to effectively
utilize all of the processors all of the time. The turnaround mode is designed to keep active
all of the processors involved in the parallel computation in order to minimize the execution
time of a single job. In this mode, the worker threads actively wait for more parallel work,
without yielding to other threads.

FlNote

Avoid over-allocating system resources. This occurs if either too many threads have
been specified, or if too few processors are available at run time. If system resources
are over-allocated, this mode will cause poor performance. The throughput mode
should be used instead if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not constant or where
the job stream is not predictable, it may be better to design and tune for throughput. This
minimizes the total time to run multiple jobs simultaneously. In this mode, the worker
threads will yield to other threads while waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment (that is,

the system load) and to adjust its resource usage to produce efficient execution in a
dynamic environment. This mode is the default.

OnenMP Fnvironment \/ariahles

171

Intel® Fortran Compiler User's Guide

~ v — v oa

This topic describes the standard OpenMP environment variables (with the OMP__ prefix)
and Intel-specific environment variables (with the KMP_ prefix) that are Intel extensions to

LIl W W WA § N

the standard Fortran Compiler .

Standard Environment Variables

Variable Description Default
OVP_SCHEDULE Sets the run-time schedule type stati c,
and chunk size. no chunk
size
specified
OVP_NUM _THREADS | Sets the number of threads to use | Number of
during execution. processors
OVP_DYNAM C Enables (. t r ue.) or disables .fal se.
(. fal se.) the dynamic
adjustment of the number of
threads.
OVP_NESTED Enables (. t r ue.) or disables . fal se.
(. fal se.)nested parallelism.
Intel Extension Environment Variables
Environment Description Default
Variable
KMP_LI BRARY Selects the OpenMP runtime library | t hr oughput
throughput. The options for the
variable value are: seri al , (execution
t ur nar ound, or t hr oughput mode)
indicating the execution mode. The
default value of t hr oughput is
used if this variable is not specified.
KMP_STACKSI ZE | Sets the number of bytes to allocate | 1A-32: 2m
for each parallel thread to use as its
private stack. Use the optional suffix | [tanium

b, k, m g, ort, to specify bytes,
kilobytes, megabytes, gigabytes, or
terabytes.

compiler: 4m

OnenMP Riintime | ihrarv Rolitines

172

Intel® Fortran Compiler User's Guide

~ v AN LR Gl o LR J LI N g N LI I g

OpenMP provides several runtime library routines to assist you in managing your program
in parallel mode. Many of these runtime library routines have corresponding environment
variables that can be set as defaults. The runtime library routines enable you to dynamically
change these factors to assist in controlling your program. In all cases, a call to a runtime
library routine overrides any corresponding environment variable.

The following table specifies the interface to these routines. The names for the routines are
in user name space. The onp_|ib.f,onp_|ib. handonp_|ib. nod header files are
provided in the i ncl ude directory of your compiler installation. The onp_I| i b. h header
file is provided in the i ncl ude directory of your compiler installation for use with the
Fortran | NCLUDE statement. The onp_I i b. nod file is provided in the Include directory for
use with the Fortran USE statement.

There are definitions for two different locks, onp_| ock_t and onp_nest | ock_t, which
are used by the functions in the table that follows.

This topic provides a summary of the OpenMP runtime library routines. For detailed
descriptions, see the OpenMP Fortran version 2.0 specifications.

| Description
Execution Environment Routines

subroutine onp_set_numt hreads Sets the number of threads to use for

(num_t hr eads) subsequent parallel regions.
i nteger num_t hr eads

Function

i nteger function
onp_get _num_t hreads()

Returns the number of threads that
are being used in the current parallel
region.

i nteger function
onp_get _max_t hreads()

Returns the maximum number of
threads that are available for parallel
execution.

i nteger function
onp_get _thread_num)

Determines the unique thread
number of the thread currently
executing this section of code.

i nteger function onp_get_num procs

0

Determines the number of
processors available to the program.

| ogi cal function onp_in_parallel()

Returns . t r ue. if called within the
dynamic extent of a parallel region
executing in parallel; otherwise
returns . f al se. .

subrouti ne onp_set _dynanic
(dynam c_t hreads) | ogi cal
dynam c_t hr eads

Enables or disables dynamic
adjustment of the number of threads
used to execute a parallel region. If
dynam c_threadsis.true.,
dynamic threads are enabled. If
dynam c_threadsis. fal se.,

173

Intel® Fortran Compiler User's Guide

dynamic threads are adisapled.
Dynamics threads are disabled by
default.

| ogi cl function onp_get_dynam c()

Returns . t r ue. if dynamic thread
adjustment is enabled, otherwise
returns . f al se. .

subrouti ne onp_set nest ed(nest ed)
i nt eger nested

Enables or disables nested
parallelism. If nested is . true.
nested parallelism is enabled. If
nestedis. fal se., nested
parallelism is disabled. Nested
parallelism is disabled by default.

| ogi cal function onp_get nested()

Returns . t r ue. if nested parallelism
is enabled, otherwise
returns . f al se. .

Lock Routines

subroutine onmp_init_| ock(lock)

i nteger (kind=onp_l ock_kind)::Ilock

Initializes the lock associated with
| ock for use in subsequent calls.

subrouti ne onp_destroy_| ock(l ock)
i nt eger

(ki nd=onp_l ock_kind):: 1l ock

Causes the lock associated with
| ock to become undefined.

subrouti ne onp_set _| ock(| ock)

i nteger (kind=onp_l ock_kind)::Ilock

Forces the executing thread to wait
until the lock associated with | ock is
available. The thread is granted
ownership of the lock when it
becomes available.

subrouti ne onp_unset | ock(! ock)

Releases the executing thread from

i nteger (kind=onp_l ock_kind)::lock | ownership of the lock associated with
| ock. The behavior is undefined if
the executing thread does not own
the lock associated with | ock.

| ogi cal onp_test | ock(lock) Attempts to set the lock associated

i nteger (kind=onp_lock _kind)::lock | with| ock. If successful,

returns . t rue. , otherwise
returns . f al se. .

subroutine onp_init_nest | ock
(1 ock)

i nt eger

(ki nd=onp_nest | ock_kind)::Ilock

Initializes the nested lock associated
with | ock for use in the subsequent
calls.

subrouti ne onp_destroy_nest | ock
(1 ock)

i nt eger

(ki nd=onp_nest | ock _kind)::Ilock

Causes the nested lock associated
with | ock to become undefined.

i nt eger
(ki nd=onp_nest | ock_kind)::Ilock

subroutine onp_set_nest_| ock(! ock)

Forces the executing thread to wait
until the nested lock associated with
| ock is available. The thread is
granted ownership of the nested lock
when it hecomes available.

174

Intel® Fortran Compiler User's Guide

subrouti ne onp_unset _nest _| ock
(1 ock)

i nt eger

(ki nd=onp_nest | ock_kind)::Ilock

Releases the executing thread from
ownership of the nested lock
associated with | ock if the nesting
count is zero. Behavior is undefined
if the executing thread does not own
the nested lock associated with

| ock.

i nteger onp_test nest | ock(l ock)
i nt eger
(ki nd=onp_nest | ock _kind)::Ilock

Attempts to set the nested lock
associated with | ock. If successful,
returns the nesting count, otherwise
returns zero.

Timing Rout

ines

doubl e- preci sion function
onp_get _wtinme()

Returns a double-precision value
equal to the elapsed wallclock time
(in seconds) relative to an arbitrary
reference time. The reference time
does not change during program
execution.

doubl e- preci sion function
onp_get _wtick()

Returns a double-precision value
equal to the number of seconds

between successive clock ticks.

Intel Extension Routines

The Intel® Fortran Compiler implements the following group of routines as an extension to
the OpenMP runtime library: getting and setting stack size for parallel threads and memory
allocation.

The Intel extension routines described in this section can be used for low-level debugging
to verify that the library code and application are functioning as intended. It is
recommended to use these routines with caution because using them requires the use of
the - opennp_st ubs command-line option to execute the program sequentially. These
routines are also generally not recognized by other vendor's OpenMP-compliant compilers,
which may cause the link stage to fail for these other compilers.

Stack Size

In most cases, directives can be used in place of the extension library routines. For
example, the stack size of the parallel threads may be set using the KMP_STACKSI ZE
environment variable rather than the knp_set _st acksi ze() library routine.

FJ Note

175

Intel® Fortran Compiler User's Guide

A runtime call to an Intel extension routine takes precedence over the corresponding

environment variable setting.

See the definitions of stack size routines in the table that follows.

Memory Allocation

The Intel® Fortran Compiler implements a group of memory allocation routines as an
extension to the OpenMP* runtime library to enable threads to allocate memory from a
heap local to each thread. These routines are: knp_nal | oc, knp_cal | oc, and

knp_real |l oc.

The memory allocated by these routines must also be freed by the knp_f r ee routine.
While it is legal for the memory to be allocated by one thread and knp_free'd by a
different thread, this mode of operation has a slight performance penalty.

See the definitions of these routines in the table that follows.

(ki nd=knp_si ze_t _ki nd)
knp_get stacksize_s

Function/Routine | Description
Stack Size
function knp_get _stacksi ze_s | Returns the number of bytes that will be
() allocated for each parallel thread to use as its
I nt eger private stack. This value can be changed via the

knp_get st acksi ze_s routine, prior to the
first parallel region or via the KMP_STACKSI ZE
environment variable.

function knp_get stacksi ze()
i nt eger knp_get stacksi ze

This routine is provided for backwards
compatibility only; use knp_get st acksi ze_s
routine for compatibility across different families
of Intel processors.

subrouti ne
knp_set st acksi ze_s(si ze)

i nt eger

(ki nd=knp_si ze_t_kind) size

Sets to si ze the number of bytes that will be
allocated for each parallel thread to use as its
private stack. This value can also be set via the
KMP_STACKSI ZE environment variable. In order
for knp_set st acksi ze_s to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the
program.

subrouti ne knp_set stacksi ze
(size)
i nt eger size

This routine is provided for backward
compatibility only; use knp_set st acksi ze_s
(si ze) for compatibility across different families
of Intel processors.

Memory Allocation

function knp_mal | oc(si ze)
i nt eger

(ki nd=knp_poi nt er _ki nd)
knp_mal | oc

i nt onar

Allocate memory block of si ze bytes from
thread-local heap.

176

Intel® Fortran Compiler User's Guide

e Cucl

(ki nd=knp_si ze_t _ki nd) si ze

function knp_call oc
(nel em el si ze)

I nt eger

(ki nd=knp_poi nt er _ki nd)
knmp_cal | oc

i nt eger

(ki nd=knp_si ze_t ki nd) nel em
I nt eger

(ki nd=knp_si ze_t_kind)elsize

Allocate array of nel emelements of size
el si ze from thread-local heap.

function knp_real |l oc(ptr,
si ze)

i nt eger

(ki nd=knp_poi nter ki nd)
knmp_real | oc

i nt eger

(ki nd=knp_poi nter _kind)ptr
i nt eger

(ki nd=knp_si ze_t _ki nd) si ze

Reallocate memory block at address ptr and
si ze bytes from thread-local heap.

subroutine knp_free(ptr)
i nt eger
(ki nd=knp_poi nter _kind) ptr

Free memory block at address pt r from thread-
local heap. Memory must have been previously
allocated with

knmp_mal | oc, knp_cal | oc, or knp_real | oc.

Examples of OpenMP Usage

The following examples show how to use the OpenMP feature. See more examples in the
OpenMP Fortran version 2.0 specifications.

do: A Simple Difference Operator

This example shows a simple parallel loop where each iteration contains a different number
of instructions. To get good load balancing, dynamic scheduling is used. The end do has a
nowai t because there is an implicit bar r i er at the end of the parallel region.

subroutine do_1 (a, b, n)
real a(n,n), b(n,n)
c$onp parall el
c$omp& shared(a, b, n)
c$omp& private(i,j)
c$onp do schedul e(dynanic, 1)

doi =2, n

doj =1, i

b(j,i) = (Ca(j,i) +a(j,i-1))
enddo

enddo

c$onp end do nowait
c$onp end parall el
end

/2

177

Intel® Fortran Compiler User's Guide

do: Two Difference Operators

This example shows two parallel regions fused to reduce f or k/ j oi n overhead. The first

end do has a nowai t because all the data used in the second loop is different than all the

data used in the first loop.

subroutine do_2 (a,b,c,d, mn)
real a(n,n), b(n,n), c(mm, dimmn
c$onp parall el
c$onmp& shared(a, b,c,d, mn)
c$omp& private(i,j)
c$onp do schedul e(dynanic, 1)

doi =2, n

doj =1, i

b(j,i) =(a(j,i) +a(j,i-1)) [/ 2
enddo

enddo

c$onp end do nowait
c$onmp do schedul e(dynam c, 1)

doi =2, m

doj =1, i

d(j,i) = (Cc(j,i) +c(j,i-1)) 1 2
enddo

enddo

c$onp end do nowait
c$onp end parall el
end

secti ons: Two Difference Operators

This example demonstrates the use of the sect i ons directive. The logic is identical to the
preceding do example, but uses sect i ons instead of do. Here the speedup is limited to 2

because there are only two units of

work whereas in do: Two Difference Operators above there are n-1 + m 1 units of work.

subroutine sections_1
(a,b,c,d, mn)
real a(n,n), b(n,n), c(mm, d
(mm
' $onp parall el
I $onp& shared(a, b, c,d, mn)
' $onmp& private(i,j)
I $onp sections
' $onp section
do i 2, n
do j 1, i
b(j,i)=C a(j,i) +a(j,i-1)) 1 2
enddo

178

Intel® Fortran Compiler User's Guide

enaao

I $onp section

I $onp end sections nowait
I $onmp end parall el
end

doi =2, m

doj =1, i

d(j,i)=(c(j,i) +c(j,i-1)) [2
enddo

enddo

si ngl e: Updating a Shared Scalar

This example demonstrates how to use a si ngl e construct to update an element of the
shared array a. The optional nowai t after the first loop is omitted because it is necessary
to wait at the end of the loop before proceeding into the si ngl e construct.

subroutine sp_la

(a, b, n)
real a(n), b(n)
I $onp parall el

I $onp& shared(a, b, n)
I $onp& private(i)

' $onp do

doi =1, n

a(i) = 1.0/ a(i)
enddo

 $onp single

a(l) =mn(a(l), 1.0)

I $onp end single

I $onmp do

doi =1, n

b(i) = b(i) / a(i)
enddo

' $onmp end do nowai t
I $onp end parall el
end

Auto-parallelization

The auto-parallelization feature of the Intel® Fortran Compiler automatically translates
serial portions of the input program into equivalent multithreaded code. The auto -

parallelizer analyzes the dataflow of the program’s loops and generates multithreaded code

for those loops which can be safely and efficiently executed in parallel. This enables the
potential exploitation of the parallel architecture found in symmetric multiprocessor (SMP)

systems.

Automatic parallelization relieves the user from:

179

Intel® Fortran Compiler User's Guide

o having to deal with the details of finding loops that are good worksharing candidates
o performing the dataflow analysis to verify correct parallel execution

¢ partitioning the data for threaded code generation as is needed in programming with
OpenMP* directives.

The parallel runtime support provides the same runtime features as found in OpenMP, such
as handling the details of loop iteration modification, thread scheduling, and
synchronization.

While OpenMP directives enable serial applications to transform into parallel applications
quickly, the programmer must explicitly identify specific portions of the application code that
contain parallelism and add the appropriate compiler directives. Auto -parallelization
triggered by the - par al | el option automatically identifies those loop structures, which
contain parallelism. During compilation, the compiler automatically attempts to decompose
the code sequences into separate threads for parallel processing. No other effort by the
programmer is needed.

The following example illustrates how a loop’s iteration space can be divided so that it can
be executed concurrently on two threads:

Original Serial Code

do i =1, 100
a(i) =a(i) + b(i) * c(i)

enddo

Transformed Parallel Code

Thread 1

do i=1,50

a(i) =a(i) + b(i) * c(i)
enddo

Thread 2

do i =50, 100

a(i) =a(i) + b(i) * c(i)
enddo

Programming with Auto-parallelization

Auto-parallelization feature implements some concepts of OpenMP, such as worksharing
construct (with the PARALLEL DOdirective). See Programming with OpenMP for
worksharing construct. This section provides specifics of auto-parallelization.

Guidelines for Effective Auto-parallelization Usage

180

Intel® Fortran Compiler User's Guide

A loop is parallelizable if:

e The loop is countable at compile time: this means that an expression representing
how many times the loop will execute (also called "the loop trip count”) can be
generated just before entering the loop.

e There are no FLOW(READ after WRI TE), QUTPUT (\WRI TE after READ) or ANTI (WRI TE
after READ) loop-carried data dependences. A loop-carried data dependence occurs
when the same memory location is referenced in different iterations of the loop. At the
compiler's discretion, a loop may be parallelized if any assumed inhibiting loop-carried
dependencies can be resolved by runtime dependency testing.

The compiler may generate a runtime test for the profitability of executing in parallel for loop
with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding
guidelines:

o Expose the trip count of loops whenever possible; specifically use constants where the
trip count is known and save loop parameters in local variables.

¢ Avoid placing structures inside loop bodies that the compiler may assume to carry
dependent data, for example, procedure calls, ambiguous indirect references or global
references.

e Insertthe ! DI RS PARALLEL directive to disambiguate assumed data dependencies.

e Insertthe ! DI RS NOPARALLEL directive before loops known to have insufficient work
to justify the overhead of sharing among threads.

Auto-parallelization Data Flow
For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis ---> Loop classification ---> Dependence analysis ---> High-level
parallelization --> Data partitioning ---> Multi-threaded code generation.

These steps include:
o Data flow analysis: compute the flow of data through the program

o Loop classification: determine loop candidates for parallelization based on correctness
and efficiency as shown by threshold analysis

o Dependence analysis: compute the dependence analysis for references in each loop

181

Intel® Fortran Compiler User's Guide

nest
o High-level parallelization:
- analyze dependence graph to determine loops which can execute in parallel.
- compute runtime dependency

o Data partitioning: examine data reference and partition based on the following types of
access: SHARED, PRI VATE, and FI RSTPRI VATE

o Multi-threaded code generation:
- modify loop parameters
- generate entry/exit per threaded task
- generate calls to parallel runtime routines for thread creation and synchronization

Programming Enabling, Options, Directives, and
Environment Variables

To enable the auto-parallelizer, use the - par al | el option. The - par al | el option detects
parallel loops capable of being executed safely in parallel and automatically generates
multithreaded code for these loops. An example of the command using auto -parallelization
is as follows:

IA-32 compilations:

pronpt>ifc -c -parallel nyprog.f

[tanium®-based compilations:

pronpt>efc -c -parallel nyprog.f

Auto-parallelization Options

The - par al | el option enables the auto-parallelizer if the - O2 (or - O3) optimization option
is also on (the default is - Q2). The - par al | el option detects parallel loops capable of
being executed safely in parallel and automatically generates multithreaded code for these
loops.

- paral | el Enables the auto-parallelizer
-paral |l el _threshol d{1- 100} Controls the work threshold
needed for auto-parallelization,
see later subsection.

- par _report{1] 2| 3} Controls the diagnostic messages

fram tha aiitAn narallalizar can

182

Intel® Fortran Compiler User's Guide

vl uiIic auwv-pyarailicilizci, occ

later subsection.

Auto-parallelization Directives

Auto-parallelization uses two specific directives,
'DIR$ PARALLEL and ! DI R$ NOPARALLEL.

Auto-parallelization Directives Format and Syntax

The format of Intel Fortran auto-parallelization compiler directive is:

<prefix> <directive>

where the brackets above mean:

e <xxX>: the prefix and directive are required
For fixed form source input, the prefix is ! DI R$ or CDI R$
For free form source input, the prefix is ! DI R$ only.

The prefix is followed by the directive name; for example:

' Dl R$ PARALLEL

Since auto-parallelization directives begin with an exclamation point, the directives take the

form of comments if you omit the - par al | el option.

Examples

The ! DI RS PARALLEL directive instructs the compiler to ignore dependencies which it
assumes may exist and which would prevent correct parallelization in the immediately
following loop. However, if dependencies are proven, they are not ignored.

The ! DI R$ NOPARALLEL directive disables auto-parallelization for the immediately

following loop.

program mai n
paraneter (n=100)
i nteger x(n),a(n)

| DI R$ NOPARALLEL
do i=1,n
x(i) =i

enddo

! DI R$ PARALLEL

An i =1 n

183

Intel® Fortran Compiler User's Guide

a(x(i)) =i
enddo

end

Auto-parallelization Environment Variables

Option Description Default
OVP_NUM _THREADS | Controls the number of Number of processors
threads used. currently installed in the

system while generating
the executable

OVP_SCHEDULE Specifies the type of runtime | static

scheduling.

Auto-parallelization Threashold Control and Diagnostics

Threshold Control

The -

par _t hreshol d{ n} option sets a threshold for the auto-parallelization of loops

based on the probability of profitable execution of the loop in parallel. The value of n can be
from 0O to 100. The default value is 75. This option is used for loops whose computation
work volume cannot be determined at compile-time. The threshold is usually relevant when
the loop trip count is unknown at compile-time.

The -

par _t hreshol d{ n} option has the following versions and functionality:

Default: - par _t hr eshol d is not specified in the command line, which is the same as
when - par _t hr eshol dO is specified. The loops get auto-parallelized regardless of
computation work volume, that is, parallelize always.

- par _t hreshol d100 - loops get auto-parallelized only if profitable parallel execution
is almost certain.

The intermediate 1 to 99 values represent the percentage probability for profitable
speed-up. For example, n=50 would mean: parallelize only if there is a 50%
probability of the code speeding up if executed in parallel.

The default value of n is n=75 (or - par _t hr eshol d75). When
- par _t hreshol d is used on the command line without a number, the default value
passed is 75.

The compiler applies a heuristic that tries to balance the overhead of creating multiple
threads versus the amount of work available to be shared amongst the threads.

Diagnostics

184

Intel® Fortran Compiler User's Guide

The - par _report{0]| 1| 2| 3} option controls the auto-parallelizer's diagnostic levels 0, 1,
2, or 3 as follows:

- par _r eport 0 = no diagnostic information is displayed.

- par _report 1 =indicates loops successfully auto-parallelized (default). Issues a "LOOP
AUTO PARALLELI ZED' message for parallel loops.

- par _report 2 = indicates successfully auto-parallelized loops as well as unsuccessful
loops.

- par _report 3 =same as 2 plus additional information about any proven or assumed
dependences inhibiting auto-parallelization (reasons for not parallelizing).

Example of Parallelization Diagnostics Report

Example below shows an output generated by - par _r eport 3 as a result from the
command:

pronmpt>ifl -c /Qoarallel /Quar_report3 myprog.f90

where the program nmypr og. f 90 is as follows:

pr ogram nmypr og
i nteger a(10000), q
C Assuned side effects
do i =1, 10000
a(i) = foo(i)
enddo
C Actual dependence
do i =1, 10000
a(i) =a(i-1) + i
enddo
end

Example of -par _report Output

program nypr og
procedure: myprog

serial loop: line 5: not a parallel candidate
due to statenent at line 6
serial loop: line 9

fl ow data dependence fromline 10 to line
10, due to "a"
12 Lines Conpil ed

Troubleshooting Tips

185

Intel® Fortran Compiler User's Guide

Use - par _t hr eshol dO to see if the compiler assumed there was not enough
computational work

Use - par _r eport 3 to view diagnostics

Use ! DI R$ PARALLEL directive to eliminate assumed data dependencies

e Use -i po to eliminate assumed side-effects done to function calls.

Debugging Multithreaded Programs

The debugging of multithreaded program discussed in this section applies to both the
OpenMP Fortran API and the Intel Fortran parallel compiler directives. When a program
uses parallel decomposition directives, you must take into consideration that the bug might
be caused either by an incorrect program statement or it might be caused by an incorrect
parallel decomposition directive. In either case, the program to be debugged can be
executed by multiple threads simultaneously.

To debug the multithreaded programs, you can use:

Intel Debugger for 1A-32 and Intel Debugger for Itanium-based applications (idb)

¢ Intel Fortran Compiler debugging options and methods; in particular, Compiling Source
Lines with Debugging Statements.

e Intel parallelization extension routines for low-level debugging.

VTune(TM) Performance Analyzer to define the problematic areas.

Other best known debugging methods and tips include:
o Correct the program in single-threaded, uni-processor environment
« Statically analyze locks
e Use trace statement (such as pri nt statement)
e Think in parallel, make very few assumptions
o Step through your code
o Make sense of threads and callstack information
e lIdentify the primary thread

o Know what thread you are debugging

186

Intel® Fortran Compiler User's Guide

¢ Single stepping in one thread does not mean single stepping in others

¢ Watch out for context switch

Debugger Limitations for Multithread Programs

Debuggers such as Intel Debugger for 1A-32 and Intel Debugger for Itanium-based
applications support the debugging of programs that are executed by multiple threads.
However, the currently available versions of such debuggers do not directly support the
debugging of parallel decomposition directives, and therefore, there are limitations on the
debugging features.

Some of the new features used in OpenMP are not yet fully supported by the debuggers, so
it is important to understand how these features work to know how to debug them. The two
problem areas are:

o Multiple entry points
e Shared variables

You can use routine names (for example, padd) and entry names (for example, _PADD,
___PADD 6__par | oop0). FORTRAN Compiler, by default, first mangles lower/mixed
case routine names to upper case. For example, pAdD() becomes PADI), and this
becomes entry name by adding one underscore. The secondary entry name mangling
happens after that. That's why " __par | oop" part of the entry name stays as lower case.
Debugger for some reason didn't take the upper case routine name "PADD" to set the
breakpoint. Instead, it accepted the lower case routine name "padd".

Debugging Parallel Regions
The compiler implements a parallel region by enabling the code in the region and putting it
into a separate, compiler-created entry point. Although this is different from outlining — the

technique employed by other compilers, that is, creating a subroutine, — the same
debugging technique can be applied.

Constructing an Entry-point Name

The compiler-generated parallel region entry point name is constructed with a
concatenation of the following strings:

e " "character

entry point name for the original routine (for example, paral | el)

. character

line number of the parallel region

187

Intel® Fortran Compiler User's Guide

e __par _regi on for OpenMP parallel regions (! $OVP PARALLEL)

__par _I oop for OpenMP parallel loops (! $OMP PARALLEL DO),

__par _sect i on for OpenMP parallel sections (! $OVP PARALLEL SECTI ONS)

e sequence number of the parallel region (for each source file, sequence number starts

from zero.)

Debugging Code with Parallel Region

Example 1 illustrates the debugging of the code with parallel region. Example 1 is produced

by this command:

ifc -opennp -g -Q0 -S file.f90

Let us consider the code of subroutine par al | el in Example 1.

Subroutine PARALLEL() source listing

1 subroutine parall el

2 i nteger id, OW_GET_THREAD NUM
3 ' $OWP PARALLEL PRI VATE(i d)

4 id = OW_GET_THREAD NUM)

5 1'$OW END PARALLEL

6 end

The parallel region is at line 3. The compiler created two entry points: par al | el _ and
___parallel 3 par_region0. The first entry point corresponds to the subroutine
par al | el (), while the second entry point corresponds to the OpenMP parallel region at

line 3.

Example 1 Debuging Code with Parallel Region

Machine Code Listing of the Subroutine paral | el ()
.gl obl parallel
paral |l el _:
.. B1.1: # Preds ..Bl1.0
.. LN1:
pushl %ebp
novl Y%esp, %ebp
subl $44, %Y%esp
pushl Yedi
novl $.2.1 2 knpc_Il oc_struct _pack. 0,
cal | __knpc_gl obal _thread_num
LOE eax
.. B1. 21: # Preds ..Bl1.1
addl $4, %esp
novl Y%eax, -44(%bp)
| OF

(%esp)

#1.
#1.
#1.
#1.
#1.
#1.

#1.
#1.

QOO OO0OO0O

[@Ne)

188

Intel® Fortran Compiler User's Guide

. Bl1. 2:
novl
mov|
.. LN2:
pushl
nov|
cal |

addl
mov|

.. B1. 3:
nmovl
testl
j ne

.. B1. 4:
addl
nmov|
mov|
nmov|
cal |

addl

..Bl.5:
addl
| ea
mov|
nmov|
cal |

addl

..B1.6:
addl
nmov|
mov|
nmov|
cal l

addl
] np

..Bl1.7:
addl
nov|
nmov|

vl

.. Bl1. 22:

.. B1. 23:

.. B1. 24:

.. B1. 25:

[

Preds ..Bl.21
-44(%bp), %eax
Yeax, -24(%bp)

%edi

$.2.1 2 knmpc_l oc_struct_pack. 1, (%esp)

__knpc_ok to fork

LOE eax

Preds ..Bl.2
$4, %esp
Y%eax, -40(%bp)

LCE

Preds ..Bl.22
-40(%ebp), %eax
Jeax, %Yeax
..B1. 7 # Prob 50%

LCE

Preds ..B1.3
$-8, %esp

$.2.1 2 knpc_l oc_struct _pack. 1, (%esp)

-24(%bp), %eax
Y%eax, 4(%esp)
__knpc_serialized parallel
LCE
Preds ..Bl.4
$8, %esp
LOE
Preds ..Bl.23
$-8, %esp
- 24(%bp), %Yeax
Yeax, (%esp)
$ knpv_zeroparallel 0, 4(%sp)
_parallel 3 par_regionO
LCE
Preds ..Bl.5
$8, %esp
LOE
Preds ..Bl.24
$-8, %esp

$.2.1 2 knpc_l oc_struct _pack. 1, (%esp)

-24(%bp), %ax
Y%eax, 4(%esp)
__knpc_end_serialized parall el
LCE
Preds ..Bl1.6

$8, %esp
..B1.8 # Prob 100%

LOE

Preds ..B1.3
$-12, %esp

$.2.1 2 knmpc_l oc_struct _pack. 1, (%esp)

$0, 4(%esp)

® narall al] nar rani nnN Qf /e n)

#1.
#1.

#3.
#3.
#3.

#3.
#3.

#3.
#3.
#3.

#3.
#3.

#3.
43

#3.

#3.
#3.
#3.
#3.
#3.

#3.

#3.
#3.
#3.
#3.
#3.

#3.
#3.

#3.
#3.
#3.

H#

(o Ne] oleoloNoNe] o oleoloNoNe] o ololoNoNe] (oNoNe] oo oo oo

2000

189

Intel® Fortran Compiler User's Guide

1w v

cal |

addl

.. B1. 8:
.. LN3:
pushl
nov|
cal |

addl
mov|

.. B1.9:
nmov|
testl
j ne

addl
nmov|
mov|
nmov|
cal |

addl

addl
| ea
novl
nmov|
cal |

addl

addl
nmov|
nov|
mov|
cal l

addl
] np

addl

.. B1. 26:

.. B1. 27:

.. B1.10:

.. B1. 28:

.. Bl1. 11:

.. B1. 29:

.. Bl.12:

.. B1. 30:

.. B1.13:

W v e
__knmpc_fork_call

LOE

Preds ..Bl.7
$12, Y%esp

LOE

Preds ..Bl1.26 ..Bl1.25

%edi

$.2.1 2 knpc_l oc_struct_pack. 2, (%esp)

__knpc_ok to fork

LOE eax

Preds ..Bl1.8
$4, %esp
Y%eax, -36(%bp)

LCE

Preds ..Bl.27
-36(%bp), %eax
Yeax, %Yeax
.. B1.13 # Prob 50%

LOE

Preds ..Bl.9
$-8, %esp

$.2.1 2 knpc_l oc_struct _pack. 2, (%esp)

-24(%bp), %eax
Y%eax, 4(%esp)
__knpc_serialized parallel

LCE

Preds ..Bl1.10
$8, %esp

LOE

Preds ..Bl.28
$-8, %esp
- 24(%bp), %eax
Yeax, (%esp)
$ knpv_zeroparallel 1, 4(%sp)
_parallel 6 par_regionl

LCE

Preds ..Bl.11
$8, %esp

LOE

Preds ..B1l.29
$-8, %esp

$.2.1 2 knpc_l oc_struct _pack. 2, (%esp)

-24(%bp), %eax
Y%eax, 4(%esp)
__knpc_end_serialized parall el
LCE
Preds ..B1.12
$8, %esp
.. Bl1. 14 # Prob 100%
LCE

Preds ..B1.9
®R_12 Omcn

A AL IR R LR R A EAURA 2 =]

#3.

#6.
#6.
#6.

#6.
#6.

#6.
#6.
#6.

#6.
#6.
#6.
#6.
#6.

#6.

#6.
#6.
#6.
#6.
#6.

#6.

#6.
#6.

#6.
4#6.

#6.
#6.

HA

oo (@<

oleoloNoNe) o ololoNoNe] o ololoNoNe] (oNoNe]

(oMo

190

Intel® Fortran Compiler User's Guide

wuun v s, swop VR

novl $.2.1 2 knmpc_l oc_struct_pack. 2, (%esp) #6.0

nov| $0, 4(%esp) #6.0

novl $ _parallel __6__par_regionl, 8(%sp) #6.0

cal | __knpc_fork_call #6.0
LOE

.. B1. 31: # Preds ..Bl1.13

addl $12, Y%esp #6.0
LOE

.. Bl. 14: # Preds ..B1.31 ..B1.30

.. LN4

| eave #9.0

ret #9.0
LOE

.type parallel , @unction

.size parallel _,.-parallel_

.globl _parallel 3 par_regionO
_parallel 3 par_regionO:

paraneter 1. 8 + %bp

parameter 2: 12 + %bp

.. B1. 15: # Preds ..B1.0

pushl %ebp #9.0

nmov| Y%esp, %ebp #9.0

subl $44, Yesp #9.0

.. LN5:

cal | onp_get _thread_num_ #4.0
LCE eax

.. Bl. 32: # Preds ..B1.15

nmov| Y%eax, -32(%bp) #4.0
LOE

.. Bl1. 16: # Preds ..Bl.32

novl -32(%bp), Yeax #4.0

nmov| Y%eax, -20(%bp) #4.0

.. LN6:

| eave #9.0

ret #9.0
LOE

.type _parallel 3 par_region0, @unction

.size

_parallel 3 par_regionO,. parallel 3 par_regionO
.globl _parallel 6 par_regionl
_parallel 6 _ par_regionl:

paraneter 1. 8 + %bp

parameter 2: 12 + %bp

.. Bl.17: # Preds ..B1.0

pushl %ebp #9.0

novl Y%esp, %ebp #9.0

subl $44, Yesp #9.0

.. LN7:

cal | onp_get _thread_num_ #7.0
LOE eax

.. Bl1. 33: # Preds ..Bl.17

novl Y%eax, -28(%bp) #7.0
1 OF

191

Intel® Fortran Compiler User's Guide

.. Bl. 18: # Preds ..B1.33
novl -28(%bp), %eax #7.0
novl Y%eax, -16(%bp) #7.0
.. LN8:
| eave #9.0
ret #9.0
.align 4, 0x90
mar k_end;

Debugging the program at this level is just like debugging a program that uses POSIX
threads directly. Breakpoints can be set in the threaded code just like any other routine.
With GNU debugger, breakpoints can be set to source-level routine names (such as
parallel). Breakpoints can also be set to entry point names (such as parallel_ and
_parallel 3 par_region0). Note that Intel Fortran Compiler for Linux converted the upper
case Fortran subroutine name to the lower case one.

Debugging Multiple Threads

When in a debugger, you can switch from one thread to another. Each thread has its own
program counter so each thread can be in a different place in the code. Example 2 shows a
Fortran subroutine PADD() . A breakpoint can be set at the entry point of OpenMP parallel
region.

Source listing of the Subroutine PADI)

12. SUBROUTI NE PADD(A, B, C, N)

13. | NTEGER N

14, | NTEGER A(N), B(N), C(N)

15. INTEGER |, |1 D, OWP_GET_THREAD NUM

16. ! $OWP PARALLEL DO SHARED (A, B, C, N) PRI VATE(I D)
17. DOl =1, N

18. |D = OVP_GET_THREAD NUM)
19. (1) = A1) *+B(l) + 1D
20. ENDDO

21. 1 $OVP END PARALLEL DO

22. END

The Call Stack Dumps

The first call stack below is obtained by breaking at the entry to subroutine PADD using
GNU debugger. At this point, the program has not executed any OpenMP regions, and
therefore has only one thread. The call stack shows a system runtime

__l'ibc_start _nain function calling the Fortran main program par al | el (), and

par al | el () calls subroutine padd() . When the program is executed by more than one
thread, you can switch from one thread to another. The second and the third call stacks are
obtained by breaking at the entry to the parallel region. The call stack of master contains
the complete call sequence. At the top of the call stackis _padd__6__par | oop0O().
Invocation of a threaded entry point involves a layer of Intel OpenMP library function calls
(that is, functions with __knp prefix). The call stack of the worker thread contains a partial

— =0 o al Mt oo tall ML v AN _RAAM 1N L € a1

192

Intel® Fortran Compiler User's Guide

Call sequence tnat pegins witn a layer or intel vpenivik lorary tuncuon calis.

ERRATA: GNU debugger sometimes fails to properly unwind the call stack of the
immediate caller of Intel OpenMP library function __knpc_fork call ().

Call Stack Dump of Master Thread upon Entry to Subroutine PADD

(gdb}) bt
Hd Bx@804a031 in padd (a={), b=(), c=(), n=18) at parallel.f:1
i1 Bx08084a595 in parallel () at parallel.

B2 Bx400826507 in __libec_start_main (main=0x804a3bé {parallel’, argc=1, ubp_av=0xbfFFFEFY,
init=0x8BuP854 <_in , Fini=@x8888dch < Fimi», rtld fini=-@x80080dcis <_dl_finis,
ot ..-'u".k_t-'ru'l—l'1:.-:t'|+'1'l'l't'\'|=|:] at . ._.-"-alJ-.11;=-Fr'-...l'gz=-rn-'|' ic/libc-start.c:129

Switching from One Thread to Another

i TARLETH L2 1)
e |

{qdb) info threads
It Thread 2851 (LWP 17512) 6Ox0804a38a in _padd__ 6 par_loop@ () at parallel.f:13
3 Thread 1826 (LWP 17511) Oxboihs p () from flib/ibd86/1ibc.s50.6
2 Thread 2 (LWP 175108) Bxz4016F9F7 in) (Fils=0x80abd5c, nfds=1, timeout=2000)
at ../ /sysde unixf vflinux/poll.c:63
1 Thread 182% (LWP 17493) Ox0864a338a in _padd__6__par_loop@ () at parallel.f:13
{gdh)

(gdb} bt
8 Ox400bBaas in

at ..#'SE,ISI]E'FIS.-"E 3

Bx4AB7e @79 in __pthe |-'.-'|c1_l.-.l.-|ir_ (self=fx4BdPebed) at pthread.c: 9467
Bxhbosa pthread cond wait (cond=@x8@8971b8, mute IEPG 068) at restart.h:z3y
Bx 08075 i ; end ()} at proton/libifgetstat 1

Bx4007bc? in pthread_start_thread_event (arg=0x48d%ebed) at manager.c:

Example 2 Debugging Code Using Multiple Threads with Shared Variables

Subroutine PADD() Machine Code Listing

. gl obl padd_
padd_:
paranmeter 1: 8 + %bp

193

Intel® Fortran Compiler User's Guide

paraneter 2: 12 + %bp
paraneter 3: 16 + %bp
paraneter 4(n): 20 + %bp
.. Bl1. 1: # Preds ..Bl1.0
.. LINL:
pushl %ebp #1.
novl Y%esp, %ebp #1.
subl $208, %esp #1.
novl %ebx, -4(%bp) #1.
pushl Y%edi #1.
nov| $.2.1 2 knpc_l oc_struct _pack. 0, (%esp) #1.
cal | __knpc_gl obal _thread _num #1.
LOE eax
.. Bl1. 34: # Preds ..Bl.1
addl $4, %esp #1.
nmov| Y%eax, -28(%bp) #1.
LOE
.. Bl1. 2: # Preds ..Bl.34
nov| -28(%bp), %eax #1.
novl Y%eax, -208(%bp) #1.
nov| $4, Y%eax #1.
novl Y%eax, -184(%bp) #1.
nov| Y%eax, -188(%ebp) #1.
novl 20(%bp), %eax #1.
novl (%eax), %Y%eax #1.
novl Yeax, -24(%bp) #1.
testl Yeax, %Yeax #1.
jg ..Bl1.5 # Prob 50% #1.
LOE
.. B1. 3: # Preds ..Bl.2
nov| $0, -24(%bp)
LOE
..Bl1.5: # Preds ..B1.2 ..B1.3
novl -24(%bp), %eax #1.
nov| Yeax, -164(%ebp) #1.
mov| $1, %eax #1.
nov| Yeax, -176(%ebp) #1.
novl Y%eax, -168(%bp) #1.
novl 20(%ebp), %edx #1.
novl (%edx), %edx #1.
nov| Yedx, -172(%ebp) #1.
novl -164(%ebp), %edx #1.
nov| Y%edx, -192(%bp) #1.
novl 8(%bp), %edx #1.
nov| Y%edx, -196(%ebp) #1.
movl $4, -204(%bp) #1.
nov| -204(%bp), %edx #1.
negl %edx #1.
addl -196(%bp), %edx #1.
novl %edx, -200(%bp) #1.
nov| Y%eax, -180(%ebp) #1.
novl -192(%bp), %ax #1.
t act | Omav 0mav #1

QOO OO0OOO0O

(o Ne]

COOO0OO0OOOO0OO0OO0

#1.

pleololojlolololololololololololololoNe N

0

194

Intel® Fortran Compiler User's Guide

[GRS W | 7N ANy VA "V VAN

jg ..B1.8 # Prob 50%
LCE
.. Bl. 6: # Preds ..BL.
nmov| -172(%ebp), %eax
testl Yeax, %Yeax
ig ..B1.8 # Prob 50%
LOE
.. B1.7: # Preds ..Bl.
nmovl $0, -172(%bp)
LOE
.. Bl. 8: # Preds ..BLl.
nmovl $4, Y%eax
novl Y%eax, -140(%bp)
nmov| Y%eax, -144(%bp)
novl $1, %dx
nmov| %edx, -132(%bp)
novl Y%edx, -124(%bp)
novl 20(%bp), %ecx
nov| (%ecx), %ecx
novl %ecx, -128(%bp)
nov| -164(%bp), %ecx
novl %ecx, -148(%bp)
nov| 12(%bp), %ecx
novl %ecx, -152(%bp)
novl Y%eax, -160(%bp)
novl -160(%ebp), %eax
negl Yeax
addl -152(%bp), %eax
novl Y%eax, -156(%bp)
novl %edx, -136(%bp)
nov| -148(%ebp), %eax
testl Y%eax, %Yeax
ig .. B1.11 # Prob 50%
LOE
.. Bl1.9: # Preds ..BLl.
novl -128(%ebp), %eax
testl Yeax, %Yeax
jg ..Bl.11 # Prob 50%
LCE
.. B1.10: # Preds ..Bl1
nov| $0, -128(%bp)
LOE
.. Bl. 11: # Preds ..BL.
movl $4, Y%eax
novl %eax, -100(%bp)
novl Y%eax, -104(%bp)
novl $1, %dx
novl %edx, -92(%bp)
nmov| %edx, -84(%bp)
novl 20(%ebp), %ecx
nov| (%ecx), %ecx
novl %ecx, -88(%bp)
laga\V! - 1RA(ehn) 0 v

oA

#1.

#1.
#1.
#1.

#1.

#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.

#1.
#1.
#1.

#1.

.. B1.10 .
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.
#1.

#1

O (¢

eleololololololeololololololololololololoNoNaNy) o oo

oo

Bl1.

D200 0000000

8

195

1w v

nov|
mov|
nov|
mov|
novl
negl
addl
mov|
novl
mov|
testl

19

.. Bl.12:

movl
testl

19

.. B1.13:

nov|

.. B1. 14:

.. LN2:
pushl
nmovl
cal |

.. Bl1. 35:

addl
nov|

.. B1. 15:

nmov|
testl
j ne

.. Bl1. 16:

addl
mov|
novl
nmov|
cal |

.. B1. 36:

addl

.. Bl1.17:

addl
| ea
nov|
nmov|
nov|

[22a}V4!

Intel® Fortran Compiler User's Guide

LUT\ /TNy I\I.oCI\ [

%ecx, -108(%bp) #1.
16(%ebp), %ecx #1.
%ecx, -112(%bp) #1.
Y%eax, -120(%bp) #1.
-120(%bp), %ax #1.
Yeax #1.
-112(%bp), %ax #1.
Y%eax, -116(%bp) #1.
Y%edx, -96(%bp) #1.
-108(%ebp), %eax #1.
Oeax, %Yeax #1.
..Bl.14 # Prob 50% #1.
LOE
Preds ..Bl.11
- 88(%bp), %eax #1.
Y%eax, %Yeax #1.
..Bl.14 # Prob 50% #1.
LOE
Preds ..Bl.12
$0, -88(%bp) #1.
LOE
Preds ..B1.12 ..B1.13
Yedi #6.
$.2.1 2 knpc_loc_struct _pack. 1, (%esp) #6.
__knpc_ok to fork #6.
LOE eax
Preds ..Bl.14
$4, %esp #6.
Y%eax, -20(%bp) #6.
LOE
Preds ..B1l.35
-20(%ebp), %eax #6.
Y%eax, %Yeax #6.
..B1.19 # Prob 50% #6.
LOE
Preds ..Bl.15
$-8, %esp #6.
$.2.1 2 knpc_loc_struct _pack. 1, (%esp) #6.
-208(%ebp), %eax #6.
Yeax, 4(%esp) #6.
__knpc_serialized parallel #6.
LOE
Preds ..B1.16
$8, %esp #6.
LOE
Preds ..Bl. 36
$-24, %esp #6.
-208(%bp), %eax #6.
Y%eax, (%esp) #6.
$ knpv_zeropadd__ 0, 4(%sp) #6.
-196(%ebp), %ax #6.
0Omav Ql O/men) #HA

COO0OO0OO0OOOO0OOOOOC

(oNoNe]

.. Bl. 11

oo

o oleoloNoNe] (eoNoNe]

2000000

196

Intel® Fortran Compiler User's Guide

1w v

nov|
mov|
nov|
mov|
| ea
mov|
cal |

.. B1.37:
add|

.. B1.18:
addl
mov|
nmov|
mov|
cal l

.. Bl1. 38:
addl
] mp

..B1.19:
addl
nmov|
novl
nmov|
novl
nmov|
novl
nmov|
novl
nmov|
| ea
nmov|
cal |

.. B1. 39:
addl
Jnp

.. Bl1. 20:
nmov|
nov|
.. LN3:
nov|

. LN4
nov|

. LN5:
nov|
.. LN6:
nov|

[22a}V4!

7N ANy L AURA 2 =y}

-152(%bp), %ax
Y%eax, 12(%esp)
-112(%bp), %ax
Y%eax, 16(%esp)
20(%ebp), %eax
Y%eax, 20(%esp)

_padd__6__par _| oopO

LCE
Preds
$24, Y%esp
LOCE
Preds
$-8, %esp

$.2.1 2 knpc_l oc_struct _pack. 1

-208(%ebp), %eax
Yeax, 4(%esp)

.. B1. 17

.. B1. 37

__knmpc_end_serialized parall el

LOE
Preds
$8, %esp
..B1.31 # Prob 100%
LOE
Preds
$-28, %esp

$.2.1 2 knpc_l oc_struct_pack. 1

$4, 4(%esp)

.. B1.18

.. B1.15

$ padd__6_ par_| oop0, 8(%sp)

-196(%ebp), %eax
Yeax, 12(%esp)
-152(%ebp), %eax
Y%eax, 16(%esp)
-112(%ebp), %eax
Y%eax, 20(%esp)
20(%bp), %eax
Yeax, 24(%esp)

__knpc_fork_call
LCE
Preds
$28, %esp
..B1.31 # Prob 100%
LCE
Preds

$1, %ax
Y%eax, -72(%ebp)

-80(%ebp), %edx
%edx, -68(%bp)
-80(%bp), %edx

%edx, -64(%bp)
®N - AN(Vehn)

.. B1.19

.. B1.30

(Yesp)

(Yesp)

#6.
#6.
#6.
#6.
#6.
#6.
#6.

QOO OOOOC

#6.

o

#6.
#6.
#6.
#6.
#6.

olololoNe)

#6.
#6.

oo

#6.
#6.

#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.

eoleolojololololololeNoNoNe)

#6.
#6.

(o Ne]

#6.0
#6. 0

#10.0
#6. 0
#10.0

#6.0
#R N

197

Intel® Fortran Compiler User's Guide

nov|
addl
nov|
mov|
novl
mov|
| ea
mov|
| ea
mov|
| ea
mov|
| ea
mov|
nmov|
mov|
cal l

addl

nmov|
novl
cnpl
19

nmov|
novl
cnpl
19

ﬁDvI
_m)vl
J mp

nov|
nmovl

nov|
nmov|
nov|
nmov|

j np
addl

nmovl

[22a}V4!

Bl1.

. B1.

. B1.

. B1.

. B1.

. B1.

B1.

40:

21:

22:

23:

24:

25:

26:

Wy, YU\ ey

Y%eax, -56(%bp)
$- 36, %esp

$.2.1 2 knpc_loc_struct _pack. 1,

-8(%bp), %edx
Y%edx, 4(%esp)
$34, 8(%esp)
-60(%ebp), %edx
Y%edx, 12(%esp)
-72(%bp), %edx
Y%edx, 16(%esp)
-68(%bp), %edx
Y%edx, 20(%esp)
-56(%bp), %edx
Y%edx, 24(%esp)
Y%eax, 28(%esp)
Y%eax, 32(%esp)

__knpc_for_static_init_4

LCE

Preds ..

$36, %esp
LCE

Preds ..

-72(%bp), %eax

-64(%bp), %edx

%edx, %eax

.. Bl. 26 # Prob 50%
LCE

Preds ..

-68(%bp), %eax

-64(%bp), %edx

%edx, %eax

..Bl. 24 # Prob 50%
LOE

Preds ..

-68(%bp), Yeax

Y%eax, -16(%bp)

.. B1.25 # Prob 100%
LOE

Preds ..

- 64(%bp), %eax
Y%eax, -16(%bp)
LOE

Preds ..

-16(%bp), %eax
%eax, -68(%bp)
-72(%bp), %eax
Y%eax, -76(%bp)

.. Bl1.27 # Prob 100%
LOE
Preds
$-8, %esp

$.2.1 2 knmpc_l oc_struct _pack. 1,

- Qf /ahn) /Ay

B1. 20

B1. 40

Bl. 21

Bl. 22

Bl. 22

.. B1.28 ..

Bl.24 ..

(Yesp)

Bl1.

B1.

(Yesp)

#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.
#6.

#6.

#6.
#6.
#6.
#6.

#6.
#6.
#6.
#6.

#6.
#6.
#6.

#6.
#6.

23

#6.
#6.
#6.
#6.
#6.

21

#6.
#6.

oleololololololololololololNeNoNoNal

oNoloNoNe] oo (oNeNe] oleoNoNe) ool o

200

198

Intel® Fortran Compiler User's Guide

1w v A URA 2 =] 7 W AN

novl Y%eax, 4(%esp)
cal | __knpc_for_static_fini
LOE
.. Bl1.41: # Preds
addl $8, %esp
j mp ..B1.31 # Prob 100%
LOE
.. Bl1. 27: # Preds
.. LN7:
cal | onp_get _thread num_
LOE eax
.. Bl.42: # Preds
novl Y%eax, -12(%bp)
LOE
.. Bl1. 28: # Preds
nmov| -12(%bp), %eax
novl Y%eax, -52(%bp)
. LN8:
nov| -76(%bp), %eax
.. LN9:
nov| 16(%ebp), %edx
.. LN10O:
nov| -76(%bp), %ecx
.. LN11:
nov| 20(Y%ebp), %ebx
.. LN12:
nmov| - 4(%bx, %ecx, 4), %ecx
addl - 4(%dx, Y%eax, 4), %ecx
addl -52(%bp), %ecx
novl -76(%bp), %eax
.. LN13:
novl 24(%bp), %edx
.. LN14:
novl %ecx, -4(%dx, Y%eax, 4)
.. LN15:
i ncl - 76(Yebp)
nov| -76(%bp), %eax
novl -68(%bp), %dx
cnpl Y%edx, %eax
jle .. Bl. 27 # Prob 50%
j mp .. Bl. 26 # Prob 100%
LOE
.type padd_, @unction
.Sl ze padd_, .-padd_
.globl _padd__6__par_I| oopO
_padd__6__par_| oopO:
parameter 1: 8 + %bp
paraneter 2: 12 + %bp
parameter 3: 16 + %bp
paraneter 4: 20 + %bp
parameter 5. 24 + %bp
paraneter 6: 28 + %bp
R1 22N-: # Pr ade

.. Bl1. 26

.. B1.28 ..

.. B1. 27

.. Bl1.42

R1 N

B1.

#6.
#6.

#6.
#6.
25

#8.
#8.
#8.
#8.
#9.
#6.
#9.
#6.
#9.
#9.
#9.
#9.
#6.

#9.

O O«

oNe

o o ool o o o o oo

#10.
#10.
#10.
#10.
#10.
#10.

[eolololoNeNe

199

Intel® Fortran Compiler User's Guide

P . UV 1 [I A VR] [T =N R

. LN16:

pushl %ebp #13.0

novl Y%esp, %ebp #13.0

subl $208, %esp #13.0

novl %ebx, -4(%bp) #13.0

.. LN17:

novl 8(%bp), %Y%eax #6. 0

nmov| (%eax), %eax #6.0

novl Y%eax, -8(%bp) #6. 0

nmov| 28(%bp), %eax #6.0

.. LN18:

nmov| (%eax), %eax #7.0

nov| (%eax), %ax #7.0

nmov| Y%eax, -80(%bp) #7.0

nov| $1, -76(%bp) #7.0

nmov| -80(%bp), %ax #7.0

testl Yeax, %Yeax #7.0

jg .. B1.20 # Prob 50% #7.0
LCE

.. Bl. 31: #

Preds ..B1.41 ..B1.39 ..B1.38 ..Bl1.30

.. LN19:

nov| -4(%bp), %ebx #13.0

| eave #13.0

ret #13.0

.align 4, 0x90

mar k_end;

Debugging Shared Variables

When a variable appears in a PRI VATE, FI RSTPRI VATE, LASTPRI VATE, or REDUCTI ON

clause on some block, the variable is made private to the parallel region by redeclaring it in
the block. SHARED data, however, is not declared in the threaded code. Instead, it gets its

declaration at the routine level. At the machine code level, these shared variables become
incoming subroutine call arguments to the threaded entry points (such as

____PADD 6__par _I oop0).

In Example 2, the entry point __ PADD _6_par _| oopO has six incoming parameters. The
corresponding OpenMP parallel region has four shared variables. First two parameters
(parameters 1 and 2) are reserved for the compiler's use, and each of the remaining four
parameters corresponds to one shared variable. These four parameters exactly match the
last four parametersto __knpc_fork_cal | () inthe machine code of PADD.

£J Note
The FI RSTPRI VATE, LASTPRI VATE, and REDUCTI ON variables also require shared
variables to get the values into or out of the parallel region.

Due to the lack of support in debuggers, the correspondence between the shared variables

(in their original names) and their contents cannot be seen in the debugger at the threaded
entry point level. However, vou can still move to the call stack of one of the subroutines and

200

Intel® Fortran Compiler User's Guide

examine the contents of the variables at that level. This technigue can be used to examine
the contents of shared variables. In Example 2, contents of the shared variables A, B, C,
and N can be examined if you move to the call stack of PARALLEL() .

Vectorization

The vectorizer is a component of the Intel® Fortran Compiler that automatically uses SIMD
instructions in the MMX(TM), SSE, and SSEZ2 instruction sets. The vectorizer detects
operations in the program that can be done in parallel, and then converts the sequential
operations like one SIMD instruction that processes 2, 4, 8 or up to 16 elements in parallel,
depending on the data type.

This section provides options description, guidelines, and examples for Intel® Fortran
Compiler vectorization implemented by IA-32 compiler only. For additional information, see
Publications on Compiler Optimizations.

The following list summarizes this section contents.
¢ Descriptions of compiler options to control vectorization
o Vectorization Key Programming Guidelines
¢ Discussion and general guidelines on vectorization levels:
—automatic vectorization
—vectorization with user intervention
o Examples demonstrating typical vectorization issues and resolutions

The Intel compiler supports a variety of directives that can help the compiler to generate
effective vector instructions. See compiler directives supporting vectorization.

Vectorizer Options

Vectorization is an 1A-32-specific feature and can be summarized by the command line
options described in the following tables. Vectorization depends upon the compiler's ability
to disambiguate memory references. Certain options may enable the compiler to do better
vectorization. These options can enable other optimizations in addition to vectorization.
When a - x{ M K| W or - ax{ M K| W is used and - Q2 (which is ON by default) is also in
effect, the vectorizer is enabled. The - x{ M K| W or - Qax{ M K| W options enable
vectorizer with - Ol and - O3 options also.

-x{M K| W Generate specialized code to run

exclusively on the processors supporting
tha avtancinnc indiratad hv S €M KI N Qaa

201

Intel® Fortran Compiler User's Guide

LIL ULALUITIOIVIITIO THTUuivaualteu L}y 1 |V| |\| V!' DA o 2

Exclusive Specialized Code with - x

{i| M K| W for details.
FJ Note

- X1 is not a vectorizer option.

-ax{M K| W Generates, in a single binary, code
specialized to the extensions specified by
{M K| W and also generic IA-32 code. The
generic code is usually slower. See
Specialized Code with - ax{i | M K| W for
details.

FJ Note

- axi is not a vectorizer option.

-vec_report Controls the diagnostic messages from the
{0] 1] 2| 3| 4] 5} vectorizer, see subsection that follows the
Default: table.

-vec_reportl

Vectorization Reports

The -vec_report{0| 1| 2| 3| 4| 5} options directs the compiler to generate the
vectorization reports with different level of information as follows:

-vec_report 0: no diagnostic information is displayed
-vec_report 1: display diagnostics indicating loops successfully vectorized (default)

-vec_report 2:same as -vec_report 1, plus diagnostics indicating loops not
successfully vectorized

-vec_report 3:same as - vec_report 2, plus additional information about any proven or
assumed dependences

-vec_report 4:indicate non-vectorized loops

-vec_report 5: indicate non-vectorized loops and the reason why they were not
vectorized.

Usage with Other Options

The vectorization reports are generated in the final compilation phase when executable is
generated. Therefore if you use the - ¢ option and a - vec_r eport { n} option in the
command line, no report will be generated.

Ifyouuse -c,-ipoand-x{M KW or-ax{M K| W and - vec_report{n}, the compiler

202

Intel® Fortran Compiler User's Guide

Issues a warning and no report is generated.

To produce a report when using the above mentioned options, you need to add the -

i po_obj option. The combination of - ¢ and - i po_obj produces a single file compilation,
and hence does generate object code, and eventually a report is generated.

The following commands generate vectorization report:

prompt>ifc -x{M KW -vec_report3 file.f

prompt>ifc -x{M KW -ipo -ipo_obj -vec report3 file.f

pronmpt>ifc -¢c -x{M KIW -ipo -ipo_obj -vec_report3 file.f

Loop Parallelization and Vectorization

Combining the - paral | el and - x{ M K| W options instructs the compiler to attempt both
automatic loop parallelization and automatic loop vectorization in the same compilation. In
most cases, the compiler will consider outermost loops for parallelization and innermost
loops for vectorization. If deemed profitable, however, the compiler may even apply loop
parallelization and vectorization to the same loop. See Guidelines for Effective Auto-
parallelization Usage and Vectorization Key Programming Guidelines.

Note that in some rare cases successful loop parallelization (either automatically or by
means of OpenMP* directives) may affect the messages reported by the compiler for a
non-vectorizable loop in a non-intuitive way.

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD)
processing automatically. Users can help however by supplying the compiler with additional
information; for example, directives. Review these guidelines and restrictions, see code
examples in further topics, and check them against your code to eliminate ambiguities that
prevent the compiler from achieving optimal vectorization.

Guidelines

You will often need to make some changes to your loops.
For loop bodies -

Use:

o Straight-line code (a single basic block)

- \/artnr data nnh/ that ic arravie and invrariant avnraccinne nn tha rinht hand cida nf

203

Intel® Fortran Compiler User's Guide

- VoUuwulul uuUalume vi "yl il 19y, «“ii u_yo (SRS IR ACIRICINLY LII\PI COIIVIIO VI LIV Ilvl IcirianIu vivue vi

assignments. Array references can appear on the left hand side of assignments.
o Only assignment statements
Avoid:
o Function calls
¢ Unvectorizable operations (other than mathematical)
e Mixing vectorizable types in the same loop
o Data-dependent loop exit conditions
e Loop unrolling (compiler does it)

e Decomposing one loop with several statements in the body into several single-
statement loops.

Restrictions
Vectorization depends on the two major factors:

e Hardware. The compiler is limited by restrictions imposed by the underlying
hardware. In the case of Streaming SIMD Extensions, the vector memory operations
are limited to st ri de- 1 accesses with a preference to 16-byte-aligned memory
references. This means that if the compiler abstractly recognizes a loop as
vectorizable, it still might not vectorize it for a distinct target architecture.

o Style. The style in which you write source code can inhibit optimization. For example,
a common problem with global pointers is that they often prevent the compiler from
being able to prove that two memory references refer to distinct locations.
Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop
structures. The ambiguity arises from the complexity of the keywords, operators, data
references, and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic
messages, you can modify your program to overcome the known limitations and enable
effective vectorization. The following sections summarize the capabilities and restrictions of
the vectorizer with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the operations in
serial loops. Because vectorization rearranges the order in which operations are executed,
anv aito-vectarizer miist have at its disnnsal some form of data denendence analvsis.

204

Intel® Fortran Compiler User's Guide

Bl At I R I i e ettt it R e R I PR S BTL]

An example where data dependencies prohibit vectorization is shown below. In this
example, the value of each element of an array is dependent on the value of its neighbor
that was computed in the previous iteration.

Data-dependent Loop
REAL DATA(O: N)

| NTEGER |

DO I=1, N1

DATA(1) =DATA(I-1)*0. 25+DATA(I)*0. 5+DATA(| +1) *0. 25
END DO

The loop in the above example is not vectorizable because the WRI TE to the current
element DATA(|) is dependent on the use of the preceding element DATA(| - 1) , which
has already been written to and changed in the previous iteration. To see this, look at the
access patterns of the array for the first two iterations as shown below.

Data Dependence Vectorization
Patterns

| =1: READ DATA (0)

READ DATA (1)

READ DATA (2)

VRI TE DATA (1)

| =2: READ DATA(1)

READ DATA (2)

READ DATA (3)

VRI TE DATA (2)

In the normal sequential version of this loop, the value of DATA(1) read from during the
second iteration was written to in the first iteration. For vectorization, it must be possible to
do the iterations in parallel, without changing the semantics of the original loop.

Data Dependence Analysis

Data dependence analysis involves finding the conditions under which two memory
accesses may overlap. Given two references in a program, the conditions are defined by:

o whether the referenced variables may be aliases for the same (or overlapping)
regions in memory, and, for array references

o the relationship between the subscripts

For 1A-32, data dependence analyzer for array references is organized as a series of tests,
which progressively increase in power as well as in time and space costs. First, a number of
simple tests are performed in a dimension-by-dimension manner, since independence in
any dimension will exclude any dependence relationship. Multidimensional arrays
references that may cross their declared dimension boundaries can be converted to their

205

Intel® Fortran Compiler User's Guide

linearizea Torm petore tne 1ests are applied. Some Of the simpie 1ests that can be used are
the fast greatest common divisor (GCD) test and the extended bounds test. The GCD test
proves independence if the GCD of the coefficients of loop indices cannot evenly divide the
constant term. The extended bounds test checks for potential overlap of the extreme values
in subscript expressions. If all simple tests fail to prove independence, we eventually resort
to a powerful hierarchical dependence solver that uses Fourier-Motzkin elimination to solve
the data dependence problem in all dimensions. For more details of data dependence
theory and data dependence analysis, refer to the Publications on Compiler Optimizations.

Loop Constructs

Loops can be formed with the usual DO- ENDDOand DO WHI LE, or by using a GOTOand a
label. However, the loops must have a single entry and a single exit to be vectorized.
Following are the examples of correct and incorrect usages of loop constructs.

Correct Usage

SUBRQUTI NE FOO (A, B, O
DI MENSI ON A(100), B(100), C
(100)

| NTEGER |

I =1

DO WH LE (I .LE. 100)

ACl) = B(I) * (1)

IF (A(l) .LT. 0.0) A(l) =
0.0

I =1 + 1

ENDDO

RETURN

END

Incorrect Usage

SUBROUTI NE FOO (A, B, O

DI MENSI ON A(100), B(100), C
(100)

| NTEGER |

I =1

DO WHI LE (I .LE. 100)

AC) = B(I) *)

C The next statenent allows
early

Cexit fromthe | oop and
prevents

C vectorization of the | oop.
IF (A(l) .LT. 0.0) GOTO 10

206

Intel® Fortran Compiler User's Guide

=0 Tt 1
ENDDO

10 CONTI NUE
RETURN

END

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For example,
fixed indexes for loops determine the iterations. The loop iterations must be countable; that
is, the number of iterations must be expressed as one of the following:

e aconstant

¢ aloop invariant term

e alinear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show
countable and non-countable loop constructs.

Correct Usage for Countable Loop, Example 1
SUBROUTI NE FOO (A, B, C, N, LB)

DI MENSI ON A(N), B(N), C(N)

| NTEGER N, LB, |, COUNT

' Nunber of iterations is "N - LB +
1"

COUNT = N

DO VHI LE (CClJNT GE. LB)

A(l) =B(I) * C(I)

COUNT = COUNT -

I =1 + 1

ENDDO ! LB is not defined within

| oop

RETURN

END

Correct Usage for Countable Loop, Example 2
' Nunber of iterations is (N-M2) /2
SUBROUTINE FOO (A, B, C M N, LB)
DI MENSI ON A(N), B(N) C(N)

INTEGER |, L, M

I = 1,

DOL = MN,?2

ACl) = B(I) * 1)

I =1 + 1

ENDDO

RETURN

END

Incorrect Usage for Non-countable Loop

207

Intel® Fortran Compiler User's Guide

' Nunber of iterations is dependent
on A(l)

SUBROUTI NE FOO (A, B, ©

DI MENSI ON A(100), B(100), C(100)
| NTEGER |

I =1

DO WHI LE (A(l) .GT. 0.0)

ACl) = B(I) * 1)

I =1 +1

ENDDO

RETURN

END

Types of Loop Vectorized

For integer loops, the 64-bit MMX(TM) technology and 128-bit Streaming SIMD Extensions
(SSE) provide SIMD instructions for most arithmetic and logical operators on 32 -bit, 16-bit,
and 8-bit integer data types. Vectorization may proceed if the final precision of integer wrap -
around arithmetic will be preserved. A 32-bit shift-right operator, for instance, is not
vectorized in 16-bit mode if the final stored value is a 16-bit integer. Because the MMX(TM)
and SSE instruction sets are not fully orthogonal (shifts on byte operands, for instance, are
not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point
numbers, SSE provides SIMD instructions for the arithmetic operators '+, '-', *', and '/". In
addition, SSE provides SIMD instructions for the binary M N and MAX and unary SQRT
operators. SIMD versions of several other mathematical operators (like the trigonometric
functions SI N, COS, TAN) are supported in software in a vector mathematical runtime library
that is provided with the Intel® Fortran Compiler, of which the compiler takes advantage.

Stripmining and Cleanup

The compiler automatically strip-mines your loop and generates a cleanup loop.

Stripmining and Cleanup Loops
Bef ore Vectorization

i =1

do while (i<=n)

a(i) =b(i) + c(i) ! Oiginal |oop code
i =i +1

end do

After Vectorization

' The vectorizer generates the foll ow ng
two | oops

i =1

do while (i < (n - nod(n,4)))

AN O P S Y . I B

208

Intel® Fortran Compiler User's Guide

! veCLUIl StLI1 P-1mnea 1 oop.

a(i:i+3) = b(i:i+3) + c(i:i+3)

i =i +4

end do

do while (i <= n)

a(i) =Db(i) + c(i) ' Scal ar cl ean-up
| oop

=i +1

end do

Statements in the Loop Body
The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations

The statements within the loop body may be REAL operations (typically on arrays).
Arithmetic operations supported are addition, subtraction, multiplication, division, negation,
square root, MAX, M N, and mathematical functions such as SI Nand CCS. Note that
conversion to/from some types of floats is not valid. Operation on DOUBLE PREC!I SI ON
types is not valid, unless optimizing for a

Pentium® 4 and Xeon(TM) processors system, using the - xWor - ax Wcompiler option.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations (again, typically
for arrays). Arithmetic operations are limited to such operations as addition, subtraction,
ABS, M N, and MAX. Logical operations include bitwise AND, OR and XOR operators. You can
mix data types only if the conversion can be done without a loss of precision. Some

example operators where you can mix data types are multiplication, shift, or unary
operators.

Other Operations

No statements other than the preceding floating-point and integer operations are permitted.
The loop body cannot contain any function calls other than the ones described above.

Vectorization Examples
This section contains simple examples of some common issues in vector programming.
Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because the
compiler cannot prove that DEST(A(1)) and DEST(B(1)) are distinct.

Unvectorizable Copy Due to Unproven
Distinction

209

Intel® Fortran Compiler User's Guide

SUBROUTI NE VEC_COPY
(DEST, A, B, LEN)

DI MENSI ON' DEST(*)

| NTEGER A(*), B(*)

| NTEGER LEN, |

DO | =1, LEN

DEST(A(1)) = DEST(B(I))
END DO

RETURN

END

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each
structure or array element is aligned in a way that its base address is a multiple of 16.

The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a data cache
unit (DCU) split due to misaligned data. The code loads the misaligned data across a 16-
byte boundary, which results in an additional memory access causing a six- to twelve-cycle
stall. You can avoid the stalls if you know that the data is aligned and you specify to
assume alignment

Misaligned Data Crossing 16-Byte

Boundary
15 Byie 16 Byte
L Boundaries + Houndaries 4

I:I:—:I:I

MWisaligned Data

After vectorization, the loop is executed as shown in figure below.

Vector and Scalar Clean-up lIterations

2 wactor iterations 2 clean-up iterations
in scalar moda
il fime--snll fiam-
i=1,2, 34 i=5 6,7, 8 i=9 10

Both the vector iterations A(1: 4) = B(1:4);and A(5:8) = B(5:8);canbe
implemented with aligned moves if both the elements A(1) and B(1) are 16-byte aligned.

A\ caution

If you specify the vectorizer with incorrect alignment options, the compiler will
generate code with unexpected behavior. Specifically, using aligned moves on
unaligned data, will result in an illegal instruction exception!

Alianment Strateav

210

Intel® Fortran Compiler User's Guide

~ ~ s

The compiler has at its disposal several alignment strategies in case the alignment of data
structures is not known at compile-time. A simple example is shown below (several other
strategies are supported as well). If in the loop shown below the alignment of A is unknown,
the compiler will generate a prelude loop that iterates until the array reference, that occurs
the most, hits an aligned address. This makes the alignment properties of A known, and the
vector loop is optimized accordingly. In this case, the vectorizer applies dynamic loop
peeling, a specific Intel® Fortran feature.

Data Alignment Example
Original loop:

SUBROUTI NE DA T(A)

REAL A(100) I alignnment of argunent A
i s unknown

DOI =1, 100

A(l) = A(l) + 1.0

ENDDO

END SUBROUTI NE

Aligning Data

' The vectorizer wll apply dynam c | oop
peeling as foll ows:

SUBROUTI NE DO T(A)

REAL A(100)

I et P be (A¥d6)where A is address of A(1l)
IF (P .NE. 0) THEN

P=(16 - P) /4 I determ ne runtine
peel i ng factor

DOI =1, P

A(l) = A(l) + 1.0

ENDDO

ENDI F

' Now this |oop starts at a 16-byte boundary,
I and will be vectorized accordingly
DOl =P + 1, 100

A(l) = A(l) + 1.0

ENDDO

END SUBROUTI NE

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the following example.

= C(1,J) + A(l, K *B(K, J)

211

Intel® Fortran Compiler User's Guide

END DO
END DO
END DO

The use of B(K, J),isnota stri de- 1 reference and therefore will not normally be
vectorizable. If the loops are interchanged, however, all the references will become
stride- 1 as in the Matrix Multiplication with Stride-1 example that follows.

£l Note

Interchanging is not always possible because of dependencies, which can lead to
different results.

Matrix Multiplication with Stride-1
DO J=1, N

DO K=1, N

DO 1=1,N

c(l1,J) =Cl1,Jd) + A(lI,K*B
(K, J)

ENDDO

ENDDO

ENDDO

For additional information, see Publications on Compiler Optimizations.

212

Intel® Fortran Compiler User's Guide

Optimization Support Features

This section describes the Intel® Fortran features such as directives, intrinsics, runtime
library routines and various utilities which enhance your application performance in support
of compiler optimizations. These features are Intel Fortran language extensions that enable
you optimize your source code directly. This section includes examples of optimizations
supported by Intel extended directives and intrinsics or library routines that enhance and/or
help analyze performance.

For complete detail of the Intel® Fortran Compiler directives and examples of their use, see
Appendix A in the Intel® Fortran Programmer's Reference. For intrinsic procedures, see
Chapter 1, "Intrinsic Procedures,"” in the Intel® Fortran Libraries Reference.

A special topic describes options that enable you to generate optimization reports for major
compiler phases and major optimizations. The optimization report capability is used for
[tanium®-based applications only.

Compiler Directives

This section discusses the Intel® Fortran language extended directives that enhance
optimizations of application code, such as software pipelining, loop unrolling, prefetching
and vectorization. For complete list, descriptions and code examples of the Intel® Fortran
Compiler directives, see Appendix A in the Intel® Fortran Programmer's Reference.

Pipelining for Iltanium®-based Applications

The SWP | NOSWP directives indicate preference for a loop to get software-pipelined or
not. The SWP directive does not help data dependence, but overrides heuristics based on
profile counts or lop-sided control flow.

The syntax for this directive is:
CDIR$ SWPor! DI RS SWP
CDI RS NOSWP or ! DI R$ NOSWP

The software pipelining optimization triggered by the SWP directive applies instruction
scheduling to certain innermost loops, allowing instructions within a loop to be split into
different stages, allowing increased instruction level parallelism. This can reduce the impact
of long-latency operations, resulting in faster loop execution. Loops chosen for software
pipelining are always innermost loops that do not contain procedure calls that are not
inlined. Because the optimizer no longer considers fully unrolled loops as innermost loops,
fully unrolling loops can allow an additional loop to become the innermost loop (see -
unrol I [n]]). You can request and view the optimization report to see whether software
pipelining was applied (see Optimizer Report Generation).

213

Intel® Fortran Compiler User's Guide

SWP
CDI R$ SwWp
doi =1, m

if (a(i) .eq. 0) then
b(i) =a(i) +1

el se

b(i) =a(i)/c(i)

endi f

enddo

LOOP COUNT (N) Directive

The LOOP COUNT ('n) directive indicates the loop count is likely to be n.
The syntax for this directive is:

CDIR$ LOOP COUNT(n) or! DI R$ LOOP COUNT(n)

where n is an integer constant.

The value of loop count affects heuristics used in software pipelining, vectorization and
loop-transformations.

LOOP COUNT (N)

CDI R$ LOOP COUNT (10000)

doi =1, m

b(i) = a(i) +1 ! This is likely to enable
I the loop to get software-
' pipelined

enddo

Loop Distribution Directive

The DI STRI BUTE PO NT directive indicates to compiler a preference of performing loop
distribution.

The syntax for this directive is:
CDI R$ DI STRIBUTE PO NT or! DI R$ DI STRI BUTE PO NT

Loop distribution may cause large loops be distributed into smaller ones. This may enable
more loops to get software-pipelined. If the directive is placed inside a loop, the distribution
is performed after the directive and any loop-carried dependency is ignored. If the directive
is placed before a loop, the compiler will determine where to distribute and data
dependency is observed. Currently only one distribute directive is supported if it is placed
inside the loop.

214

Intel® Fortran Compiler User's Guide

DISTRIBUTE POINT
CDI R$ DI STRI BUTE PO NT

doi =1, m
b(i) = a(i) +1
(i) =

a(i) + b(i) ! Conpiler will decide where
I to distribute.
I Data dependency is observed

d(i) = c(i) + 1
enddo
doi =1, m

b(i) = a(i) +1
CDIR$ DI STRI BUTE POl NT

call sub(a, n) I Distribution will start
her e,
I ignoring all |oop-carried
I dependency
c(i) =a(i) + b(i)
d(i) =c(i) +1
enddo

Loop Unrolling Support

The UNROLL directive tells the compiler how many times to unroll a counted loop.

The syntax for this directive is:

CDI R$ UNROLL or! DI R$ UNRCLL

CDIR$ UNROLL [n] or! DIR$ UNROLL [n]

CDI R$ NOUNROLL or ! DI RS NOUNRCLL

where n is an integer constant. The range of n is 0 through 255.

The UNROLL directive must precede the do statement for each do loop it affects.

If n is specified, the optimizer unrolls the loop n times. If n is omitted or if it is outside the
allowed range, the optimizer assigns the number of times to unroll the loop.

The UNROLL directive overrides any setting of loop unrolling from the command line.
Currently, the directive can be applied only for the innermost loop nest. If applied to the

outer loop nests, it is ignored. The compiler generates correct code by comparing n and the
loop count.

215

Intel® Fortran Compiler User's Guide

UNROLL

CDI R$ UNROLL(4)
doi =1, m
b(i) =a(i) +1
d(i) =c(i) + 1
enddo

Prefetching Support

The PREFETCH and NOPREFTCH directives assert that the data prefetches be generated or
not generated for some memory references. This affects the heuristics used in the
compiler.

The syntax for this directive is:

CDI R$ PREFETCHor! DI R PREFETCH

CDI R$ NOPRFETCHor ! DI R$ NOPREFETCH

CDI R$ PREFETCH a, bor! DI R$ PREFETCH a, b

If loop includes expression a(j), placing PREFETCH a in front of the loop, instructs the

compiler to insert prefetches for a(j + d) within the loop. d is determined by the compiler.
This directive is supported when option - Q3 is on.

PREFETCH

CDI R$ NOPREFETCH c
CDl R$ PREFETCH a

doi =1, m
b(i) = a(c(i)) + 1
enddo

Vectorization Support (IA-32)

The directives discussed in this topic support vectorization and used for 1A-32 applications
only.

| VDEP Directive

The compiler supports | VDEP directive which instructs the compiler to ignore assumed
vector dependences. Use this directive when you know that the assumed loop
dependences are safe to ignore.

For example, if the expression j >= 0 is always true in the code fragment bellow, the

| VDEP directive can communicate this information to the compiler. This directive informs
the compiler that the conservatively assumed loop-carried flow dependences for values j <
0 can be safely ignored:

216

Intel® Fortran Compiler User's Guide

! DI R$ | VDEP
doi =1, 100
a(i) = a(i+)
enddo

f) Note

The proven dependeces that prevent vectorization are not ignored, only assumed
dependeces are ignored.

The syntax for the directive is:

CDI R$! VDEP
! DI R$I VDEP

The usage of the directive differs depending on the loop form, see examples below.

For loops of the form 1, use old values of a, and assume that there is no loop-carried flow
dependencies from DEF to USE.

For loops of the form 2, use new values of a, and assume that there is no loop-carried anti-
dependencies from USE to DEF.

In both cases, it is valid to distribute the loop, and there is no loop-carried output
dependency.

Example 1

CDI R$I VDEP

do j=1,n

a(j) =a(j+m + 1
enddo

Example 2

CDI R$I VDEP

do j=1,n

a(j) = b(j) +1
b(j) =a(j+m + 1
enddo

217

Intel® Fortran Compiler User's Guide

Example 1 ignores the possible backward dependencies and enables the loop to get
software pipelined.

Example 2 shows possible forward and backward dependencies involving array a in this
loop and creating a dependency cycle. With | VDEP, the backward dependencies are
ignored.

| VDEP has options: | VDEP: LOOP and | VDEP: BACK. The | VDEP: LOOP option implies no
loop-carried dependencies. The | VDEP: BACK option implies no backward dependencies.

The | VDEP directive is also used for ltanium®-based applications.

For more details on the | VDEP directive, see Appendix A in the Intel® Fortran
Programmer's Reference.

Overriding Vectorizer's Efficiency Heuristics

In addition to | VDEP directive, there are three directives that can be used to override the
efficiency heuristics of the vectorizer:

! DI REBVECTOR ALWAYS

! DI RENOVECTCR

I DI RBVECTOR ALI| GNED

I DI RBVECTOR UNALI GNED

The VECTOR ALWAYS directive overrides the efficiency heuristics of the vectorizer, but it
only works if the loop can actually be vectorized, that is: use | VDEP to ignore assumed
dependences.

The VECTOR ALWAYS and NOVECTOR Directives

The VECTOR ALWAYS directive can be used to override the default behavior of the compiler
in the following situation. Vectorization of non-unit stride references usually does not exhibit
any speedup, so the compiler defaults to not vectorizing loops that have a large number of
non-unit stride references (compared to the number of unit stride references). The following
loop has two references with st ri de 2. Vectorization would be disabled by default, but the
directive overrides this behavior.
Vector Aligned

'DI R$ VECTOR ALWAYS

doi =1, 100, 2
a(i) = b(i)
enddo

If, on the other hand, avoiding vectorization of a loop is desirable (if vectorization results in
a performance regression rather than improvement), the NOVECTOR directive can be used
in the source text to disable vectorization of a loop. For instance, the Intel® Compiler
vectorizes the following example loop by default. If this behavior is not appropriate, the
NOVECTOR directive can be used, as shown below.

218

Intel® Fortran Compiler User's Guide

NOVECTOR

I DI RS NOVECTOR

do i 1, 100

a(i) b(i) + c(i)

enddo

The VECTOR ALI GNED and UNALI GNED Directives

Like VECTOR ALWAYS, these directives also override the efficiency heuristics. The
difference is that the qualifiers UNALI GNED and ALI GNED instruct the compiler to use,
respectively, unaligned and aligned data movement instructions for all array references.
This disables all the advanced alignment optimizations of the compiler, such as determining
alignment properties from the program context or using dynamic loop peeling to make
references aligned.

f) Note

The directives VECTOR [ALVWAYS, UNALI GNED, ALI GNED] should be used with care.
Overriding the efficiency heuristics of the compiler should only be done if the
programmer is absolutely sure the vectorization will improve performance.
Furthermore, instructing the compiler to implement all array references with aligned
data movement instructions will cause a runtime exception in case some of the
access patterns are actually unaligned.

Compiler Intrinsics

Intel® Fortran supports all standard Fortran intrinsic procedures and in addition, provides
Intel-specific intrinsic procedures to extend the functionality of the language. Intel Fortran
intrinsic procedures are provided in the library | i bi ntri ns. | i b. See Chapter 1, "Intrinsic
Procedures,"” in the Intel® Fortran Libraries Reference.

This topic provides examples of the Intel-extended intrinsics that are helpful in developing
efficient applications.

Cache Size Intrinsic (Itanium® Compiler)

Intrinsic cashesi ze(n) is used only with Intel® Itanium® Compiler. cashesi ze(n)
returns the size in kilobytes of the cache at level n; 1 represents the first level cache. Zero
is returned for a nonexistent cache level.

This intrinsic can be used in many scenarios where application programmer would like to
tailor their algorithms for target processor's cache hierarchy. For example, an application
may query the cache size and use it to select block sizes in algorithms that operate on
matrices.

219

Intel® Fortran Compiler User's Guide

subroutine foo (level)
i nteger |evel

if (cachesize(level) >
t hr eshol d)

call big_bar()

el se

call small _bar()

end if

end subroutine

Timing Your Application

One of the performance indicators is your application timing. Use the t i me command to
provide information about program performance. The following considerations apply to
timing your application:

e Run program timings when other users are not active. Your timing results can be
affected by one or more CPU-intensive processes also running while doing your
timings.

e Try to run the program under the same conditions each time to provide the most
accurate results, especially when comparing execution times of a previous version of
the same program. Use the same CPU system (model, amount of memory, version of
the operating system, and so on) if possible.

o If you do need to change systems, you should measure the time using the same
version of the program on both systems, so you know each system's effect on your
timings.

e For programs that run for less than a few seconds, run several timings to ensure that
the results are not misleading. Overhead functions like loading shared libraries might
influence short timings considerably.

Using the form of the t i me command that specifies the name of the executable program
provides the following:

e The elapsed, real, or "wall clock” time, which will be greater than the total charged
actual CPU time.

e Charged actual CPU time, shown for both system and user execution. The total actual
CPU time is the sum of the actual user CPU time and actual system CPU time.

Example

In the following example timings, the sample program being timed displays the following
line:

Average of all the nunbers is: 4368488960. 000000

220

Intel® Fortran Compiler User's Guide

Using the Bourne shell, the following program timing reports that the program uses 1.19
seconds of total actual CPU time (0.61 seconds in actual CPU time for user program use
and 0.58 seconds of actual CPU time for system use) and 2.46 seconds of elapsed time:

$ tinme a.out

Average of all the nunbers is:
4368488960. 000000

r eal OnR. 46s
user OnD. 61s

Sys OnD. 58s

Using the C shell, the following program timing reports 1.19 seconds of total actual CPU
time (0.61 seconds in actual CPU time for user program use and 0.58 seconds of actual
CPU time for system use), about 4 seconds (0:04) of elapsed time, the use of 28% of
available CPU time, and other information:

% tinme a.out

Average of all the nunbers is:
4368488960. 000000

0.61u 0.58s 0: 04 28% 78+424k 9+5i o Opf +0Ow

Using the bash shell, the following program timing reports that the program uses 1.19
seconds of total actual CPU time (0.61 seconds in actual CPU time for user program use
and 0.58 seconds of actual CPU time for system use) and 2.46 seconds of elapsed time:

[user @ystemuser]$ tinme ./a.out

Average of all the nunbers is:
4368488960. 000000

el apsed OnR. 46s

user OnD. 61s

Sys OnD. 58s

Timings that show a large amount of system time may indicate a lot of time spent doing 1/O,
which might be worth investigating.

If your program displays a lot of text, you can redirect the output from the program on the
time command line. Redirecting output from the program will change the times reported
because of reduced screen 1/0.

221

Intel® Fortran Compiler User's Guide

For more information, see ti me(1).

In addition to the t i me command, you might consider modifying the program to call
routines within the program to measure execution time. For example, use the Intel Fortran
intrinsic procedures, such as SECNDS, DCLOCK, CPU_TI ME, SYSTEM CLOCK, and
DATE_AND TI ME. See "Intrinsic Procedures” in the Intel® Fortran Libraries Reference.

Optimizer Report Generation (Iltanium® Compiler)

The Intel® Fortran Itanium® Compiler for Itanium®-based Applications provides options to
generate and manage optimization reports.

e -Opt _report generates optimizations report and places it in a file specified in
-opt _report _filefilenane.If-opt _report fil eisnotspecified, -
opt _report directs the report to st der r . The default is OFF: no reports are
generated.

e -0opt _report _filefil ename generates optimizations report and directs it to a file
specified in fi | enane.

e -opt _report_|evel {m n| med| max} specifies the detail level of the optimizations
report. The m n argument provides the minimal summary and the max the full report.
The default is
-opt _report I evel mn.

e -0Opt _report_routineroutine_substring generates reports from all routines
with names containing the subst r i ng as part of their name. If not specified, reports
from all routines are generated. The default is to generate reports for all routines
being compiled.

Specifying Optimizations to Generate Reports
The compiler can generate reports for an optimizer you specify in the phase argument of
the

-opt _report_phasephase option.

The option can be used multiple times on the same command line to generate reports for
multiple optimizers.

Currently, the following optimizer reports are supported:

Optimizer Logical Optimizer Full Name
Name

i po Interprocedural Optimizer
hl o High Level Optimizer

222

Intel® Fortran Compiler User's Guide

ilo Intermediate Language Scalar
Optimizer

ecg Itanium Compiler Code
Generator

onp OpenMP*

al | All optimizers

When one of the above logical names for optimizers are specified all reports from that
optimizer will be generated. For example, - opt _report phasei po and -

opt _report_phaseecg generate reports from the interprocedural optimizer and the code
generator.

Each of the optimizers can potentially have specific optimizations within them. Each of
these optimizations are prefixed with one of the optimizer logical names. For example:

Optimizer_optimization Full Name

i po_inline Interprocedural Optimizer,
inline expansion of functions

i po_const ant _propagation | Interprocedural Optimizer,
constant propagation

i po_function_reoder Interprocedural Optimizer,
function reorder

i | o_constant _propagation | Intermediate Language Scalar
Optimizer, constant
propagation

il o_copy_propagation Intermediate Language Scalar
Optimizer, copy propagation
ecg_sof tware_pi pelining Itanium Compiler Code
Generator, software pipelining

Command Syntax Example
The following command generates a report for the Itanium Compiler Code Generator (ecqQ):
pronpt>efc -c -opt_report -opt_report_phase ecg nyfile.f
where:
e - C tells the compiler to stop at generating the object code, not linking
e -Opt _report invokes the report generator

e -0Opt _report_phaseecg indicates the phase (ecg) for which to generate the report;
the space between the option and the phase is optional.

The entire name for a particular optimization within an optimizer need not be specified in
full, just a few characters is sufficient. All optimization reports that have a matching prefix

223

Intel® Fortran Compiler User's Guide

with the specified optimizer are generated. For example, if - opt _report phase il o_co

is specified, a report from both the constant propagation and the copy propagation are
generated.

The Availability of Report Generation

The - opt _report _hel p option lists the logical names of optimizers that are currently
available for report generation.

224

Intel® Fortran Compiler User's Guide

Libraries

You can determine the libraries for your applications by controlling the linker or by using the
options described in this section. See library options summary.

The LD _LI BRARY_PATH environment variable contains a colon-separated list of directories
that the linker will search for library (. a) files. If you want the linker to search additional
libraries, you can add their names to the command line, to a response file, or to the
configuration (. cf g) file. In each case, the names of these libraries are passed to the linker
before these libraries:

o the libraries provided with the Intel® Fortran Compiler (I i bCEPCF90. a,
l'i bl EPCF90. a,libintrins.a,libF90. a, and the math library: | i bi nf . a for
both IA-32 compiler and | i bm a for Itanium® compiler; | i bm a is the math library
provided with the gcc*)

o the default libraries that the compiler command always specifies are:

libinf.a*
libma
libirc.a*
libcxa.a*
libcprts.a*
i bunwi nd. a*
libc.a

The ones marked with an "*" are provided by Intel.

For more information on response and configuration files, see Response Files and
Configuration Files.

The linker uses the LD_LI BRARY_PATH variable to search for libraries. If you are compiling
with a linker option that forces static libraries, it will look for those at compile time.
Otherwise, it will look for shared libraries at runtime.

To specify a library name on the command line, you must first add the library's path to the
LD LI BRARY_PATH environment variable. Then, to compile fi | e. f and link it with the
library I i bm ne. a, for example, enter the following command:

IA-32 applications:

prompt>ifc file.f -Imne

[tanium®-based applications:

prompt >efc file.f -Imne

225

Intel® Fortran Compiler User's Guide

The example above implies that the library resides in your path.

The Order of Passing the Files to Linker
The compiler passes files to the linker in the following order:

1. Object files and libraries are passed to the linker in the order specified on the command
line.

2. Object files and libraries in the .cf g file will be processed before those on the command
line. This means that putting library names in the . cf g file does not make much sense
because the libraries will be processed before most object files are seen.

3. Thelibinf.a,libF90.a,libintrins.a,andli bl EPCF9O. a libraries.

4. The | i bm a library is linked in just before | i bc. a, thenli bc. a libraries.

See the list of libraries that are installed with the Intel® Fortran Compiler for [A-32
applications and for Itanium®-based applications.

Using the POSIX* and Portability Libraries

Use the - posi x| i b option with the compiler to invoke the POSIX* bindings library

| i bposf 90. a. For a complete list of these functions see Chapter 3, "POSIX Functions" in
the Intel® Fortran Libraries Reference Manual.

Use the - Vaxl! i b option with the compiler to invoke the VAX* compatibility functions

| i bpepcf 90. a. This also brings in the Intel's compatibility functions for Sun* and

Microsoft*. For a complete list of these functions see Chapter 2, "Portability Functions" in
the Intel® Fortran Libraries Reference Manual.

Intel® Shared Libraries

The Intel® Fortran Compiler (both 1A-32 and Itanium® compilers) links the libraries statically
at link time and dynamically at the run time, the latter as dynamically shared objects (DSO).

By default, the libraries are linked as follows:
e Fortran, math and | i bcprts. a libraries are linked at link time, that is, statically.
e | i bcxa. so is linked dynamically to conform to C++ application binary interface (ABI).

e GNU and Linux* system libraries are linked dynamically.

Advantages of This Approach

226

Intel® Fortran Compiler User's Guide

This approach—
o Enables to maintain the same model for both 1A-32 and Itanium compilers.

e Provides a model consistent with the Linux model where system libraries are dynamic
and application libraries are static.

e The users have the option of using dynamic versions of our libraries to reduce the size of
their binaries if desired.

e The users are licensed to distribute Intel-provided libraries.

The libraries | i bcprts. aand | i bcxa. so are C++ language support libraries used by
Fortran when Fortran includes code written in C++.

Shared Library Options
The main options used with shared libraries are -i _dynam c and - shar ed.
The -i _dynam c compiler option directs the linker to use the shared object versions of the

Intel-provided libraries dynamically. The comparison of the following commands illustrates
the effects of this option.

1. pronpt>ifc nyprog. f
This command produces the following results (default):

e Fortran, math, li birc. a,and | i bcprts. a libraries are linked statically (at link
time).

o Dynamic version of | i bcxa. so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to
be installed on the systems where the application runs.

2.prompt>ifc -i_dynam c nyprog.f
This command links all of the above libraries dynamically. This has the advantage of
reducing the size of the application binary, but it requires all the dynamic versions installed

on the systems where the application runs.

The - shar ed option instructs the compiler to build a dynamically shared object (DSO)
instead of an executable. For more details, refer to the | d man page documentation.

Math Libraries

227

Intel® Fortran Compiler User's Guide

The |'i bi nf . a is the math library provided by Intel and | i bm a is the math library
provided with gcc*. Both of these libraries are linked in by default on IA-32 and Itanium®
compilers. Both libraries are linked in because there are math functions supported by the
GNU math library that are not in the Intel math library. This linking arrangement allows for
all functions GNU users have available to them to be available when using i f ¢ (or ef ¢),
with Intel optimized versions available when supported. | i bi nf . a is linked in before

i bm a.Ifyoulinkin I i bm a first, it will change the versions of the math functions that are
used.

It is recommended that you place | i bi nf. a and | i bm a in the first directory specified in
the LD_LI BRARY_PATHvariable. The | i bi nf. a and | i bm a libraries are always linked
with Fortran programs.

For example, if you place a library in directory / per f or n1 , set the LD_LI BRARY_PATH
variable to specify a list of directories, containing all other libraries, separated by
semicolons.

For IA-32 Compiler, | i bm a contains both generic math routines and versions of the math
routines optimized for special use with the Intel® Pentium® 4 and Xeon(TM) processors.
For Itanium® Compiler, | i bm a is optimized for the use with Itanium architecture.

IA-32 Compiler

For IA-32 Compiler, I i bm | i b contains both generic math routines and versions of the
math routines optimized for special use with the Intel® Pentium® 4 and Xeon(TM)
processors.

[tanium® Compiler

For Itanium Compiler, I i bm | i b is optimized for the use with Itanium® architecture. The
Itanium compiler provides inlined version of the following math library primitives by using
the following intrinsics: ALOG, DLOG, ALOGL0, DLOGLO, | EXP, DEXP, CEl LI NG, and FLOOR.
The compiler inlines these intrinsics and schedules the generated code with surrounding
instructions. This can improve performance of typical floating -point applications.

Using Math Libraries with 1A-32 Systems

Most of the routines in | i bm a for IA-32 have been optimized for special use with the
Intel® Pentium® 4 and Xeon(TM) processors. Generic versions are used when running on
an 1A-32 processor generation prior to Pentium 4 processor family.

To use your own version of the standard math functions without unresolved external errors,
you must disable the automatic inline expansion by compiling your program with the
-nol i b_i nl i ne option, as described in Inline Expansion of Library Functions.

& Caution

228

Intel® Fortran Compiler User's Guide

A change of the default precision control or rounding mode (for example, by using the
- pc32 flag or by user intervention) may affect the results returned by some of the
mathematical functions.

Optimized Math Library Primitives

The optimized math libraries contain a package of functions, called primitives. The Intel

Fortran Compiler calls these functions to implement numerous floating-point intrinsics and
exponentiation. About half of the functions in the library from Intel are written in assembly
language and optimized for program execution speed on an IA-32 architecture processor.

£ Note
The library primitives are not Fortran intrinsics. They are standard library calls used by
the compiler to implement Intel Fortran language features.

Following is a list of math library primitives that have been optimized.

acos cos | 0og10 si nh
asin cosh pow sqrt
at an exp powf tan

at an2 | og sin t anh

The math library also provides the following non-optimized primitives.

acosh copysi gn | fnod ganma

asi nh erf f modf r emai nder
at anh f abs hypot rint

cbrt f absf jo yO0

ceil fl oor j1 yl

ceilf floorf jn y2

Programming with Math Library Primitives

Primitives adhere to standard calling conventions, thus you can call them with other high-
level languages as well as with assembly language. For Intel Fortran Compiler programs,
specify the appropriate Fortran intrinsic name for arguments of type REAL and DOUBLE
PRECI SI ON. The compiler calls the appropriate single- or double-precision primitive based
on the type of the argument you specify.

To use these functions, you have to write an | NTERFACE block that specifies the ALI AS
name of the function. The routine names in the math library are lower case.

IEEE* Floating-point Exceptions

The compiler recognizes a set of floating-point exceptions required for compatibility with the
IEEE numeric floating-point standard. The following floating-point exceptions are supported

229

Intel® Fortran Compiler User's Guide

during numeric processing:

Denormal One of the floating-point operands has an
absolute value that is too small to represent
with full precision in the significand.

Zero Divide The dividend is finite and the divisor is zero,
but the correct answer has infinite

magnitude.

Overflow The resulting floating-point number is too
large to represent.

Underflow The resulting floating-point number (which is

very close to zero) has an absolute value
that is too small to represent even if a loss of
precision is permitted in the significand
(gradual underflow).

Inexact The resulting number is not represented
(Precision) exactly due to rounding or gradual underflow.
Invalid Covers cases not covered by other

operation exceptions. An invalid operation produces a

quiet NaN (Not-a-Number).

Denormal

The denormal exception occurs if one or more of the operands is a denormal number. This
exception is never regarded as an error.

Divide-by-Zero Exception
A divide-by-zero exception occurs for a floating-point division operation if the divisor is zero
and the dividend is finite and non-zero. It also occurs for other operations in which the

operands are finite and the correct answer is infinite.

When the divide by zero exception is masked, the result is +/-infinity. The following specific
cases cause a zero-divide exception:

e LOF 0.0)
e LOGLO(0.0)
e O O**x, where x is a negative number

For the value of the flags, refer to the i eee_f | ags () function in your library manual and
Pentium® Processor Family Developer's Manual, Volumes 1, 2, and 3.

Overflow Exception

An overflow exception occurs if the rounded result of a floating -point operation contains an
exponent larger than the numeric processing unit can represent. A calculation with an

230

Intel® Fortran Compiler User's Guide

infinite input number is not sufficient to cause an exception.

When the overflow exception is masked, the calculated result is +/-infinity or the +/-largest
representable normal number depending on rounding mode. When the exception is not
masked, a result with an accurate significand and a wrapped exponent is available to an
exception handler.

Underflow Exception

The underflow exception occurs if the rounded result has an exponent that is too small to
be represented using the floating-point format of the result.

If the underflow exception is masked, the result is represented by the smallest normal
number, a denormal number, or zero. When the exception is not masked, a result with an
accurate significand and a wrapped exponent is available to an exception handler
Inexact Exception

The inexact exception occurs if the rounded result of an operation is not equal to the
unrounded result.

It is important that the inexact exception remain masked at all times because many of the
numeric library procedures return with an undefined precision exception flag. If the

precision exception is masked, no special action is performed. When this exception is not
masked, the rounded result is available to an exception handler.

Invalid Operation Exception
An invalid operation indicates that an exceptional condition not covered by one of the other
exceptions has occurred. An invalid operation can be caused by any of the following
situations:

e One or more of the operands is a signaling NaN or is in an unsupported format.

o One of the following invalid operations has been requested:

(#--)0.0-(+--)0.0, (+--)0.0%(+--)2 or (+--)2(+--)2

e The function | NT, NI NT, or | RI NT is applied to an operand that is too large to fit into
the requested | NTEGER* 2 or | NTEGER* 4 data types.

e Acomparisonof . LT.,.LE.,.GI.,or.CE. isapplied to two operands that are
unordered.

The invalid-operation exception can occur in any of the following functions:
e SQRT(Xx),LOEH x), or LOGLO(X), where X is less than zero.

e ASI N(x), or ACOS(x) where | x| >1.

231

Intel® Fortran Compiler User's Guide

For any of the invalid-operation exceptions, the exception handler is invoked before the top
of the stack changes, so the operands are available to the exception handler.

When invalid-operation exceptions are masked, the result of an invalid operation is a quiet

NaN. Program execution proceeds normally using the quiet NaN result.

Floating-point
Result

The appearance of a quiet NaN as an operand
results in a quiet NaN. Execution continues without
an error. If both operands are quiet NaNs, the quiet
NaN with the larger significand is used as the result.
Thus, each quiet NaN is propagated through later
floating-point calculations until it is ultimately ignored
or referenced by an operation that delivers non-
floating-point results.

Formatted
Output

On formatted output using a real edit descriptor, the
field is filled with the "?" symbols to indicate the
undefined (NaN) result. The A, Z, or B edit descriptor
results in the ASCII, hexadecimal, or binary
interpretation, respectively, of the internal
representation of the NaN. No error is signaled for
output of a NaN.

Logical Result

By definition, a NaN has no ordinal rank with respect
to any other operand, even itself. Tests for equality
(. EQ) and inequality (. NE.) are the only Fortran
relational operations for which results are defined for
unordered operands. In these cases, program
execution continues without error. Any other logical
operation yields an undefined result when applied to
NaNs, causing an invalid-operation error. The
masked result is unpredictable.

Integer Result

Since no internal NaN representation exists for the

| NTEGER data type, an invalid-operation error is
normally signaled. The masked result is the largest-
magnitude negative integer for | NTEGER* 4 or

| NTEGER* 2. An | NTEGER* 1 result is the value of an
| NTEGER* 2 intermediate result modulo 256.

Intel® Fortran Compiler provides a method to control the rounding mode, exception
handling and other IEEE-related functions of the 1A-32 processors using | EEE_FLGS and
| EEE_HANDLER library routines from the portability library. For details, see Chapter 2 in the

Intel® Fortran Libraries Reference Manual.

232

Intel® Fortran Compiler User's Guide

Compiler Diagnostics

This section describes the diagnostic messages that the Intel® Fortran Compiler produces.
These messages include various diagnostic messages for remarks, warnings, or errors.
The compiler always displays any error message, along with the erroneous source line, on
the standard error device. The messages also include the runtime diagnostics run for IA-32
compiler only.

The options that provide checks and diagnostic information must be specified when the
program is compiled, but they perform checks or produce information when the program is
run. See diagnostic options summary.

Runtime Diagnhostics

For 1A-32 applications, the Intel® Fortran Compiler provides runtime diagnostic checks to
aid debugging. The compiler provides a set of options that identify certain conditions
commonly attributed to runtime failures.

You must specify the options when the program is compiled. However, they perform checks
or produce information when the program is run. Postmortem reports provide additional
diagnostics according to the detail you specify.

Runtime diagnostics are handled by 1A-32 options only. The use of - Q0 option turns any of
them off. See the runtime check options summary.

Optional Runtime Checks

Runtime checks on the use of pointers, allocatable arrays and assumed -shape arrays are
made with the runtime checks specified by the Intel® Fortran Compiler command line
runtime diagnostic options listed below. The use of any of these options disables
optimization.

The optional runtime check options are as follows:

-C Equivalent to: (- CA, - CB, - CS, - CU, - CV)

FJ Note

The - C option and its equivalents are available for I1A-
32 systems only.

-CA Should be used in conjunction with - d{ n}. Generates
runtime code, which checks pointers and allocatable
array references for ni | .

£J) Note
The run-time checks on the use of pointers, allocatable
arrays and assumed-shape arrays are made if

233

Intel® Fortran Compiler User's Guide

compile-time option - CA is selected.

-CB Should be used in conjunction with - d{ n} . Generates
runtime code to check that array subscript and
substring references are within declared bounds.

-GS Should be used in conjunction with - d{ n} . Generates
runtime code that checks for consistent shape of
intrinsic procedure.

-CU Should be used in conjunction with - d{ n} . Generates
runtime code that causes a runtime error if variables
are used without being initialized.

-Cv Should be used in conjunction with - d{ n} . On entry to
a subprogram, tests the correspondence between the
actual arguments passed and the dummy arguments
expected. Both calling and called code must be
compiled with - CV for the checks to be effective.

Pointers, - CA

The selection of the - CA compile-time option has the following effect on the runtime
checking of pointers:

e The association status of a pointer is checked whenever it is referenced. Error 460 as
described in Runtime Errors will be reported at runtime if the pointer is disassociated:
that is, if the pointer is nullified, de-allocated, or it is a pointer assigned to a
disassociated pointer.

e The compile-time option combination of - CA and - CU also generates code to test
whether a pointer is in the initially undefined state, that is, if it has never been
associated or disassociated or allocated. If a pointer is initially undefined, then Error
461 as described in Runtime Errors will be reported at runtime if an attempt is made
to use it. No test is made for dangling pointers (that is, pointers referencing memory
locations which are no longer valid).

e The association status of pointers is not tested when the Fortran standard does not
require the pointer to be associated, that is, in the following circumstances:

- in a pointer assignment

- as an argument to the associ at ed intrinsic
- as an argument to the pr esent intrinsic
-inthe nul I'i fy statement

- as an actual argument associated with a formal argument which has the pointer
attribute

Allocatable Arrays

234

Intel® Fortran Compiler User's Guide

The selection of the - CA compile-time option causes code to be generated to test the
allocation status of an allocatable array whenever it is referenced, except when it is an
argument to the al | ocat ed intrinsic function. Error 459 as described in Runtime Errors
will be reported at runtime if an error is detected.

Assumed-Shape Arrays

The - CA option causes a validation check to be made, on entry to a procedure, on the
definition status of an assumed-shape array. Error 462 as described in Runtime Errors will
be reported at runtime if the array is disassociated or not allocated.

The compile-time option combination of - CA and - CU will additionally generate code to test
whether, on entry to a procedure, the array is in the initially undefined state. If so, Error 463
as described in Runtime Errors.

Array Subscripts, Character Substrings, - CB

Specifying the compile-time option - CB causes a check at runtime that array subscript
values, subscript values of elements selected from an array section, and character
substring references are within bounds. Selection of the option causes code to be
generated for each array or character substring reference in the program.

At runtime the code checks that the address computed for a referenced array element is
within the address range delimited by the first element of the array and the last element of
the array. Note that this check does not ensure that each subscript in a reference to an
element of a multidimensional array or section is within bounds, only that the address of the
element is within the address range of the array.

For assumed-size arrays, only the address of the first element of the array is used in the
check; the address of the last element is unknown.

When - CB is selected, a check is also made that any character substring references are
within the bounds of the character entity referenced.

Unassigned Variables, - CU
Specifying the compile-time option - CU causes unassigned variable checking to be
enabled: that is, before an expression is evaluated at runtime, a check is normally made

that any variables in the expression have previously been assigned values. If any has not, a
runtime error results.

Some variables are not unassigned-checked, even when - CU has been selected:
o Variables of type char act er

e byte,integer (1) andl ogi cal (1) variables

235

Intel® Fortran Compiler User's Guide

o Variables of derived type, when the complete variable (not individual fields) is used in
the expression

e Arguments passed to some elemental and transformational intrinsic procedures
Notes on Variables

o Variables that specify storage with al | ocat e, except those of types noted in the
previous section, will be unassigned-checked when - CU s selected.

¢ If the variables in a named COVMON block are to be unassigned-checked, - CU must be

selected, and:

- The COMMON block must be specified in one and only one BLOCK DATA program
unit. Variables in the COMMON block that are not explicitly initialized will be subject to
the unassigned check.

- No variable of the COVMON block may be initialized outside the BLOCK DATA
program unit.

o Variables in blank COVMON will be subject to the unassigned check if - CU s selected
and the blank COVMON appears in the main program unit. In this case, although the
Intel® Fortran Compiler permits blank COVMON to have different sizes in different
program units, only the variables within the extent of blank COMMON indicated in the
main program unit will be subject to the unassigned check.

Actual to Dummy Argument Correspondence, - CV

Specifying the compile-time option - CV causes checks to be carried out at runtime that

actual arguments to subprograms correspond with the dummy arguments expected. Note
the following:

e Both caller and called Fortran code must be compiled with - CV (or - C). No argument
checking will be performed unless this condition is satisfied.

o The amount of checking performed depends upon whether the procedure call was
made via an implicit interface or an explicit interface. Irrespective of the type of
interface used, however, the following checks verify that:

- the correct number of arguments are passed.

- the type and type kinds of the actual and dummy arguments correspond.

- subroutines have been called as subroutines and that functions have been declared
with the correct type and type kind.

- dummy arrays are associated with either an array or an element of an array and not
a scalar variable or constant.

236

Intel®

Fortran Compiler User's Guide

- the declared length of a dummy character argument is not greater than the declared
length of associated actual argument.

- the declared length of a character scalar function result is the same length as that
declared by the caller.

- the actual and dummy arguments of derived type correspond to the number and
types of the derived type components.

- actual arguments were not passed using the intrinsic procedures %=EF and %/AL.

If an implicit interface call was made, then yet another check is made whether an
interface block should have been used.

If an explicit interface block was used, then further checks are made in addition to
those described (in the second bullet) above, to validate the interface block. These
checks verify that:

- the OPTI ONAL attribute of each dummy argument has been correctly specified by
the caller.

- the PO NTER attribute of each dummy argument has been correctly specified by the
caller.

- the declared length of a dummy pointer of type character is the same as the declared
length of the associated actual pointer of type character.

- the rank of an assumed-shape array or dummy pointer matches the rank of the
associated actual argument.

- the rank of an array-valued function or pointer-valued function has been correctly
specified by the caller.

- the declared length of a character array-valued function or a character pointer-valued
function is the same length as that declared by the caller.

Diagnostic Report, - d{ n}

The command option - d{ n} generates the additional information required for a list of the
current values of variables to be output when certain runtime errors occur. Diagnostic
reports are generated by the following:

input/output errors

an invalid reference to a pointer or an allocatable array (if - CA option selected)
subscripts out of bounds (if - CB option selected)

an invalid array argument to an intrinsic procedure (if - CS option selected)

use of unassigned variables (if - CU option selected)

argument mismatch (if - CV option selected)

237

Intel® Fortran Compiler User's Guide

invalid assigned labels

a call to the abort routine

certain mathematical errors reported by intrinsic procedures
hardware detected errors

The Level of Output

The level of output is progressively controlled by n, as follows:

n=0 (or n Displays only the procedure name and the

omitted) number of the line at which the failure occurred.
This is the default value.

n=1 Reports scalar variables local to program active
units.

n=2 Reports local and COMMON scalars.

n>2 Reports the first n elements of local and COMVON
arrays and all scalars.

The appropriate error message will be output on st der r, and (if selected) a postmortem
report will be produced.

Selecting a Postmortem Report

Each scalar or array will be displayed on a separate line in a form appropriate to the type of
the variable. Thus, for example, variables of type integer will be output as integer values,
and variables of type complex will be output as complex values.

The postmortem report will not include those program units which are currently active, but

which have not been compiled with the - d{ n} option. If no active program unit has been
compiled with the - d{ n} option then no postmortem report will be produced.

£ Note
Using the - d{ n} option for postmortem reports disables optimization.

Invoking a Postmortem Report
A postmortem report may be invoked by any of the following:

e an error detected as a consequence of using the - CA, -CB, -CS, -CU,-CVor-C
options

e a call on abort
e an allocation error

e an invalid assigned label

238

Intel® Fortran Compiler User's Guide

an input-output error

an error reported by a mathematical procedure

a signal generated by a program error such as illegal instruction

an error reported by an intrinsic procedure
Postmortem Report Conventions
The following conventions are used in postmortem output:
e Avariable var declared in a module nod appears as nod. var .
o A module procedure pr oc in module nod appears as nod$pr oc.

o The fields of a variable var of derived data type are preceded by a line of the form
var %

Example

In this example, the command line

pronmpt>ifc -CB -CU -d4 sanple.f

is used to compile the program that follows. When the program is executed, the
postmortem report (follows the program) is output, since the subscript mto array numis out

of bounds.

The Program

1 nodul e arith

2 integer count

3 data count /0/

4

5 contai ns

6

7 subroutine add(k,p,m
8 i nteger num(3),p
9

10 count = count+1
11 m = k+p

12 j = num(m

13 return

14 end subroutine
15

16 end nodule arith
17

18 program dosuns

239

Intel® Fortran Compiler User's Guide

19 wuse arith

20 type set

21 i nt eger sum product
22 end type set

23

24 type(set) ans

25

26 call add(9, 6, ans%sum
27

28 end program dosuns

The Postmortem Report

Run-Time Error 406: Array bounds
exceeded

In Procedure: arith$add

Di agnostics Entered From Subroutine
ari th$add Line 12

] Not Assi gned

k = 9

m = 15

num = Not Assi gned, Not
Assi gned, Not Assigned

p = 6

Modul e arith

arith.count =1
Entered From MAI N PROGRAM Line 26

ans%
sum = 15
product = Not Assi gned

arith.count =1

Compiler Information Messages

These messages are generated by the following Intel® Fortran Compiler options:

Disabling the sign-on message

- nol ogo Disables the display of the compiler version (or sign-on)
message.

When you sign-on, the compiler displays the following
information:

| D: the unique identification number for this compiler.
X. Y. z: the version of the compiler.
year s: the years for which the software is copyrighted.

Printing the list and brief description of the compiler driver options

240

Intel® Fortran Compiler User's Guide

-hel p You can print a list and brief description of the most
useful compiler driver options by specifying the - hel p
option to the compiler. To print this list, use this
command:

IA-32 compiler:
pronpt>ifc -help or pronpt>ifc -?

Itanium® compiler:
pronpt >efc -hel p or pronpt>efc -7

Showing compiler version and driver tool commands

-V Displays compiler version information.

-V Shows driver tool commands and executes tools.

-dryrun Shows driver tool commands, but does not execute
tools.

Diagnostic Messages

Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information can include, for example, syntax errors and use of non-ANSI Fortran.
Semantic information includes, for example, unreachable code.

Diagnostic messages can be any of the following: command-line diagnostics, warning
messages, error messages, or catastrophic error messages.

Command-line Diagnostics

These messages report improper command-line options or arguments. If the command line
contains an unrecognized option, the compiler passes the option to the linker. If the linker
still does not recognize the option, the linker produces the diagnostic message.
Command-line error messages appear on the standard error device in the form:

driver-nane: nessage

where

driver-name | The name of the compiler driver.
nmessage Describes the error.

Command-line warning messages appear as follows:
driver-nanme: warning: nessage
Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source

241

Intel® Fortran Compiler User's Guide

file. These diagnostics have the following format:

filenane(linenun): type nn: nessage

filenane Indicates the name of the source file
currently being processed. An extension to
the filename indicates the type of the
source file, as follows: . f, f90, .for
indicate a Fortran file.

I i nenum Indicates the source line where the
compiler detects the condition.

type Indicates the severity of the diagnostic
message: warning, error, or Fatal error.
nn The number assigned to the error (or
warning) message.

nmessage Describes the diagnostic.

The following is an example of a warning message:

tantst.f(3): warning 328: "l ocal variable": Local variable
"increnment” never used.

The compiler can also display internal error messages on the standard error device. If your
compilation produces any internal errors, contact your Intel representative. Internal error
messages are in the form:

FATAL COWPI LER ERROR nessage

Warning Messages

These messages report valid but questionable use of the language being compiled. The
compiler displays warnings by default. You can suppress warning messages by using the -
W) option. Warnings do not stop translation or linking. Warnings do not interfere with any
output files. Some representative warning messages are:

constant truncated - precision too great

non- bl ank characters beyond colum 72 ignored

Hol lerith size exceeds that required by the context

Suppressing or Enabling Warning Messages

The warning messages report possible errors and use of non-standard features in the
source file.

The following options suppress or enable warning messages.

242

Intel® Fortran Compiler User's Guide

-cerrsf-] Causes error and warning messages to be
generated in a terse format:
“file", line no : error nessage

-cerrs- disables -cerrs.

-W Suppresses all warning messages.

-wWo0, - w5 Suppresses warning messages about Fortran
features which are deprecated or obsoleted in
Fortran 95.

- W n} Suppresses or displays all warning messages

generated by preprocessing and compilation.
n=0: suppresses all warnings

n=1: displays warning messages. - W is the
default.

-V\B On a bound check violation, issues a warning
instead of an error. (This is to accommodate
old FORTRAN code, in which array bounds of
dummy arguments were frequently declared
asl)

For example, the following command compiles newpr og. f and displays compiler errors,
but not warnings:

IA-32 compiler:
pronpt>i fc -W newprog. f
Itanium® compiler:

pronpt >efc - W) newpr og. f

Comment Messages

These messages indicate valid but unadvisable use of the language being compiled. The
compiler displays comments by default. You can suppress comment messages with:

| -cm | Suppresses all comment messages. |

Comment messages do not terminate translation or linking, they do not interfere with any
output files either. Some examples of the comment messages are:

Nul I CASE construct
The use of a non-integer DO | oop variabl e or expression

Terminating a DO loop with a statenent other than CONTI NUE or ENDDO

243

Intel® Fortran Compiler User's Guide

Error Messages

These messages report syntactic or semantic misuse of Fortran. The compiler always
displays error messages. Errors suppress object code for the error containing the error and
prevent linking, but they make it possible for the parsing to continue to scan for any other

errors. Some representative error messages are:

| i ne exceeds 132 char acters

unbal anced parent hesi s

i nconpl ete string

Suppressing or Enabling Error Messages

The error conditions are reported in the various stages of the compilation and at different

levels of detail as explained below. For various groups of error messages, see Lists of Error

Messages.

-e90, -e95 Enables issuing of errors rather than warnings for
features that are non-standard Fortran.

-q Suppresses compiler output to standard error,
st derr. When - q is specified in conjunction with -
bd, then only fatal error messages are output to
st derr by the binder tool provided with the Intel®
Fortran Compiler.

-d{n} Generates extra information needed to produce a

list of current variables in a diagnostic report. For
more details on - d{ n}, see Selecting a
Postmortem Report, -d{n}.

Diagnostic reports are generated by the following:
e input-output errors
e an invalid reference to a pointer or an
allocatable array (if
- CA option selected)

e subscripts out of bounds (if - CB option
selected)

e aninvalid array argument to an intrinsic
procedure (if - CS option selected)

o use of unassigned variables (if - CU option
selected)

244

Intel® Fortran Compiler User's Guide

e argument mismatch (if - CV option selected)
e invalid assigned labels
o a call to the abort routine

e certain mathematical errors reported by
intrinsic procedures

¢ hardware detected errors:

Fatal Errors

These messages indicate environmental problems. Fatal error conditions stop translation,
assembly, and linking. If a fatal error ends compilation, the compiler displays a termination
message on standard error output. Some representative fatal error messages are:

Disk is full, no space to wite object file

I ncorrect nunber of intrinsic argunents

Too many segnents, object format cannot support this nmany segnents

245

Intel® Fortran Compiler User's Guide

Mixing C and Fortran

This section discusses implementation-specific ways to call C procedures from a Fortran
program.

Naming Conventions

By default, the Fortran compiler converts function and subprogram names to lower case,
and adds a trailing underscore. The C compiler never performs case conversion. A C
procedure called from a Fortran program must, therefore, be named using the appropriate
case. For example, consider the following calls:

CALL The C procedure must be named

PROCNAME() procnane_.

x=f nname() The C procedure must be named
f nnanme_.

In the first call, any value returned by pr ocnane is ignored. In the second call to a function,
f nname must return a value.

Passing Arguments between Fortran and C Procedures

By default, Fortran subprograms pass arguments by reference; that is, they pass a pointer
to each actual argument rather than the value of the argument. C programs, however, pass
arguments by value. Consider the following:

« When a Fortran program calls a C function, the C function's formal arguments must
be declared as pointers to the appropriate data type.

e When a C program calls a Fortran subprogram, each actual argument must be
specified explicitly as a pointer.

Using Fortran Common Blocks from C

When C code needs to use a common block declared in Fortran, an underscore (_) must
be appended to its name, see below.

Fortran code
common / cbl ock/ a(100)
real a

246

Intel® Fortran Compiler User's Guide

C code

struct acstruct {
float a[100];

1

extern struct acstruct
cbl ock_;

Example

This example demonstrates defining a COVMON block in Fortran for Linux, and accessing
the values from C.

Fortran code

COWON / MYCOM A, B(100), |, C(10)
REAL(4) A
REAL(8) B

| NTEGER(4) |
COWPLEX(4) C
A=1.0

B = 2.0D0

| =4
C=(1.0,2.0)
CALL GETVAL()
END

C code

typedef struct conpl conpl ex;
struct conpl {

float real;

float imag;

H

extern struct {
float a;

doubl e b[100];
int i;

conpl ex c[10];
} mycom;

void getval (){
printf("a = %\n",nycom. a);
printf("b[0] = %\n",nycom.b[O0]);

printf("i = %\n", nycom.i);
printf("c[1].real = %\n", mycom.c
[1] .real);

}

penfol d% ifc common.o getval.o -0
conmon. exe

247

Intel® Fortran Compiler User's Guide

penfol d% common. exe

a = 1.000000
b[0] = 2.000000
i =4

c[1].real = 1.000000

Fortran and C Scalar Arguments

Table that follows shows a simple correspondence between most types of Fortran and C

data.

Fortran and C Language Declarations

Fortran C

i nteger*1 x char x;

i nteger*2 Xx short int Xx;
i nteger*4 x l ong int x;
i nteger X | ong int x;

i nteger*8 x

| ong | ong x;
or _int64 x;

| ogi cal *1 X char x;

| ogi cal *2 x short int x;
| ogi cal *4x l ong int x;
| ogi cal x l ong int x;

| ogi cal *8 x

l ong | ong x;
or _int64 x;

real *4 x float x;
real *8 x doubl e x;
real x float x;
real *16 No equivalent
doubl e precision Xx doubl e x;

conpl ex x

struct {float real
img;} X;

conpl ex*8 x

struct {float real
imag;} X;

conpl ex*16 x

struct {doubl e dreal
di mag;} X;

doubl e conpl ex x

struct {doubl e dreal
di mag;} X;

conpl ex(KI ND=16) x

No equivalent

character*6 x

char x[6];

Example below illustrates the correspondence shown in the table above: a simple Fortran
call and its corresponding call to a C procedure. In this example the arguments to the C

procedure are declared as pointers.

Example of Passing Scalar Data Types from Fortran to C

248

Intel® Fortran Compiler User's Guide

Fortran Cal

i nt eger |

integer*2 J

real x

doubl e precision d

| ogi cal |

call vexp(i, j, x, d, |)

C Cal | ed Procedure

void vexp_ (int *i, short *j, float
*x, double *d, int *|)

{

...programtext...

}
£J Note
The char act er data or conpl ex data do not have a simple correspondence to C
types.

Passing Scalar Arguments by Value

A Fortran program compiled with the Intel® Fortran Compiler can pass scalar arguments to
a C function by value using the nonstandard built-in function %/AL. The following example
shows the Fortran code for passing a scalar argument to C and the corresponding C code.

Example of Passing Scalar Arguments from Fortran to C

Fortran Cal

i nteger i

doubl e precision f, result,

ar gbyval ue

resul t= argbyval ue(%/AL(1), WAL
(F))

END

C Cal l ed Function

doubl e argbyvalue_ (int i,double
f)

{

...programtext...

return g;

}

In this case, the pointers are not used in C. This method is often more convenient,
particularly to call a C function that you cannot modify, but such programs are not always
portable.

£J Note
Arrays, records, conpl ex data, and char act er data cannot be passed by value.

249

Intel® Fortran Compiler User's Guide

Array Arguments

The table below shows the simple correspondence between the type of the Fortran actual
argument and the type of the C procedure argument for arrays of types | NTEGER,

| NTEGER* 2, REAL, DOUBLE PRECI SI ON, and LOG CAL.

£l Note

There is no simple correspondence between Fortran automatic, allocatable,
adjustable, or assumed size arrays and C arrays. Each of these types of arrays
requires a Fortran array descriptor, which is implementation-dependent.

Array Data Type

Fortran Type C Type

i nteger x() int x[];
integer*1 x() signed char x[];
integer*2 x() short x[];

integer*4 x()

long int x[];

integer*8 x()

long long X[]; or _int64

real *4 x() float x[];
real *8 x() doubl e x[];
real x() float x[];
real *16 x() No equivalent
?oyble preci sion x double x[];
| ogical *1 x() char x[];

| ogi cal *2 x()

short int x[];

| ogi cal *4 x()

long int x[];

| ogi cal x()

int x[];

| ogi cal *8 x()

long long X[]; or _int64 x

compl ex x()

struct {float real, inag;}

[x];

conplex *8 x()

struct {float real, inag;}

[x];

conplex *16 x()

struct {doubl e dreal, dimag;}
X,

doubl e conmpl ex x()

struct { double
dreal ,dimag; } [X];

conpl ex(KI ND=16) x
()

No equivalent

FJ Note

Be aware that array arguments in the C procedure do not need to be declared as

pointers. Arrays are always passed as pointers.

250

Intel® Fortran Compiler User's Guide

£l Note

When passing arrays between Fortran and C, be aware of the following semantic

differences:

o Fortran organizes arrays in column-major order (the first subscript, or dimension,
of a multiply-dimensioned array varies the fastest); C organizes arrays in row-
major order (the last dimension varies the fastest).

o Fortran array indices start at 1 by default; C indices start at 0. Unless you
declare the Fortran array with an explicit lower bound, the Fortran element X(1)
corresponds to the C el ement x[0] .

Example below shows the Fortran code for passing an array argument to C and the

corresponding C code.

Example of Array Arguments in Fortran and C

Fortran Code
di rension i (100), x(150)
call array(i, 100, x, 150)

Correspondi ng C Code

array (i, isize, X, Xxsize)
int i[];

float x[];

int *isize, *xsize;

{

. programtext.

Character Types

If you pass a char act er argument to a C procedure, the called procedure must be
declared with an extra integer argument at the end of its argument list. This argument is the

length of the char act er variable.

The C type corresponding to char act er is char . Example that follows shows Fortran
code for passing a character type called char mac and the corresponding C procedure.

Example of Character Types Passed from Fortran to C

Fortran Code
character*(*) cl
character*5 c2

float X

call charmac(cl1, x, c2)

251

Intel® Fortran Compiler User's Guide

Correspondi ng C Procedure
charmac_ (cl, x, c2, nl, n2)
int nl, n2;

char *cl, *c2;

float *x;

{
)

. program text.

For the corresponding C procedure in the above example, n1 and n2 are the number of
characters in c1 and c2, respectively. The added arguments, n1 and n2, are passed by
value, not by reference. Since the string passed by Fortran is not null-terminated, the C

procedure must use the length passed.

Null-Terminated CHARACTER Constants

As an extension, the Intel Fortran Compiler enables you to specify null-terminated

char act er constants. You can pass a null-terminated character string to C by making the
length of the char act er variable or array element one character longer than otherwise
necessary, to provide for the null character. For example:

Fortran Code
PROGRAM PASSNUL L

interface

subroutine croutine (input)
I MS$attri butes alias:'-
croutine':: CROUTI NE
character (|l en=12) i nput

end subrouti ne

end interface

character(l en=12) HELLOAORLD
data_HELLONORLD/ ' Hel l o Worl d' T/
call croutine(HELLOANORLD)

end

Corresponding C Code
voi d croutine(char *input, int |en)

{
printf("%\n",input);
}

Complex Types

To pass a conpl ex or doubl e conpl ex argument to a C procedure, declare the
corresponding argument in the C procedure as either of the two following structures,
depending on whether the actual argument is conpl ex or doubl e conpl ex:

struct { float real, imag; } *conplex;

252

Intel® Fortran Compiler User's Guide

struct { double real,

Example below shows Fortran code for passing a complex type called conpl and the

corresponding C procedure.

Example of Complex Types Passed from Fortran to C

i mag; } *dconpl ex;

Fortran Code
doubl e conpl ex dc
conplex ¢

call compl (dc, c)

conpl (dc, c)

struct { double real
struct { float real,
{

. programtext.

Correspondi ng C Procedure

, imag; } *dc;
img; } *c;

Return Values

A Fortran subroutine is a C function with a void return type. A C procedure called as a
function must return a value whose type corresponds to the type the Fortran program
expects (except for char act er, conpl ex, and doubl e conpl ex data types). The table

below shows this correspondence.

Return Value Data Type

Fortran Type C Type

i nt eger i nt;

i nteger*1 si gned char;

i nteger*2 short;

I nt eger*4 long int x;

I nt eger*8 x long long x; or _int64
| ogi cal int;

| ogi cal *1 char;

| ogi cal *2 short;

| ogi cal *4x long int x;

| ogi cal *8 long long x; or _int64
r eal float;

real *r x float x;

real *8 x doubl e x;

real *16 No equivalent

doubl e precision doubl e;

253

Intel® Fortran Compiler User's Guide

Example below shows Fortran code for a return value function called cf unct and the
corresponding C routine.

Example of Returning Values from C to Fortran

Fortran code
integer iret, cfunct
iret = cfunct()

Correspondi ng C Routine
int cfunct ()

...programtext...
return i;

}

Returning Character Data Types

If a Fortran program expects a function to return data of type char act er, the Fortran
compiler adds two additional arguments to the beginning of the called procedure's
argument list:

e The first argument is a pointer to the location where the called procedure should store
the result.

e The second is the maximum number of characters that must be returned, padded with
white spaces if necessary.

The called routine must copy its result through the address specified in the first argument.

Example that follows shows the Fortran code for a return character function called
makechar s and corresponding C routine.

Example of Returning Character Types from C to Fortran

Fortran code

character*10 chars, nmakechars
doubl e precision x, vy

chars = makechars(x, y)

Correspondi ng C Routine

void makechars_ (result, length, X,
y)

char *result;

int |ength;

doubl e *x, *y;

{

... programtext, producing
returnval ue. ..

for (i =0; i <length; i++) {
result[i] = returnvalue[i];

254

Intel® Fortran Compiler User's Guide

}
}

In the above example, the following restrictions and behaviors apply:

e The function's | engt h and r esul t do not appear in the call statement; they are

added by the compiler.

e The called routine must copy the r esul t string into the location specified by r esul t;

it must not copy more than | engt h characters.

If fewer than | engt h characters are returned, the return location should be padded
on the right with blanks; Fortran does not use zeros to terminate strings.

The called procedure is type voi d.

You must use lowercase names for C routines or ATTRBUTE directives and
I NTERFACE blocks to make the calls using uppercase.

Returning Complex Type Data

If a Fortran program expects a procedure to return a conpl ex or doubl e- conpl ex value,
the Fortran compiler adds an additional argument to the beginning of the called procedure
argument list. This additional argument is a pointer to the location where the called

procedure must store its result.

Example below shows the Fortran code for returning a complex data type procedure called

wbat and the corresponding C routine.

Example of Returning Complex Data Types from C to Fortran

Fortran code

conpl ex bat, wbat
real x, vy

bat = what (X, y)

Correspondi ng C Routi ne

struct _nyconplex { float real, imag };
typedef struct _nyconpl ex _single_conplex;
void wbat _ (_single_conplex |ocation, float
*x, float *y)

oat real part;

{
fl
fl oat imaginarypart;

program t ext,
i magi narypart. ..
*| ocati on. real

produci ng real part and

real part;

*| ocation.img i magi narypart;

}

255

Intel® Fortran Compiler User's Guide

In the above example, the following restrictions and behaviors apply:

e The argument location does not appear in the Fortran call; it is added by the compiler.

e The C subroutine must copy the result's real and imaginary parts correctly into
| ocati on.

e The called procedure is type voi d.

If the function returned a doubl e conpl ex value, the type f | oat would be replaced by
the type doubl e in the definition of location in wbat .

Procedure Names

C language procedures or external variables can conflict with Fortran routine names if they
use the same names in lower case with a trailing underscore. For example:

Fortran Code
subrouti ne nyproc(a,b)
end

C Code
void nyproc_(float *a, float *b){

The expressions above are equivalent, but conflicting routine declarations. Linked into the
same executable, they would cause an error at link time.

Many routines in the Fortran runtime library use the naming convention of starting library

routine names with an f _ prefix. When mixing C and Fortran, it is the responsibility of the C

program to avoid names that conflict with the Fortran runtime libraries.

Similarly, Fortran library procedures also include the practice of appending an underscore
to prevent conflicts.

Pointers

In the Intel® Fortran Compiler implementation, pointers are represented in memory in the
form shown in the table that follows.

Pointer Representation in Intel Fortran Compiler

256

Intel® Fortran Compiler User's Guide

Pointer To: Representation

a numeric one word representing the address of its

scalar target

a derived one word representing the address of its

type scalar target

a character two words, the first word containing the

scalar address of its target and the second
containing its defined length

an array a data structure of variable size that
describes the target array; Intel reserves
the right to modify the form of this
structure without notice

Calling C Pointer-type Function from Fortran

In Intel® Fortran, the result of a C pointer-type function is passed by reference as an
additional, hidden argument. The function on the C side needs to emulate this as follows:

Calling C Pointer Function from Fortran

Fortran code
programt est

interface

function cpfun()

i nteger, pointer:: cpfun
end function

end interface

i nteger, pointer:: ptr
ptr => cpfun()

print*, ptr

end

C Code

#i ncl ude <mal | oc. h>
void *cpfun_(int **LP)

*LP = (int *)mal |l oc(si zeof
(int));

**LP = 1;

return LP;

}

The function’s result (i nt *) is returned as a pointer to a pointer (i nt **), and the C
function must be of type voi d (not i nt*). The hidden argument comes at the end of the
argument list, if there are other arguments, and after the hidden lengths of any character
arguments.

In addition to pointer-type functions, the same mechanism should be used for Fortran
functions of user-defined type, since they are also returned by reference as a hidden

257

Intel® Fortran Compiler User's Guide

argument. The same is true for functions returning a derived type (st r uct ur e) or
char act er if the function is char act er *(*).

£J Note
Calling conventions such as these are implementation-dependent and are not
covered by any language standards. Code that is using them may not be portable.

Implicit Interface

An implicit interface call is a call on a procedure in which the caller has no explicit
information on the form of the arguments expected by the procedure; all calls within a
Fortran program are of this form. All arguments passed through an implicit interface, apart
from label arguments, are passed by address.

Fortran Implicit Argument Passing by Address

Argument Address Passed

scalar the address of the scalar

array the address of the first element of the array

scalar pointer the address of its target

array pointer the address of the first element of its target

procedure the address associated with the external
name

Actual arguments of type char act er are passed as a character descriptor, which consists
of two words, see Character Types.

Label arguments (alternate returns) are handled differently: subroutines which include one
or more alternate returns in the argument list are compiled as integer functions; these
functions return an index into a computed got o; the caller executes these got os on return.
For example:

call validate(x,*10, *20, *30)

is equivalent to

goto (10, 20, 30), validate(x)

Explicit Interface

Fortran provides various mechanisms by which the declarations of the dummy arguments
within the called procedure can be made available to the caller while it is constructing the
actual argument list. An explicit interface call is one to the following:

e a module procedure

e an internal procedure

258

Intel® Fortran Compiler User's Guide

¢ an external procedure for which an interface block is provided

In this form of call the construction of the actual argument list is controlled by the
declarations of the dummy arguments, rather than by the characteristics of the actual
arguments. As in an implicit interface call, all arguments (apart from label arguments) are
passed by address, but the form of the address is controlled by attributes of the associated
dummy argument, see the table below.

Fortran Explicit Argument Passing by Address

Argument Address Passed

scalar the address of the scalar

assumed-shape the address of an internal data structure

array which describes the actual argument

other arrays the address of the first element of the
actual array

scalar pointer the address of the pointer

array pointer the address of an internal data structure
which describes the pointer's target

procedure the address associated with the external
name

As in an implicit interface call, arguments of type char act er are passed as a character
descriptor, described in Character Types.

Intel reserves the right to alter or modify the form of the internal data used to pass
assumed-shape arrays and pointers to arrays. It is therefore not recommended that
interfaces using these forms of argument are to be compiled with other than Intel ® Fortran
Compiler.

The call on an explicit interface need not associate an actual argument with a dummy
argument if the dummy argument has the opt i onal attribute. An opti onal argument
that is not present for a particular call to a routine has a placeholder value passed instead
of its address. The place-holder value for optional arguments is always -1.

Intrinsic Functions

The normal argument passing mechanisms described in the preceding sections may
sometimes not be appropriate when calling a procedure written in C. The Intel® Fortran
Compiler also provides the intrinsic functions %REF and %VAL which may be used to
modify the normal argument passing mechanism. These intrinsics must not be used when
calling a procedure compiled by the Intel Fortran Compiler. See Additional Intrinsic
Functions section.

259

Intel® Fortran Compiler User's Guide

Reference Information

Maximum Size and Number

The table below shows the size or number of each item that the Intel® Fortran Compiler
can process. All capacities shown in the table are tested values; the actual number can be
greater than the number shown.

ltem Tested Values
Maximum nesting of interface blocks 10
Maximum nesting of input/output implied DCs 20
Maximum nesting of array constructor implied DOs 20
Maximum nesting of include files 10
Maximum length of a character constant 32767
Maximum Hollerith length 4096
Maximum number of digits in a numeric constant 1024
Maximum nesting of parenthesized formats 20
Maximum nesting of DO, | F or CASE constructs 100
Maximum number of arguments to M N and MAX 255
Maximum number of parameters 256
Maximum number of continuation lines in fixed or free form | 99
Maximum width field for a numeric edit descriptor 1024

Additional Intrinsic Functions

The Intel® Fortran Compiler provides a few additional generic functions, and adds specific
names to standard generic functions (in particular, to accommodate DOUBLE COMPLEX
arguments). Some specific names are synonyms to standard names.

£J) Note
Many intrinsics listed in this section are handled as library calls. Not all the functions
that are listed in the sections that follow can be inlined.

Synonyms

The Intel® Fortran provides synonyms for standard Fortran intrinsic names. They are given
in the right-hand columns.

Standard Intel Fortran Standard Intel Fortran
Name Synonym Name Synonym
DBLE DREAL DATS EPPREC

| AND AND M NEXPONENT EPEM N

| ECR XOR MAXEXPONENT EPEMAX

| OR OR HUGE EPHUGE
RADI X EPBASE EPSI LON EPVRSP

260

Intel® Fortran Compiler User's Guide

Note that the Fortran standard intrinsic TI NY and the Intel additional intrinsic EPTI NY are
not synonyms. Tl NY returns the smallest positive normalized value appropriate to the type
of its argument, whereas EPTI NY returns the smallest positive denormalized value.

DCMPLX Function
The DCVPLX function must satisfy the following conditions:
e If x is of type DOUBLE COWMPLEX, then DCMPLX(X) is X.

o If x is of type | NTEGER, REAL, or DOUBLE PRECI S| ON, then DCMPLX(x) is DBLE(x)
+ 0

e If x1 and x2 are of type | NTEGER, REAL or DOUBLE PRECI S| ON, then DCMPLX(x 1,
X2) Is

DBLE(x1) + DBLE(x2) * i

o If DCMPLX has two arguments, then they must be of the same type, which must be
| NTEGER, REAL or DOUBLE PRECI SI ON.

o If DCMPLX has one argument, then it may be | NTEGER, REAL or DOUBLE
PRECI SI ON, COVPLEX or DOUBLE COVPLEX.

LOC Function

The LOC function returns the address of a variable or of an external procedure.
Intel® Fortran Kl ND Parameters

Each intrinsic data type (I NTEGER, REAL, COWMPLEX, LOd CAL and CHARACTER) has a
Kl ND parameter associated with it. The actual values which the KI ND parameter for each
intrinsic type can take are implementation-dependent. The Fortran standard specifies that
these values must be | NTECER, that there must be at least two REAL Kl NDs and two
COVPLEX KI NDs (corresponding in each case to default REAL and DOUBLE PRECI SI ON),
and that there must be at least one Kl ND for each of the | NTEGER, CHARACTER and

LOG CAL data types.

| NTEGER KI ND values

Kl ND=1 1-byte | NTEGER
Kl ND=2 2-byte | NTEGER
Kl ND=4 4-byte | NTEGER default KI ND
KI ND=8 8-byte | NTEGER

REAL KI NDvalues

261

Intel® Fortran Compiler User's Guide

Kl ND=4 4-byte REAL default KI ND
Kl ND=8 8-byte REAL equivalent to DOUBLE PRECI SI ON
Kl ND=16 16-byte REAL

COVPLEX KI ND values

Kl ND=4 4-byte REAL & imaginary parts default KI ND
KI ND=8 8-byte REAL & imaginary parts equivalent to DOUBLE COMPLEX
Kl ND=16 16-byte REAL and imaginary parts equivalent to COVPLEX* 32

LOAd CAL Kl NDvalues

KI ND=1 1-byte LOGI CAL
KI ND=2 2-byte LOGI CAL
KI ND=4 4-byte LOGI CAL default KI ND
KI ND=8 8-byte LOGI CAL

CHARACTER KI ND value
Kl ND=1 1-byte CHARACTER default KI ND

Except for COVPLEX, the KI ND numbers match the size of the type in bytes. For COVPLEX
the KI ND number is the KI ND number of the REAL or imaginary part.

An include file (f 90_ki nds. f 90) providing symbolic definitions, for use when defining

®

Kl ND type parameters, is included as part of the standard Intel — Fortran release.

Argument and Result KIND Parameters
The following extensions to standard Fortran are provided:
o References to the following intrinsic functions return | NTEGER(KI ND=2) results when
compile-time option - I 2 or - i 2 is specified: | NT, | DI NT, NI NT, | DNI NT, | FI X,
MAX1, M N1.

¢ The following specific intrinsic functions may be given arguments of type | NTEGER
(KI'ND=2) : | ABS, FLOAT, MAX0, AVAX0, M NO, AM NO, | DI M | SI GN.

o References to the following intrinsic functions return | NTEGER(KI ND=8) : results
when compile-time option -1 2 or - i 2 is specified: | NT, | DI NT, NI NT, | DNI NT, | FI X,
MAX1, M NL1.

¢ The following specific intrinsic functions may be given arguments of type | NTEGER
(KI ND=8) : | ABS, FLOAT, MAX0, AMAXO, M NO, AM NO, | DI M | SI GN.

o References to the following specific intrinsic functions return REAL(KI ND=8) results

262

Intel® Fortran Compiler User's Guide

when compile-time option - r 8 is specified: ALOG, ALOG10, AMAX1, AM N1, AMOD,

MAX1, M N1, SNGL, REAL.

¢ References to the following specific intrinsic functions return results of type COVPLEX
(KI ND=8) , that is the real and imaginary parts are each of 8 bytes, when compile-
time option - r 8 is specified: CABS, CCOS, CEXP, CLOG, CSI N, CSQRT, CMPLX.

oREF and %/AL Intrinsic Functions

Intel® Fortran provides two additional intrinsic functions, %REF and /AL, that can be used
to specify how actual arguments are to be passed in a procedure call. They should not be
used in references to other Fortran procedures, but may be required when referencing a

procedure written in another programming language such as C.

YREF(X)

Specifies that the actual argument X is to be passed
as a reference to its value. This is how Intel Fortran
normally passes arguments except those of type
character. For each character value that is passed as
an actual argument, Intel Fortran normally passes
both the address of the argument and its length (with
the length being appended on to the end of the actual
argument list as a hidden argument. Passing a
character argument using %REF does not pass the
hidden length argument.

0W/AL(X)

Specifies that the value of the actual argument Xis to
be passed to the called procedure rather than the
traditional mechanism employed by Fortran where the
address of the argument is passed.

In general, /AL passes its argument as a 32-bit, sign extended, value with the following
exceptions: the argument cannot be an array, a procedure name, a multibyte Hollerith
constant, or a character variable (unless its size is explicitly declared to be 1).

In addition, the following conditions apply:

o If the argument is a derived type scalar, then a copy of the argument is generated and

the address of the copy is passed to the called procedure.

¢ An argument of complex type will be viewed as a derived-type containing two fields - a
real part and an imaginary part, and is therefore passed in manner similar to derived-

type scalars.

e An argument that is a double-precision real will be passed as a 64-bit floating-point

value.

This behavior is compatible with the normal argument passing mechanism of the C
programming language, and it is to pass a Fortran argument to a procedure written in C

where %W/AL is typically used.

263

Intel® Fortran Compiler User's Guide

The intrinsic procedures %REF and %/AL can only be used in each explicit interface block,
or in the actual CALL statement or function reference as shown in the example that follows.

Calling Intrinsic Procedures
PROGRAM FOOBAR

| NTERFACE
SUBROUTI NE FRED(W/AL(X))
I NTEGER :: X

END SUBROUTI NE FRED
FUNCTI ON FOO(%REF(| P))
INTEGER :: |P, FQO
END FUNCTI ON FOO

END | NTERFACE

CALL FRED(1) ! The value of | is
passed to FRED

J = FOO(I) ' I passed to FOO by
ref erence,

I FOO receives a reference to

I the value of I.

END PROGRAM

Al ternatively:
PROGRAM FOOBAR

| NTEGER :: FQOO
EXTERNAL FOO, FRED
CALL fred(/AL(l))
J = FOO(YREF(1))
END PROGRAM

List of Additional Intrinsic Functions

To understand the tabular list of additional intrinsic functions that follows after these notes,
take into consideration the following:

e Specific names are only included in the Additional Intrinsic Functions table if they are
not part of standard Fortran.

¢ An intrinsic that takes an integer argument accepts either | NTEGER(KI ND=2) or
| NTEGER(KI ND=4) or | NTEGER(KI ND=8) .

e The abbreviation " doubl e" stands for DOUBLE PRECI SI ON.
e The abbreviation " dconpl ex" stands for DOUBLE COVPLEX. Dcomplex type is an
Intel® Fortran extension, as are all intrinsic functions taking dconpl ex arguments or

returning dconpl ex results.

« If an intrinsic function has more than one argument, then they must all be of the same
type.

Intel® Fortran Compiler User's Guide

o If a function name is used as an actual argument, then it must be a specific name, not

a generic name.

o If a function name is used as a dummy argument, then it does not identify an intrinsic

function in the subprogram, but has a data type according to the normal rules for
variables and arrays.

Additional Intrinsic Functions

Intrinsic Generic | Specific No Type of Type of
Function Definition | Name Name of Args Function
Args
Type Conversion DREAL 1 real real
conversion to double real*16 real*16
precision doubl double
See Note 1 complex*32 complex*32
integer*2 real*8
integer*4 real*8
DFLOAT 1 integer*8 real*8
integer*2 complex*16
integer*4 complex*16
integer*8 complex*16
real*4 complex*16
real*8 complex*16
Conversion 1 real*16 complex*16
double real*16 complex*16
complex Se¢ DCMPLX 1or complex*8 complex*16
Note 2 2 complex*16 | complex*16
complex*32 | complex*16
complex*32 | complex*32
ZABS dcomplex double
CDABS dcomplex double
TABS real real
Absolute DABS double double
value X ABS QABS 1 real*16 real*16
complex*32 | complex*32
Imaginary DIMAG dcomplex double
part of a CDIMAG dcomplex double
complex TIMAG real real
argument Xi IMAG QIMAG 1 real*16 real*16
complex*32 | complex*32
Conjugate DCONJG dcomplex double
of a GTCONJ real real
complex DCONJ double double
argument (xr, -xi) CONJG QCONJ 1 complex*32 | complex*32

265

Intel® Fortran Compiler User's Guide

ZSQRT dcomplex dcomplex
SQRT dcomplex dcomplex
Square root TSQRT real real
bx SQRT DSQRT 1 real*16 real*16
ZEXP dcomplex dcomplex
CDEX dcomplex dcomplex
TEXP real real
Exponential | ex EXP QEXP 1 double double
DEXP real*16 complex*32
double double
ZLOG dcomplex dcomplex
CDLOG dcomplex dcomplex
Natural DLOG real*16 double
Logarithm loge(x) LOG QLOG 1 real*16 real*16
complex*32 | complex*32
Bitwise AND AND 2 integer integer
Operation
SeeNotel | OR OR 2 integer integer
Exclusive Ol XOR 2 integer integer
Shift left: x1 LSHIFT 2 integer integer
logically
shifted left x]
bits.x2 must
be >0
Shift right: x| RSHIFT 2 integer integer
logically
shifted right
bits.x2 must
be >0
Environ- real integer
mental double integer
Inquiries. Base of real*16 integer
See Note 1 | number EPBASE | 1 real*16 integer
systems complex*32 | complex*32
Number of real integer
Significant double integer
Bits real*16 integer
EPPREC | 1 real*16 integer
complex*32 | integer
real integer
double integer
real*16 integer
Minimum EPEMIN 1 real*16 integer
Exponent complex*32 | integer

266

Intel® Fortran Compiler User's Guide

real integer
double integer
Maximum real*16 integer
Exponent EPEMAX real*16 integer
complex*32 | integer
real real
double double
real*16 real*16
Smallest nor EPTINY double double
zero numbel complex*32 | double
integer integer
real real
double double
Largest EPHUGE real*16 real*16
Number double double
Represental complex*32 | double
real real
double double
real*16 real*16
Epsilon EPMRSP double double
complex*32 | complex*32
Location Address of | LOC any integer
See Note 3
ZSIN dcomplex dcomplex
SIND real*16 real*16
Sine sin(x) SIN DSIND double double
SIND QSIND real*16 real*16
complex*32 | complex*32
ZCOS dcomplex dcomplex
CDCOS dcomplex dcomplex
COSD real real
Cosine cos(x) COS DCOSD double double
COSD QCOSD real*16 real*16
complex*32 | complex*32
TAND real real
DTAND double double
Tangent tan(x) TAND QTAND real*16 real*16
complex*32 | complex*32
ASIND real real
DASIND double double
Arcsine arcsin(x) ASIND QASIND real*16 real*16
complex*32 | complex*32

267

Intel® Fortran Compiler User's Guide

ACOSD real real
QCOSD complex*32 | complex*32
DACOSD double double
Arc-cosine ACOSD QACOSD | 1 real*16 real*16
complex*32 | complex*32
ATAND real real
DATAND double double
Arctangent | arctan(x) ATAND QATAND | 1 real*16 real*16
complex*32 | complex*32
ATAN2D real real
DATAN2D double double
XATAN2D real*16 real*16
arctan(x1-x2 ATAN2D | QATAN2D| 2222 | real*16 real*16
complex*32 | complex*32

Key Files Summary for IA-32 Compiler

The following tables list and briefly describe files that are installed for use by the 1A-32
version of the compiler.

/bin Files
File Description
f90com Executable used by the compiler
fpp Fortran preprocessor
ifc Intel® Fortran Compiler
ifc.cfg Configuration file for use from command line
i fccem FCE Manager Utility
i fcvars. csh Environment variables header file
i fcvars. sh Batch file to set environment variables
pr of mer ge Utility used for Profile Guided Optimizations
pr of or der Utility used for Profile Guided Optimizations
Xi ar Tool used for final interprocedural compilation
prior to archiving.
xild Tool used for Interprocedural Optimizations
/lib Files
File Description
['i bbi ndf 90. a Library of Binder utilities
| i bcepcf90. a Fortran 1/O library to coexist with C
I'i bcepcf90. so | Shared Fortran I/O library to coexist with C
lincprts.a C++ standard language library

268

Intel® Fortran Compiler User's Guide

lincprts.so Shared C++ standard language library

l'i bcxa. a C++ language library indicating I/O data
location

l'i bcxa. so Shared C++ language library indicating 1/0
data location

l'i bf 90. a Intel-specific Fortran runtime library

i bf90.a Shared Intel-specific Fortran runtime library

[i bgui de. a OpenMP* library

I i bgui de. so Shared OpenMP library

I'i bi epcf90. a Intel-specific Fortran runtime I/O library

I'i bi epcf90.so | Shared Intel-specific Fortran runtime /O
library

[ibinf.a Special purpose math library functions,
including some transcendentals, built only for
Linux

['ibinf.so Shared special purpose math library

functions, including some transcendentals,
built only for Linux

libintrins. a

Intrinsic functions library

libintrins.so

Shared intrinsic functions library

libirc.a Intel-specific library (optimizations)

i bompst ub. a Library to resolve references to OpenMP
subroutines when OpenMP is not used

| i bpepcf 90. a Portability library

|'i bpepcf 90. so | Shared portability library

I i bposf 90. a Posix library

I i bposf 90. a Shared posix library

l'ibsvm . a Short-vector math library (used by vectorizer)

i bunwi nd. a Exception handling library to perform stack

unwinds

li bunwi nd. so

Shared version of exception handling library

Key Files Summary for Itanium® Compiler

The following tables list and briefly describe files that are installed for use by the Itanium ®

compiler version of the compiler.

/bin Files
File Description
f 90com Executable used by the compiler
fpp Fortran preprocessor
ef c Intel® Fortran Compiler
efc.cfg Configuration file for use from command line
ef ccem FCE Manager utility

269

ef cvars. csh

Intel® Fortran Compiler User's Guide

Environment variables header file

ef cvars. sh

Batch file to set environment variables

pr of mer ge Utility used for Profile Guided Optimizations

pr of or der Utility used for Profile Guided Optimizations

Xi ar Tool used for final interprocedural compilation

prior to archiving.
xild Tool used for Interprocedural Optimizations
/lib Files

File Description

l'i basmutils.so | Library of Intel Itanium Assembler utilities

| i bcepcf90. a Fortran 1/O library to coexist with C

I'i bcepcf90. so Shared Fortran 1/O library to coexist with C

libcprts.a C++ standard language library

libcprts. so Shared C++ standard language library

i bcxa. a C++ language library indicating 1/0 data
location

i bcxa. so Shared C++ language library indicating 1/0
data location

| i bdecei a. a Assembler decoder library for IA-32

instructions on Itanium processor.

| i bdecei a. so

Shared assembler decoder library for I1A-32
instructions on Itanium processor.

| i bdecem a Assembler decoder library for Itanium
processor.

| i bdecem so Shared assembler decoder library for Itanium
processor.

| i bdecent8. a Assembler decoder library for Pentium® 4
processor.

| i bdecent8. so Shared assembler decoder library for
Pentium® 4 processor.

l'i bdi seia.a Disassembly library for I1A-32 instructions on

[tanium processor.

I i bdi sei a. so

Shared disassembly library for 1A-32
instructions on Itanium processor..

i bdi sem a Disassembly library for Itanium processor.

i bdi sem so Shared disassembly library for Itanium
processor..

l'i bdi sp68. a Disassembly library for Pentium 4 processor.

| i bdi sp68. so Shared disassembly library for Pentium 4
processor.

i bencei a. a Assembler encoder library for 1A-32

instructions on Itanium processor.

270

i bencei a. so

Intel® Fortran Compiler User's Guide

Shared assembler encoder library for IA-32
instructions on Itanium processor.

I i bencem a Assembler encoder library for Itanium
processor.

I i bencem so Shared assembler encoder library for Itanium
processor.

i bencp68. a Assembler encoder library for Pentium 4
processor.

| i bencp68. so Shared assembler encoder library for Pentium
4 processor

i bf90.a Intel-specific Fortran run-time library

['i bf 90. so Shared Intel-specific Fortran run-time library

l'i bf pel . a Floating point emulation assembly library.

I i bgui de. a OpenMP* static library

I i bgui de. so Shared OpenMP library

libiel.a Integer emulation assembly library.

['i bi epcf90. a Intel-specific Fortran 1/O library

I'i bi epcf90. so Shared Intel-specific Fortran 1/O library

['ibiline.so Assembly library.

[ibinf.a Intel special purpose math library functions,

including some transcendentals.

libintrins. a

Intrinsic functions library

libintrins.so

Shared intrinsic functions library

libirc.a Intel-specific library (optimizations)

[ibma Math library compatible with GNU.

['ibrofl.a Multiple Object Format Library, used by the
Intel assembler

i bnofl.so Shared Multiple Object Format Library, used
by the Intel assembler

I'i bpepcf 90. a Portability library

I i bpepcf 90. so Shared portability library

I'i bposf 90. a Posix library

I'i bposf 90. so Shared posix library

i bsched. so Shared assembly scheduling library

I'i bsynmdbg. so Shared assembly symbolic debugger library

| i bunwdecem a

Assembly decoder exception handling library
to perform stack unwinds

| i bunwdecem so

Shared assembly decoder exception handling
library to perform stack unwinds

li bunwi nd. a

Exception handling library to perform stack
unwinds

li bunwi nd. so

Shared exception handling library to perform
stack unwinds

libvral.so

Assembly virtual register allocation library

271

Intel® Fortran Compiler User's Guide

Error Message Lists

This section provides lists of error messages generated during compilation phases or
reporting program error conditions. It includes the error messages for the following areas:

e runtime

« allocation

e input-output

e intrinsic procedures

¢ mathematical

e exceptions

Runtime Errors (IA-32 Only)

These errors are caused by an invalid run-time operation. Following the message, a
postmortem report is printed if any of the compile-time options - C, - CA, - CB, - CS, - CU,
CV or - d{ n} was selected.

Error | Option(s) Message
Required
401 -CU Unassigned variable
404 none Assigned label is not in specified list
405 none Integer is not assigned with a format label
406 -CB Array bounds exceeded
439 none nth argument is not present
440 none Inconsistent lengths in a pointer assignment
442 none Inconsistent length for CHARACTER pointer function
*447 -GS Invalid DI Margument to LBOUND
*448 -CS Invalid DI Margument to UBOUND
*449 -GS Invalid DI Margument to Sl ZE
451 none Procedure is a BLOCKDATA
454 -GS Array shape mismatch
455 -CB Array section bounds inconsistent with parent array
456 -CB Invalid character substring ending position
457 -CB Invalid character substring ending position
458 none Object not allocated
459 -CA Array not allocated
460 -CA Pointer not allocated
461 -CA -QU Pointer is undefined

272

Intel® Fortran Compiler User's Guide

462 -CA Assumed-shape array is not allocated

463 -CA Assumed-shape array is undefined

464 none Inconsistent lengths in a character array constructor
441 - CV
443 - CV
444 - CV
480- CV
481- CV

441 -Cv Inconsistent length for CHARACTER pointer argument
argument-name

443 -Cv Inconsistent length for CHARACTER argument

444 -Cv Inconsistent length for CHARACTER function

480 -Cv Too many arguments specified

481 -Cv Not enough arguments specified

*482 -CV Incorrect interface block

*483 -Cv Interface block required for subprogram-name

*484 -Cv name is not a type-kind function-subroutine

*485 -Cv Argument type mismatch

*486 -Cv Array rank mismatch

*These errors are followed by additional information, as appropriate:

e nth dummy argument is not an actual-argument-type

t ypel actual argument passed to t ype2 dummy argument n

t ype actual argument passed to cray-pointer dummy argument n

o Cray-pointer actual argument passed to type dummy argument n

o nth dummy argument is [not] a cray-pointer

e nth actual argument is not compatible with type RECORD

e nane is [not] a pointer-valued function

o nth dummy argument is [not] a pointer

e nane is [not] a dynamic CHARACTER function

o nth dummy argument is [not] optional

273

Intel® Fortran Compiler User's Guide

e nth dummy argument is [not] an assumed-shape array

e nane is [not] an array-valued function

o nth dummy argument is an array but the actual argument is a scalar
o nth dummy argument is a scalar but the actual argument is an array

e The actual rank (x) of name does not match the declared rank (y)

e The data type of name does not match its declared type

o nth dummy argument and the actual argument are different data types
e nth actual argument passed to Fortran subprogram using %/AL

e nth actual argument passed to Fortran subprogram using %REF

Allocation Errors

The following errors can arise during allocation or deallocation of data space.

If the relevant ALLOCATE or DEALLOCATE includes a STAT = speci fi er, thenan
occurrence of any of the errors below will cause the STAT variable to become defined with
the corresponding error number, instead of the error message being produced.

In the error messages, vart ype is

array a pointer to an array, an allocatable array, or a
temporary array

character a pointer to a character scalar, an automatic

scal ar character scalar, or a temporary character
scalar

poi nt er a pointer to a non-character scalar

Error Message

491 vart ype is already allocated.

492 vart ype is not allocated.

493 vartype was not created by ALLOCATE.

274

Intel® Fortran Compiler User's Guide

494

or

or

or

or

Allocation of nnn bytes failed
Allocation of array with extent nnn failed
Allocation of array with element size nnn failed

Allocation of character scalar with element size
nnn failed

Allocation of pointer with element size nnn failed.

495

Heap initialization failed.

Input/Output Errors

The number and text of each input-output error message is given below, with the context in
which it could occur and an explanation of the fault which has occurred. If the input-output

statement includes an | OSTAT=STAT specifier, then an occurrence of any of the errors that
follow will cause the STAT variable to become defined with the corresponding error number.

Error

Message

Where
Occurring

Description

117

Unit not
connected

OPEN

An attempt was made to read or write to a
closed unit.

118

File already
connected

OPEN

An attempt was made to OPEN a file on one
unit while it was still connected to another.

119

ACCESS
conflict

OPEN,
Positional,
READ, VRI TE

When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELI M ERR, | OSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the ACCESS specifier.
This message is also used if an attempt is
made to use a direct-access I/O statement on
a unit which is connected for sequential 1/0 or
a sequential 1/0O statement on a unit
connected for direct access 1/0.

120

RECL conflict

OPEN

When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELI M ERR, | OSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the RECL specifier.

121

FORMconflict

OPEN

When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELI M ERR, | OSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the FORMspecifier.

275

Intel® Fortran Compiler User's Guide

122 STATUS OPEN When a file is to be connected to a unit to

conflict which it is already connected, then only the
BLANK, DELI M ERR, | OSTAT and PAD
specifier may be redefined. An attempt has
been made to redefine the STATUS specifier.

123 Invalid CLCSE STATUS=DELETE has been specified in a
STATUS CL OSE statement for a unit which has no

write permissions; for example, the unit has
been opened with the READONLY specifier.

125 Specifier not | OPEN A specifier value defined by the user has not
recognized been recognized.

126 Specifiers OPEN Within an OPEN statement one of the
inconsistent following invalid combinations of specifiers

was defined by the user:

ACCESS=DI RECT was specified when
STATUS=APPEND

BLANK=FORMATTED was specified when
FORM= UNFORMATTED

127 Invalid RECL | OPEN, The value of the RECL specifier was not a
value DEFI NE positive integer.

FI LE

128 Invalid I NQUI RE The name of the file in an Inquire by file
filename statement is not a valid filename.

129 No filename OPEN In an OPEN statement, the STATUS specifier
specified was not SCRATCH or UNKNOWN and no

filename was defined.

130 Record OPEN The RECL specifier was not defined although
length not ACCESS=DI RECT was specified.
specified

131 An equals Namelist A variable name, array element or character
expected READ substring reference in the input was not

followed by an "=".

132 Value List-Directed A complex or literal constant in the input
separator READ, stream was not terminated by a delimiter (that
missing Namelist is, by a space, a comma or a record

READ boundary).

133 Value Namelist A subscript value in a character substring or
separator READ array element reference in the input was not
expected followed by a comma or close bracket.

134 Invalid V\RI TE with If d represents the decimal field of a format
scaling FORMAT descriptor and k represents the current scale

factor, then the ANSI Standard requires that
the relationship -d<k<d+2 is true when an E
or D format code is used with a WRI TE
statement. This requirement has been
violated.

276

Intel® Fortran Compiler User's Guide

135 Invalid Formatted A logical value in the input stream was
logical value | READ syntactically incorrect.

136 Invalid Namelist A character constant does not begin with a
character READ quote character.
value

137 Value not List-Directed An item in the input stream was not
recognized READ, recognized.

Namelist
READ

138 Invalid List-Directed The value of a repetition factor found in the
repetition READ, input stream is not a positive integer
value Namelist constant.

READ

139 lllegal List-Directed A repetition factor in the input stream was
repetition READ, immediately followed by another repetition
factor Namelist factor.

READ

140 Invalid Formatted The current input field contained a real
integer READ number when an integer was expected.

141 Invalid real Formatted The current input field contained a real

READ number which was syntactically incorrect.

143 Invalid List-Directed The current input field contained a complex
complex READ, number which was syntactically incorrect.
constant Namelist

READ

144 Invalid Namelist A subscript value in an array element
subscript READ reference in the input was not a valid integer.

145 Invalid Namelist A subscript value in a character substring
substring READ reference was not a valid integer or was not

positive.

146 Variable not Namelist The data contained an assignment to a
in Namelist READ variable which is not in the NAMELI ST list.

147 Variable not Namelist A variable name in the data was followed by
an array READ an open bracket but the name is not an array

or character variable.

148 Invalid Formatted A character has been found in the current
character READ input stream which cannot syntactically be

part of the entity being assembled.

149 Invalid Namelist The first character of a record read by a
Namelist READ Namelist READstatement was not a space.
input

150 Literal not List-Directed A literal constant in the input file was not
terminated READ, terminated by a closing quote before the end

Namelist of the file.
READ

151 A variable Namelist A list of array or array element values in the
name READ data contained too many values for the
expected associated variable.

277

Intel® Fortran Compiler User's Guide

152 File does not | OPEN An attempt has been made to open a file
exist which does not exist with STATUS=0LD.

153 Input file READ All the data in the associated internal or
ended external file has been read.

154 Wrong READ, WRI TE | The record length as defined by a FORVAT
length record statement, or implied by an unformatted

READ or WRI TE, exceeds the defined
maximum for the current input or output file.

155 Incompatible | READWMRI TE A format description was found to be
format with FORVAT incompatible with the corresponding item in
descriptor the 1-O list.

156 READ after READ An attempt has been made to read a record
WRITE from a sequential file after a WRITE

statement.

158 Record Direct Access | The record number in a direct-access I-O
number out READVWRI TE, | statement is not a positive value, or, when
of range FI ND reading, is beyond the end of the file.

159 No format READVRI TE No corresponding format code exists in a
descriptor for | with FORMVAT FORMAT statement for an item in the 1-O list
data item of a READ or WRI TE statement.

160 READ after READ An attempt has been made to read a record
Endfile from a sequential file which is positioned at

ENDFI LE.

161 WRITE VRI TE After repeated retries WRI TE(2) could not
operation successfully complete an output operation.
failed This may occur if a signal to be caught

interrupts output to a slow device

162 No WRITE VWRI TE An attempt has been made to write to a file
permission which is defined for input only.

163 Unit not FI ND The unit specified by a FI ND statement is not
defined or open. The unit should first be defined by a
connected DEFI NE FI LE statement, or should be

connected by some other means.

164 Invalid Any I-O The unit specified in an I/O statement is a
channel Operation negative value.
number

166 Unit already | DEFI NE The unit specified in a DEFI NE FI LE
connected FI LE statement is already open.

167 Unit already | DEFI NE The same unit has already been specified by
defined FI LE, OPEN a previous DEFI NE FI LE statement.

168 File already OPEN An attempt has been made to OPEN an
exists existing file with STATUS=NEW

169 Output file READ, WRI TE | An attempt has been made to write to an
capacity internal or external file beyond its maximum
exceeded capacity.

278

Intel® Fortran Compiler User's Guide

171 Invalid Positional, An /0 request was not consistent with the file
operation on | READ, WRI TE | definition; for example, attempting a
file BACKSPACE on a unit that is connected to the
screen.

172 various READ, WRI TE | An unexpected error was returned by READ2
- the error text will be the NT* message
associated with the failure.

173 various READ, WRI TE | An unexpected error was returned by WRI TE-
the error text will be the LI NUX* message
associated with the failure.

174 various READ, WRI TE | An unexpected error was returned by LSEEK
- the error text will be the LI NUX message
associated with the failure.

175 various OPEN, CLOSE | An unexpected error was returned by
UNLI NK - the error text will be the LI NUX
message associated with the failure.

176 various OPEN, CLOSE | An unexpected error was returned by CLOSE-
the error text will be the LI NUX message
associated with the failure.

177 various OPEN An unexpected error was returned by CREAT
- the error text will be the LI NUX message
associated with the failure.

178 various OPEN An unexpected error was returned by OPEN-
the error text will be the LI NUX message
associated with the failure.

181 Substring Namelist A character substring reference in the input

out of range | READ data lay beyond the bounds of the character
variable.

182 Invalid Namelist A name in the data was not a valid variable

variable READ name.
name

185 Too many Namelist A repetition factor (of the form r*c) exceeded

values READ the number of elements remaining
specified unassigned in either an array or array
element reference.

186 Not enough Namelist An array element reference contained fewer

subscripts READ subscripts than are associated with the array.
specified

187 Too many Namelist An array element reference contained more

subscripts READ subscripts than are associated with the array.
specified

188 Value out of Formatted During numeric conversion from character to

range READ binary form a value in the input record was
outside the range associated with the
corresponding I-O item.

190 File not OPEN A file which can only support sequential file

suitable operations has been opened for direct access
I-O.

279

Intel® Fortran Compiler User's Guide

191 Workspace OPEN Workspace for internal tables has been
exhausted exhausted.
192 Record too READ The length of the current record is greater
long than that permitted for the file as defined by
the RECL= specifier in the OPEN statement
193 Not Unformatted An attempt has been made to access a
connected READVRI TE formatted file with an unformatted I-O
for statement.
unformatted
I-O
194 Not Formatted An attempt has been made to access an
connected READVRI TE unformatted file with a formatted I-O
for formatted statement.
I-O
195 Backspace BACKSPACE An attempt was made to BACKSPACE a file
not which contains records written by a list-
permitted directed output statement; this is prohibited
by the ANSI Standard.
199 Field too List-Directed An item in the input stream was found to be
large READ, more than 1024 characters long (this does
Namelist not apply to literal constants).
READ
203 PCSI TI ON OPEN When a file is to be connected to a unit to
conflict which it is already connected, then only the
BLANK, DELI M ERR, | OSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the POSI TI ON
specifier.
204 ACTI ON OPEN When a file is to be connected to a unit to
conflict which it is already connected, then only the
BLANK, DELI M ERR, | OSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the ACTI ON specifier.
205 No read READ An attempt has been made to READ froma
permission unit which was OPENed with
ACTI ON="WRI TE".
206 Zero stride Namelist An array subsection reference cannot have a
invalid READ stride of zero.
208 Incorrect Namelist An array subsection triplet has been input
array triplet READ incorrectly.
syntax
209 Name not a Namelist A name in the data which is not a derived
derived type | READ type has been followed by a "%'.
210 Invalid Namelist A derived type reference has not been
component READ followed by an "='.
name

280

Intel® Fortran Compiler User's Guide

211 Component Namelist A %' must be followed by a component
name READ name in a derived type reference.
expected

212 Name not in Namelist A component is not in this derived type.
derived type | READ

213 Only one Namelist In a derived-type reference, only the derived
component READ type or one of its components may be an
may be array or an array subsection.
array-valued

214 Object not READVRI TE | An item has been used which is either an
allocated unallocated allocatable array or a pointer

which has been disassociated.

Little-Big Endian Conversion Errors

Error | Message Where Description
Occurring
215 Conversion READVRI TE Conversion of derived data types is disabled
of derived if READ/V\RI TE statement refers to derived
data types is data type. Fatal error.
disabled
216 lInternal READVRI TE Unknown data size. Fatal error. Contact Intel.
Error!
Unknown
data size
217 lInternal READVRI TE Conversion buffer too small. Fatal error.
Error! Contact Intel.
Conversion
buffer too
small

Other Errors Reported by I/O statements

Errors 101-107 arise from faults in run-time formats:

Error Message

101 Syntax error in format

102 Format is incomplete

103 A positive value is required here

104 Minimum number of digits exceeds width

105 Number of decimal places exceeds width

106 Format integer constants > 32767 are not
supported

107 Invalid H edit descriptor

Notes

281

Intel® Fortran Compiler User's Guide

The 1/0 statements OPEN, CLOSE and | NQUI RE are classified as Auxiliary 1/0
statements. The I/O statements REW ND, ENDFI LE and BACKSPACE are classified as
Positional 1/O statements.

The | OSTAT = vari abl eissetto -1 if an end- of - fi | e condition occurs, to -2 if
an end- of - r ecor d condition occurs (in a non-advancing READ), to the error number
if one of the listed errors occurs, and to O if no error occurs.

Should no input/output specifier relating to the type of the occurring input/output error
be given (END=, EOR=, ERR= or IOSTAT=, as appropriate), then the input/output error
will terminate the user program. All units which are currently opened will be closed,

and the appropriate error message will be output on Standard Error followed (if
requested) by a postmortem report (see Runtime Diagnostics).

e The form of an input/output error message is presented in the table below.

I/O Error nnn : Text of message

In Procedure : Procedure name

At Line : Line number

Statement : I/O statement type

Unit : Unit identifier or Internal File

Connected To : File name

Form : Formatted, Unformatted or Print

Access : Sequential or Direct

Nextrec : Record number

Records Read : Number of records input

Records Written : Number of records output

Current 1/0 Snapshot of the current record with a

Buffer : pointer to the current position
£J Note

Only as much information as is available or pertinent will be displayed.

Intrinsic Procedure Errors

The following error messages, which are unnumbered, are generated when incorrect

arguments are specified to the Intel® Fortran Compiler intrinsic procedures, and option - CS

was selected at compile-time. The messages are given in alphabetic order.
Each message is preceded by a line of the form:
ERRCOR calling the intrinsic subprogram nane:

where name is the name of the intrinsic procedure called. The term "integer" indicates
I nt eger format of an argument.

Intel® Fortran Compiler User's Guide

List of Intrinsic Errors

Argument i nt eger of the intrinsic function name has string length i nt eger . It should
have string length at least i nt eger .

Argument i nt eger of the intrinsic function name is a rank i nt eger array.
It should be a rank integer array.

Argument i nt eger of the intrinsic function name is an array with i nt eger elements. It
should be an array with at least i nt eger elements.

Argument name has the value i nt eger and argument nane has the value i nt eger .
Both arguments should have non-negative values and their sum should be less than or
equal to i nt eger .

Array argument nane has size i nt eger .
It should have size integer.

Array arguments nanel and nane2 should have the same shape.
The shape of argument nanel is: (i nt eger ,i nt eger,...,i nt eger).
The shape of argument nane2 is: (i nt eger ,i nt eger,...,i nt eger).

At least one of the array arguments should have rank = 2
The extent of the last dimension of MATRI X_Ais i nt eger.
The extent of the first dimension of MATRI X _Bisi nt eger.
These values should be equal.

The DI Mparameter had a value of i nt eger.
Its value should be i nt eger .

The DI Mparameter had a value of i nt eger .
Its value should be at least integer and no larger than i nt eger.

The nane array has shape: (i nt eger ,i nt eger,...,i nt eger).
The shape of name should be: (i nt eger ,i nt eger,...,i nt eger).

The NCOPI ES argument has a value of integer. NCOPI ES should be non-negative.

The ORDER argument should be a permutation of the i nt eger 1 to i nt eger .
The contents of the ORDER argument array is: (i nt eger ,i nt eger ,...,i nt eger).

The rank of the RESULT array should be equal to the size of the SHAPE arr ay.
The rank of the RESULT array is integer. The size of the SHAPE array isi nt eger.

The RESULT array has shape: (i nt eger ,i nt eger,...,i nt eger).
The shape of the RESULT array should be: (i nt eger ,i nt eger,...,i nt eger).

283

Intel® Fortran Compiler User's Guide

The RESULT array has size integer. It should have size i nt eger .

The RESULT character string has length i nt eger . It should have length i nt eger .

The SHAPE argument has size integer.
Its size should be at least i nt eger and no larger than i nt eger .

e The SHAPE argument should have only non-negative elements.

e The contents of the SHAPE array is: (i nt eger ,i nt eger,...,i nt eger).

e The SI ZE argument has a value integer. Its value should be non-negative.

o The size of the SOURCE array should be at least integer.

¢ The size of the SOURCE array is integer.

e When setting seeds with the intrinsic function name, the first seed must be at least
i nt eger and not more than i nt eger, and the second seed must be at least

I nt eger and not more than i nt eger.

Mathematical Errors

This section lists the errors that can be reported as a consequence of using an intrinsic

function or the exponentiation operator ** .

If any of the errors below is reported, the user program will terminate. A postmortem report
(see Runtime Diagnostics) will be output if the program was compiled with the option - d

{ n} . All input-output units which are open will be closed.

The number and text of mathematical errors are:

Error | Message

16 Negative DOUBLE PRECI SI ON value raised to a non-integer power

17 DOUBLE PRECI SI ON zero raised to non-positive power

22 REAL zero raised to non-positive power

23 Negative REAL value raised to a non-integer power

24 REAL value raised to too large a REAL power

38 | NTEGER raised to negative | NTEGER power

39 | NTEGER zero raised to non-positive power

40 | NTEGER to | NTEGER power overflows

46 DOUBLE PRECI SI ONvalue raised to too large a DOUBLE
PRECI SI ON power

47 COVPLEX zero raised to non-positive | NTEGER power

284

Intel® Fortran Compiler User's Guide

Exception Messages

The following messages, which are unnumbered, are a selection of those which can be
generated by exceptions (signals). They indicate that a hardware-detected or an
asynchronous error has occurred. Note that you can obtain a postmortem report when an

exception occurs by compiling with the - d{ n} option.

The occurrence of an exception usually indicates that the Fortran program is faulty.

| nstructi on**

Message Comment

FQUIT Program aborted by the user typing ~/ (ctrl + /)
si gnal **

**111 egal May be indicative of a bad call on a function

that is defined to return a derived type result:
either the sizes of the expected and actual
results do not correspond, or the function has
not been called as a derived type function.

**Al i gnnment

Access was attempted to a variable which is

Error>* not aligned on an address boundary
appropriate to its type; this could occur, for
example, when a formal double-precision type
variable is aligned on a single word boundary.

**Address Usually caused by a wrong value being used

Er ror :: ** Bus as an address (check the associativity of all

rror

pointers).

285

	Intel® Fortran Compiler User's Guide
	Disclaimer
	Welcome to Intel® Fortran Compiler
	Major Components of the Intel® Fortran Compiler Product
	What's New in This Release
	Improvements and New Features
	Features and Benefits
	Product Web Site and Support
	System Requirements
	FLEXlm* Electronic Licensing
	How to Use This Document
	Notation Conventions
	Related Publications
	Publications on Compiler Optimizations

	Options Quick Reference Guides
	Conventions used in the Options Quick Guide Tables
	New Compiler Options
	Compiler Options Quick Reference Alphabetical
	Compiler Options by Functional Groups
	Customizing Compilation Process Options
	Alternate Tools and Locations
	Preprocessing
	Compiling
	Linking
	Compilation Output
	Debugging
	Libraries
	Diagnostics and Messages

	Language Conformance Options
	Data Type
	Source Program
	Arguments and Variables
	Common Blocks

	Application Performance Optimizations Options
	Setting Optimization Level
	Floating-point Arithmetic Precision
	Processor Dispatch Support
	Interprocedural Optimizations
	Profile-guided Optimizations
	High-level Language Optimizations
	Parallelization
	Vectorization (IA-32 only)
	Optimization Reports (Itanium® Compiler)

	Windows* to Linux* Options Cross-reference

	Getting Started with the Intel® Fortran Compiler
	Invoking Intel® Fortran Compiler
	Invoking from the Compiler Command Line
	Setting the Environment Variables
	Running the Shell Scripts
	Command Line Syntax

	Command Line with make
	Input Files

	Default Behavior of the Compiler
	Default Behavior of the Compiler Options
	Data Setting and Language Conformance
	Optimizations
	Compilation
	Messages and Diagnostics
	Messages and Diagnostics
	Disabling Default Options
	Resetting Default Data Types

	Default Libraries and Tools
	Assembler
	Linker

	Compilation Phases

	Customizing Compilation Environment
	Environment Variables
	Configuration Files
	Response Files
	Include Files

	Customizing Compilation Process
	Specifying Alternate Tools and Locations
	Specifying an Alternate Component
	Passing Options to Other Tools

	Preprocessing
	Preprocessor Options
	Preprocessing Fortran Files
	Enabling Preprocessing with CVF
	String Constants for IA-32 Systems
	Preprocessing Only: -E, -EP, -F, and -P
	Specifying an Include Directory, -Idir
	Compiling an Input File from a Different Directory
	Specifying the .mod Files Directory
	Removing Include Directories, -X
	Defining Macros
	Predefined Macros
	Suppressing Macros
	Preprocessor Macro for OpenMP*

	Compilation
	Controlling Compilation
	Saving Compiler Version and Options Information,
	Monitoring Data Settings
	Little-endian-to-Big-endian Conversion (IA-32)

	Specifying Compilation Output
	Default Output Files
	Specifying Executable Files
	Specifying Object Files
	Producing Assembly Files with Annotations and Comments
	Using the Assembler to Produce Object Code
	Listing Options

	Linking
	Options to Link to Tools and Libraries
	Controlling Linking and its Output
	Suppressing Linking

	Debugging
	Support for Symbolic Debugging
	Compiling Source Lines with Debugging Statements, -DD
	Parsing for Syntax Only
	Debugging and Optimizations

	Fortran Language Options
	Setting Integer and Floating-point Data Types
	Source Program Features
	Program Structure and Format
	Compatibility with Platforms and Compilers
	Escape Characters
	Line Terminators

	Setting Arguments and Variables
	Automatic Allocation of Variables to Stacks
	Alignment, Aliases, Implicit None
	Preventing CRAY* Pointer Aliasing

	Allocating Common Blocks
	Dynamic Common Option
	Allocating Memory to Dynamic Common Blocks
	Why Use a Dynamic Common
	Rules of Using Dynamic Common Option

	Compiler Optimizations
	Optimization Levels
	Setting Optimization Levels
	Restricting Optimizations

	Floating-point Arithmetic Precision
	Floating-point Arithmetic Precision for IA-32 Systems
	-prec_div Option
	-pc{32|64|80} Option
	Rounding Control, -rcd, -fp_port

	Floating-point Arithmetic Precision for Itanium®-based Systems
	Contraction of FP Multiply and Add/Subtract Operations
	FP Speculation
	FP Operations Evaluation
	Controlling Accuracy of the FP Results

	Improving/Restricting FP Arithmetic Precision

	Targeting a Processor and Extensions Support
	Targeting a Processor, -tpp{n}
	Exclusive Specialized Code with -x{i|M|K|W}
	Specialized Code with -ax{i|M|K|W}
	Checking for Performance Gain
	Combining Processor Target and Dispatch Options
	Example of -x and -ax Combinations

	Interptocedural Optimizations
	Multifile IPO
	Compilation Phase
	Creating a Multifile IPO Executable with Command Line
	Creating a Multifile IPO Executable Using xild
	Usage Rules
	The xild Options
	Compilation with Real Object Files
	Creating a Library from IPO Objects
	Analyzing the Effects of Multifile IPO, -ipo_c, -ipo_S
	Using -ip with -Qoption Specifiers

	Criteria for Inline Function Expansion
	Selecting Routines for Inlining
	Controlling Inline Expansion of User Functions
	Inline Expansion of Library Functions

	Profile-guided Optimizations
	Instrumented Program
	Added Performance with PGO
	Profile-guided Optimizations Methodology
	PGO Phases
	Basic PGO Options
	Generating Instrumented Code, -prof_gen[x]
	Generating a Profile-optimized Executable, -prof_use
	Disabling Function Splitting, -fnsplit- (Itanium® Compiler only)

	Advanced PGO Options
	Specifying the Directory for Dynamic Information Files
	Specifying Profiling Summary File
	Guidelines for Using Advanced PGO

	PGO Environment Variables
	Example of Profile-Guided Optimization
	Merging the .dyn Files
	The profmerge Utility
	Dumping Profile Data
	Using profmerge to Relocate the Source Files

	PGO API Support
	The Profile IGS Functions
	The Profile IGS Environment Variable
	Dumping Profile Information
	Resetting the Dynamic Profile Counters
	Dumping and Resetting Profile Information
	Interval Profile Dumping
	Interval Profile Dumping

	High-level Language Optimizations (HLO)
	Loop Transformations
	Scalar Replacement (IA-32 Only)
	Loop Unrolling with -unroll[n]
	Memory Dependency with IVDEP Directive
	Prefetching

	Parallelization
	Parallelization with OpenMP*
	Parallel Processing with OpenMP
	Performance Analysis
	Programming with OpenMP
	Parallel Region and Constructs
	Worksharing Construct
	Parallel Processing Directive Groups
	Data Sharing
	Orphaned Directives
	Preparing Code for OpenMP Processing

	Parallel Processing Thread Model
	The Execution Flow
	Pseudo Code of the Parallel Processing Model

	Compiling with OpenMP, Directive Format, and Diagnostics
	-openmp Option
	OpenMP Directive Format and Syntax
	Syntax for Parallel Regions in the Source Code
	OpenMP Diagnostics

	OpenMP Directives and Clauses
	OpenMP Directives
	OpenMP Clauses

	OpenMP Support Libraries
	Execution modes
	OpenMP Environment Variables
	Standard Environment Variables
	Intel Extension Environment Variables

	OpenMP Runtime Library Routines
	Intel Extension Routines
	Stack Size
	Memory Allocation

	Examples of OpenMP Usage
	do: A Simple Difference Operator
	do: Two Difference Operators
	sections: Two Difference Operators
	single: Updating a Shared Scalar

	Auto-parallelization
	Programming with Auto-parallelization
	Guidelines for Effective Auto-parallelization Usage
	Coding Guidelines
	Auto-parallelization Data Flow

	Programming Enabling, Options, Directives, and Environment Variables
	Auto-parallelization Options
	Auto-parallelization Directives
	Auto-parallelization Directives Format and Syntax
	Examples

	Auto-parallelization Environment Variables

	Auto-parallelization Threashold Control and Diagnostics
	Threshold Control
	Diagnostics
	Example of Parallelization Diagnostics Report
	Troubleshooting Tips

	Debugging Multithreaded Programs
	Debugger Limitations for Multithread Programs
	Debugging Parallel Regions
	Constructing an Entry-point Name
	Debugging Code with Parallel Region
	Example 1 Debuging Code with Parallel Region

	Debugging Multiple Threads
	The Call Stack Dumps
	Example 2 Debugging Code Using Multiple Threads with Shared Variables

	Debugging Shared Variables

	Vectorization
	Vectorizer Options
	Usage with Other Options

	Loop Parallelization and Vectorization
	Vectorization Key Programming Guidelines
	Guidelines
	Restrictions

	Data Dependence
	Data Dependence Analysis

	Loop Constructs
	Loop Exit Conditions
	Types of Loop Vectorized
	Stripmining and Cleanup
	Statements in the Loop Body
	Floating-point Array Operations
	Integer Array Operations
	Other Operations

	Vectorization Examples
	Argument Aliasing: A Vector Copy
	Data Alignment
	Alignment Strategy

	Loop Interchange and Subscripts: Matrix Multiply

	Optimization Support Features
	Compiler Directives
	Pipelining for Itanium®-based Applications
	LOOP COUNT (N) Directive
	Loop Distribution Directive
	Loop Unrolling Support
	Prefetching Support
	Vectorization Support (IA-32)
	IVDEP Directive
	Overriding Vectorizer's Efficiency Heuristics
	The VECTOR ALWAYS and NOVECTOR Directives
	The VECTOR ALIGNED and UNALIGNED Directives

	Compiler Intrinsics
	Cache Size Intrinsic (Itanium® Compiler)

	Timing Your Application
	Optimizer Report Generation (Itanium® Compiler)
	Specifying Optimizations to Generate Reports
	Command Syntax Example
	The Availability of Report Generation

	Libraries
	The Order of Passing the Files to Linker
	Using the POSIX* and Portability Libraries
	Intel® Shared Libraries
	Advantages of This Approach
	Shared Library Options

	Math Libraries
	Using Math Libraries with IA-32 Systems
	Optimized Math Library Primitives
	Programming with Math Library Primitives
	IEEE* Floating-point Exceptions
	Invalid Operation Exception

	Compiler Diagnostics
	Runtime Diagnostics
	Optional Runtime Checks
	Pointers, -CA
	Allocatable Arrays
	Assumed-Shape Arrays

	Array Subscripts, Character Substrings, -CB
	Unassigned Variables, -CU
	Actual to Dummy Argument Correspondence, -CV

	Diagnostic Report, -d{n}
	The Level of Output
	Selecting a Postmortem Report
	Invoking a Postmortem Report

	Compiler Information Messages
	Diagnostic Messages
	Command-line Diagnostics

	Warning Messages
	Suppressing or Enabling Warning Messages

	Comment Messages
	Error Messages
	Suppressing or Enabling Error Messages

	Fatal Errors

	Mixing C and Fortran
	Naming Conventions
	Passing Arguments between Fortran and C Procedures
	Using Fortran Common Blocks from C
	Fortran and C Scalar Arguments
	Passing Scalar Arguments by Value
	Array Arguments
	Character Types
	Return Values
	Returning Character Data Types
	Returning Complex Type Data
	Procedure Names
	Pointers
	Calling C Pointer-type Function from Fortran
	Implicit Interface
	Explicit Interface
	Intrinsic Functions

	Reference Information
	Maximum Size and Number
	Additional Intrinsic Functions
	Synonyms
	DCMPLX Function
	LOC Function
	Intel® Fortran KIND Parameters
	Argument and Result KIND Parameters
	%REF and %VAL Intrinsic Functions
	List of Additional Intrinsic Functions

	Key Files Summary for IA-32 Compiler
	Key Files Summary for Itanium® Compiler
	Error Message Lists
	Runtime Errors (IA-32 Only)
	Allocation Errors
	Input/Output Errors
	Little-Big Endian Conversion Errors
	Other Errors Reported by I/O statements
	Intrinsic Procedure Errors
	Mathematical Errors
	Exception Messages

