
Intel® Fortran Compiler User's Guide

1

Copyright © 1996 - 2002 Intel Corporation
All rights reserved
Issued in USA

Document No. FL-700-05

Intel® Fortran Compiler User's Guide

2

Disclaimer
Information in this document is provided in connection with Intel products. No license,
express or implied, by estoppel or otherwise, to any intellectual property rights is granted by
this document. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE
FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO
FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel
products are not intended for use in medical, life saving, or life sustaining applications.

This Intel® Fortran Compiler User's Guide as well as the software described in it is
furnished under license and may only be used or copied in accordance with the terms of
the license. The information in this document is furnished for informational use only, is
subject to change without notice, and should not be construed as a commitment by Intel
Corporation. Intel Corporation assumes no responsibility or liability for any errors or
inaccuracies that may appear in this document or any software that may be provided in
association with this document.

Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined." Intel reserves these for future definition and shall have
no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them.

Celeron, Dialogic, i386, i486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2,
IntelDX4, IntelSX2, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel
Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium III Xeon,
and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2002.

Portions Copyright © 2001 Compaq Information Technologies Group, L.P.

Intel® Fortran Compiler User's Guide

3

Welcome to Intel® Fortran Compiler
The Intel® Fortran Compiler version 7.0 compiles code targeted for the IA-32 Intel®
architecture and Intel® Itanium® architecture. The Intel Fortran Compiler has a variety of
options that enable you to use the compiler features for higher performance of your
application.

In addition to the Getting Started with the Intel® Fortran Compiler section included with this
document, for installing and more details on getting started, see Intel® Fortran Compiler
Installing and Getting Started document.

Major Components of the Intel® Fortran Compiler
Product
Intel® Fortran Compiler product includes the following components for the development
environment:

! Intel® Fortran Compiler for 32-bit Applications

! Intel® Fortran Itanium® Compiler for Itanium-based Applications

! Intel Debugger (IDB)

The Intel Fortran Compiler for Itanium-based applications includes Intel® Itanium®
Assembler and Intel Itanium® Linker. This documentation assumes that you are familiar
with the Fortran programming language and with the Intel® processor architecture. You
should also be familiar with the host computer's operating system.

What's New in This Release
This document combines information about Intel® Fortran Compiler for IA-32-based
applications and Itanium®-based applications. IA-32-based applications correspond to the
applications run on any processor of the Intel® Pentium® processor family generations,
including the Xeon(TM) processor. Itanium-based applications correspond to the
applications run on the Intel® Itanium® and Itanium 2 processors.

The following variations of the compiler are provided for you to use according to your host
system's processor architecture and targeted architectures.

! Intel® Fortran Compiler for 32-bit Applications is designed for IA-32 systems, and its
command is ifc. The IA-32 compilations run on any IA-32 Intel processor and
produce applications that run on IA-32 systems. This compiler can be optimized
specifically for one or more Intel IA-32 processors, from Intel® Pentium® to Pentium 4
to Celeron(TM) and Xeon(TM) processors.

! Intel® Fortran Itanium® Compiler for Itanium®-based Applications (native compiler) is

Intel® Fortran Compiler User's Guide

4

designed for Itanium architecture systems, and its command is efc. This compiler
runs on Itanium-based systems and produces Itanium-based applications. Itanium-
based compilations can only operate on Itanium-based systems.

Improvements and New Features
! New Intel® Itanium® and Itanium 2 processors support with -tpp1 and -tpp2

options

! New OpenMP* option, -openmp_stubs

! Support of .mod files for parallel invocations and the -module option

! Extended optimization directives

The Intel Fortran Compiler has a variety of options that enable you to use the compiler
features for higher performance of your application. For new options in this release, see
New Compiler Options.

 Note
Please refer to the Release Notes for the most current information about features
implemented in this release.

Hyper-Threading Technology Support

Both auto-parallelization and OpenMP features support Hyper-Threading Technology.
Hyper-Threading Technology enables the operation of multiple logical processors to share
execution resources in each physical processor package. It increases system throughput
when executing multithreaded applications or when multitasked workloads are running
concurrently.

OpenMP* Support

The Intel® Fortran Compiler supports OpenMP API version 2.0 and performs code
transformation for shared memory parallel programming. The OpenMP support is
accomplished with the -openmp option. In addition, the functionality of the OpenMP has
been reinforced with new option,
-openmp_stubs.

Optimizing for Intel® Itanium® 2 Processor Family

New options -tpp1 and -tpp2 provide specific support for Intel® Itanium® and Itanium 2
processors.

Support of Parallel Invocations

Intel® Fortran Compiler User's Guide

5

The programs in which modules are defined support valuable compilation mechanisms,
such as parallel invocations with make file for Inter-procedural optimizations of multiple
files and of the whole program. In addition, the programs that require modules located in
multiple directories, can be compiled using the
-Idir option to locate the .mod files (modules) that should be included in the program.
The new
-module option specifies the directory to rout the module files.

Extended Optimization Directives

In addition to the compiler options, Intel Fortran Compiler supports Intel -extended language
directives perform various tasks during compilation to enhance optimization of application
code. A few directives for software pipelining, loop unrolling and prefetching have been
added.

Features and Benefits
The Intel® Fortran Compiler enables your software to perform the best on Intel architecture -
based computers. Using new compiler optimizations, such as the whole-program
optimization and profile-guided optimization, prefetch instruction and support for Streaming
SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2), the Intel Fortran
Compiler provides high performance.

Feature Benefit
High Performance Achieve a significant performance gain by using

optimizations
Support for Streaming
SIMD Extensions

Advantage of new Intel microarchitecture

Automatic vectorizer Advantage of parallelism in your code achieved
automatically

Parallelization Automatic generation of multithreaded code for loops.
Shared memory parallel programming with OpenMP*.

Floating-point
optimizations

Improved floating-point performance

Data prefetching Improved performance due to the accelerated data
delivery

Interprocedural
optimizations

Larger application source files perform better

Whole program
optimization

Improved performance between modules in larger
applications

Profile-guided optimization Improved performance based on profiling the frequently
used procedure

Processor dispatch Taking advantage of the latest Intel architecture features
while maintaining object code compatibility with previous
generations of Intel® Pentium® Processors.

Intel® Fortran Compiler User's Guide

6

Product Web Site and Support
For the latest information about Intel Fortran Compiler, visit the Intel® Fortran Compiler
home page where you can find:

! Fortran compiler performance-related information

! Marketing information

! Internet-based support and resources

! Intel Architecture Performance Training Center

For general information on Intel® software development products, visit
http://www.intel.com/software/products/index.htm.

For specific details on the Itanium® architecture, visit the web site at
http://developer.intel.com/design/itanium/index.htm?iid=search+Itanium&.

System Requirements
The Intel® Fortran Compiler can be run on personal computers that are based on Intel ®
architecture processors. To compile programs with this compiler, you need to meet the
processor and operating system requirements.

Minimum Hardware Requirements

IA-32 Compiler

! A system based on a Pentium®, Intel® Xeon(TM) processor or subsequent IA-32
processor.

! 128 MB RAM

! 100 MB disk space

Recommended: A system with Pentium 4 or Xeon processor and 256 MB of RAM.

Itanium® Compiler

! Itanium-processor-based system. The Itanium®-based systems are shipped with all of
the hardware necessary to support this Itanium® compiler.

! 512 MB RAM (1GB RAM recommended)

! 100 MB disk space

Intel® Fortran Compiler User's Guide

7

Operating System Requirements

IA-32 architecture:
For the current Linux* versions of kernel and glibc supported, please refer to the product
Release Notes.

Itanium® architecture:
To run Itanium®-based applications, you must have an Intel® Itanium® architecture system
running the Itanium®-based operating system. Itanium®-based systems are shipped with
all of the hardware necessary to support this product. For the current Linux versions of
kernel and glibc supported, please refer to the product Release Notes.

It is the responsibility of application developers to ensure that the operating system and
processor on which the application is to run support the machine instructions contained in
the application.

For use/call-sequence of the libraries, see the library documentation provided in your
operating system. For GNU libraries for Fortran, refer to
http://www.gnu.org/directory/gcc.html in case they are not installed with your operating
system.

Browser

For both architectures, the browser Netscape*, version 4.74 or higher is required.

FLEXlm* Electronic Licensing
The Intel® Fortran Compiler uses the GlobeTrotter* FLEXlm* licensing technology. The
compiler requires valid license file in the licenses directory in the installation path. The
default directory is /opt/intel/licenses and the license files have a file extension
of .lic.

Using the Intel® License Manager for FLEXlm* describes how to install and use the Intel®
License Manager for FLEXlm to configure a license server for systems using counted
licenses.

How to Use This Document
This User's Guide explains how you can use the Intel® Fortran Compiler. It provides
information on how to get started with the Intel Fortran Compiler, how this compiler
operates and what capabilities it offers for high performance. You will learn how to use the
standard and advanced compiler optimizations to gain maximum performance of your
application.

This documentation assumes that you are familiar with the Fortran Standard programming
language and with the Intel® processor architecture. You should also be familiar with the
host computer's operating system.

Intel® Fortran Compiler User's Guide

8

 Note:
This document explains how information and instructions apply differently to each targeted
architecture. If there is no specific indication to either architecture, the description is
applicable for both architectures.

Notation Conventions

This documentation uses the following conventions:

Related Publications

The following documents provide additional information relevant to the Intel Fortran
Compiler:

! Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian
T. Smith, and Jerrold L. Wagener. The MIT Press, 1997. Provides a comprehensive
guide to the standard version of the Fortran 95 Language.

! Fortran 90/95 Explained, Michael Metcalf and John Reid. Oxford University Press,
1996. Provides a concise description of the Fortran 95 language.

Information about the target architecture is available from Intel and from most technical
bookstores. Most Intel documents are available from the Intel Corporation web site at
www.intel.com. Some helpful titles are:

This type style An element of syntax, a reserved word, a keyword, a file
name, or a code example. The text appears in lowercase
unless uppercase is required.

This type style Indicates the exact characters you type as input.
This type style Command line arguments and option arguments you enter.
This type style Indicates an argument on a command line or an option's

argument in the text.
[options] Indicates that the items enclosed in brackets are optional.
{value|value} A value separated by a vertical bar (|) indicates a version of

an option.
... (ellipses) Ellipses in the code examples indicate that part of the code is

not shown.
This type style Indicates an Intel Fortran Language extension code

example.
This type style Indicates an Intel Fortran Language extension discussion.

Throughout the manual, extensions to the ANSI standard
Fortran language appear in this color to help you easily
identify when your code uses a non-standard language
extension.

This type style Hypertext

Intel® Fortran Compiler User's Guide

9

! Intel® Fortran Libraries Reference, doc. number 687929

! Intel® Fortran Programmer's Reference, doc. number 687928

! Using the Intel® License Manager for FLEXlm*

! VTune(TM) Performance Analyzer online help

! Intel Architecture Software Developer's Manual

! Vol. 1: Basic Architecture, Intel Corporation, doc. number 243190

! Vol. 2: Instruction Set Reference Manual, Intel Corporation, doc. number 243191

! Vol. 3: System Programming, Intel Corporation, doc. number 243192

! Intel® Itanium® Architecture Application Developer's Architecture Guide

! Intel® Itanium® Architecture Software Developer's Manual

! Vol. 1: Application Architecture, Intel Corporation, doc. number 245317

! Vol. 2: System Architecture, Intel Corporation, doc. number 245318

! Vol. 3: Instruction Set Reference, Intel Corporation, doc. number 245319

! Vol. 4: Itanium Processor Programmer's Guide, Intel Corporation, doc. number
245319

! Intel® Itanium® Architecture Software Conventions & Runtime Architecture Guide

! Intel® Itanium® Architecture Assembly Language Reference Guide

! Intel® Itanium® Assembler User's Guide

! Pentium® Processor Family Developer's Manual

! Intel® Processor Identification with the CPUID Instruction, Intel Corporation, doc.
number 241618

For developer's manuals on Intel processors, refer to the Intel's Literature Center.

Publications on Compiler Optimizations

The following sources are useful in helping you understand basic optimization and
vectorization terminology and technology:

! Intel® Architecture Optimization Reference Manual

Intel® Fortran Compiler User's Guide

10

! Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1997.

! The Structure of Computers and Computation: Volume I, David J. Kuck. John Wiley
and Sons, New York, 1978.

! Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee
(A Book Series on Loop Transformations for Restructuring Compilers). Kluwer
Academic Publishers. 1993.

! Loop Parallelization, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1994.

! High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-
Wesley, Redwood City. 1996.

! Supercompilers for Parallel and Vector Computers, H. Zima. ACM Press, New York,
1990.

! Efficient Exploitation of Parallelism on Pentium® III and Pentium® 4 Processor-Based
Systems, Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian.

Intel® Fortran Compiler User's Guide

11

Options Quick Reference Guides
This section provides three sets of tables comprising Intel® Fortran Compiler Options Quick
Reference Guides:

! Alphabetical Listing, alphabetic tabular reference of all compiler and compilation as
well as linker and linking control, and all other options implemented by the Intel
Fortran Compiler available for both IA-32 and Intel® Itanium® compilers as well as
those available exclusively for each architecture.

! Summary tables for IA-32 and Itanium compiler features with the options that enable
them

! Compiler Options for Windows* and Linux* Cross-reference

Conventions used in the Options Quick Guide Tables

New Compiler Options
The following table lists new options in this release. See Conventions Used in the Options
Quick Guide Tables.

! Options specific to the Itanium® architecture (Itanium®-based systems only)

All other options are available for both IA-32 and Itanium architectures.

[-] indicates that option is ON by default, and if option includes
"-", the option is disabled; for example, -cerrs- disables
printing errors in a terse format.

[n] indicates that the value in [] can be omitted or have various
values; for example, in -unroll[n] option, n can be
omitted or have different values starting from 0.

Values in {} with
vertical bars

are used for option's version; for example, option
-i{2|4|8} has these versions: -i2, -i4, -i8.

{n} indicates that option must include one of the fixed values for
n; for example, in option -Zp{n}, n can be equal to 1, 2, 4,
8, 16.

Words in this
style following
an option

indicate option's required argument(s). Arguments are
separated by comma if more than one are required. For
example, the option -Qoption,tool,opts looks in the
command line like this:
prompt>ifc -Qoption,link,-w myprog.f

Intel® Fortran Compiler User's Guide

12

Option Description Default
-dynamic-linker(file) Specifies in file a dynamic linker

of choice, rather than default.
OFF

-module[path]
-nomodule

Specifies the directory where the
module files (extension .mod) are
placed. Omitting this option or
specifying -nomodule results in
placing the .mod files in the
directory where the source files are
being compiled.

More...

-nomodule

-Ob{0|1|2} Controls the compiler's inline
expansion. The amount of inline
expansion performed varies as
follows:

-Ob0: disable inlining

-Ob1: disables inlining unless -ip
or -Ob2 is specified. Enables
inlining of functions.

-Ob2: Enables inlining of any
function. However, the compiler
decides which functions are
inlined. This option enables
interprocedural optimizations and
has the same effect as specifying
the -ip option.

-Ob1

-openmp_stubs Enables to compile OpenMP
programs in sequential mode. The
OpenMP directives are ignored
and a stub OpenMP library is
linked (sequentially).

OFF

-safe_cray_ptr Specifies that Cray pointers do not
alias with other variables.

More...

OFF

-list Prints a source listing on stdout.
More...

OFF

-list -showinclude Prints a source listing to stdout
with contents of INCLUDE files.

More...

OFF

Intel® Fortran Compiler User's Guide

13

Compiler Options Quick Reference Alphabetical
The following table describes options that you can use for compilations you target to either
IA-32- or Itanium®-based applications or both. See Conventions Used in the Options Quick
Guide Tables.

! Options specific to IA-32 architecture (IA-32 only)
! Options specific to the Itanium® architecture (Itanium-based systems only)

All other options are available for both IA-32 and Itanium architectures.

-tpp1
Itanium®-based systems

Targets optimization to the Intel®
Itanium® processor for best
performance.

More...

OFF

-tpp2
Itanium-based systems

Targets optimization to the Intel®
Itanium® 2 processor for best
performance. Generated code is
compatible with the Itanium
processor.

More...

ON

Option Description Default
-0f_check
IA-32 compiler

Enables a software patch for
Pentium® processor 0f
erratum.

More...

OFF

-1 Executes any DO loop at least
once. Same as -onetrip.

More...

OFF

-72, -80, -132 Specifies 72, 80 or 132 column
lines for fixed form source only.
The compiler might issue a
warning for non-numeric text
beyond 72 for the -72 option.

More...

-72

-align Analyzes and reorders memory
layout for variables and arrays.

To disable, use the -noalign
option (default is OFF)

More...

ON

Intel® Fortran Compiler User's Guide

14

-ansi_alias[-] Enables (default) or disables
assumption of the programs
ANSI conformance.

More...

ON

-auto Makes all local variables
AUTOMATIC.

More...

OFF

-autodouble Sets the default size of real
numbers to 8 bytes; same as -
r8.

More...

OFF

-auto_scalar Makes scalar local variables
AUTOMATIC.

More...

ON

-ax{i|M|K|W}

IA-32 compiler

Generates processor-specific
code corresponding to one of
codes: i, M, K, and W while also
generating generic IA-32 code.
Compiler generates multiple
versions of some routines, and
chooses the best version for the
host processor at runtime
indicated by processor-specific
codes i (Pentium® Pro), M
(Pentium with MMX(TM)
technology), K (Pentium III), and
W (Pentium 4 and Xeon(TM)).

More...

OFF

-Bdynamic Used with -lname (see in this
table), enables dynamic linking
of libraries at run time.
Compared to static linking,
results in smaller executables.

OFF

-Bstatic Enables linking a user's library
statically.

OFF

-c Stops the compilation process
after an object file (.o) has
been generated.

More...

OFF

Intel® Fortran Compiler User's Guide

15

-C90 Links with an alternative I/O
library (libCEPCF90.a) that
supports mixed input and output
with C on the standard streams.

More...

OFF

-C
IA-32 compiler

Equivalent to: (-CA, -CB, -CS,
-CU, -CV) extensive runtime
diagnostics options.

More...

OFF

-CA
IA-32 compiler

Generates runtime code, which
checks whether pointers and
allocatable array references are
defined and allocated. Should
be used in conjunction with
-d{n}.

More...

OFF

-CB

IA-32 compiler

Generates runtime code to
check that array subscript and
substring references are within
declared bounds. Should be
used in conjunction with -d{n}.

More...

OFF

-CS

IA-32 compiler

Generates runtime code that
checks for consistent shape of
intrinsic procedure. Should be
used in conjunction with -d{n}.

More...

OFF

-CU

IA-32 compiler

Generates runtime code that
causes a runtime error if
variables are used without
being initialized. Should be
used in conjunction with -d{n}.

More...

OFF

-CV

IA-32 compiler

On entry to a subprogram, tests
the correspondence between
the actual arguments passed
and the dummy arguments
expected. Both calling and
called code must be compiled
with -CV for the checks to be
effective. Should be used in
conjunction with -d{n}.

More...

OFF

Intel® Fortran Compiler User's Guide

16

-cerrs[-] Enables/disables errors and
warning messages to be printed
in a terse format for diagnostic
messages.

More...

OFF

-cm Suppresses all comment
messages.

More...

OFF

-common_args Assumes by reference
subprogram arguments may
alias one another.

More...

OFF

-cpp{n} Same as -fpp{n}.
More...

OFF

-DD Compiles debugging
statements indicated by the
letter D in column 1 of the
source code.

More...

OFF

-DX Compiles debugging
statements indicated by the
letters X in column 1 of the
source code.

More...

OFF

-DY Compiles debugging
statements indicated by the
letters Y in column 1 of the
source code.

More...

OFF

-d{n}

IA-32 compiler

Sets diagnostics level as
follows:
-d0 - displays procname line
-d1 - displays local scalar
variables
-d2 - local and common scalars

-d>2 - display first n elements
of local and COMMON arrays, and
all scalars.

More...

-d0

-Dname[=text] Defines a macro name and
associates it with the specified
value.

More...

OFF

Intel® Fortran Compiler User's Guide

17

-dps, -nodps Enable (default) or disable
DEC* parameter statement
recognition.

More...

-dps

-dryrun Show driver tool commands but
do not execute tools.

More...

OFF

-dynamic-linker(file) Specifies in file a dynamic
linker of choice, rather than
default.

OFF

-e90, -e95 Enable issuing of errors rather
than warnings for features that
are non-standard Fortran.

More...

OFF

-E Preprocesses the source files
and writes the results to
_stdout. If the file name ends
with capital F, the option is
treated as
-fpp1.

More...

OFF

-EP Preprocesses the source files
and writes the results to stdout
omitting the #line directives.

More...

OFF

-extend_source Enables extended (132-
character) source lines. Same
as -132.

More...

OFF

-F Preprocesses the source files
and writes the results to file.

More...

OFF

-falias Assumes aliasing in program.
More...

ON

-fno-alias Assumes no aliasing in
program.

More...

OFF

-ffnalias Assumes aliasing within
functions.

More...

ON

Intel® Fortran Compiler User's Guide

18

-fno-fnalias Assumes no aliasing within
functions, but assumes aliasing
across calls.

More...

OFF

-fcode_asm Produces assembly file listing
with optional code byte
annotations.

More...

OFF

-fsource_asm Produces assembly file listing
with optional high-level source
code annotations.

More...

OFF

-fverbose-asm Produces assembly file with
compiler comments including
compiler version and options.
Enabled by default when
producing an assembly file.

More...

ON

-fnoverbose-asm Produces assembly file without
compiler comments.

More...

OFF

-fnsplit-

Itanium compiler

Disables function splitting,
which is enabled by
-prof_use.

More...

OFF

-FI Specifies that the source code
is in fixed format. This is the
default for source files with the
file extensions .for, .f,
or .ftn.

More...

OFF

-fp

IA-32 compiler

Disables the use of the ebp
register in optimizations.
 Directs to use the ebp-based
stack frame for all functions.

More...

OFF

-fpp{n} Enables the Fortran
preprocessor (fpp) on all
Fortran source files prior to
compilation.
n=0: disable CVF and
#directives
n=1: enable CVF conditional
compilation and # directives;

OFF

Intel® Fortran Compiler User's Guide

19

when fpp runs, -fpp1 is the
default
n=2: enable only # directives,
n=3: enable only CVF
conditional compilation
directives.

More...

-fp_port

IA-32 compiler

Rounds floating-point results at
assignments and casts. Some
speed impact.

More...

OFF

-FR Specifies that the source code
is in Fortran free format. This is
the default for source files with
the .f90 file extension.

More...

OFF

-ftz

Itanium compiler

Flushes denormal results to
zero.

More...

OFF

-g Generates symbolic debugging
information and line numbers in
the object code for use by
source-level debuggers.

More...

OFF

-help Prints help message.
More...

OFF

-i{2|4|8} Defines the default KIND for
integer variables and constants
to be 2, 4, and 8 bytes.

More...

-i4

-Idir Specifies an additional directory
to search for include files whose
names do not begin with a
slash (/).

More...

OFF

-i_dynamic Sets dynamic linking of Intel-
provided libraries as default.

More...

OFF

-implicitnone Sets IMPLICIT NONE as the
default. Same as -u.

More...

OFF

Intel® Fortran Compiler User's Guide

20

-inline_debug_info Keep the source position of
inlined code instead of
assigning the call-site source
position to inlined code.

More...

OFF

-ip Enables single-file
interprocedural optimizations.

More...

OFF

-ip_no_inlining Disables full or partial inlining
that would result from the -ip
interprocedural optimizations.
Requires -ip or -ipo.

More...

ON

-ip_no_pinlining
IA-32 compiler

Disables partial inlining.
Requires -ip or
-ipo.

More...

OFF

-IPF_fma[-]
Itanium® compiler

Enables/disables the
contraction of floating-point
multiply and add/ subtract
operations into a single
operation.

More...

ON

-IPF_fp_speculationmode
Itanium compiler

Sets the compiler to speculate
on floating-point (fp) operations
in one of the following modes:
fast: speculate on fp
operations;
safe: speculate on fp
operations only when it is safe;
strict: enables the compiler's
speculation on floating-point
operations preserving floating-
point status in all situations;
same as off in the current
version.
off: disables the fp
speculation.

More...

-IPF_fp_
speculation
fast

Intel® Fortran Compiler User's Guide

21

-IPF_flt_eval_method0
Itanium compiler

-IPF_flt_eval_method0
directs the compiler to evaluate
the expressions involving
floating-point operands in the
precision indicated by the
program.

More...

OFF

-IPF_fltacc[-]
Itanium compiler

Enables/disables compiler
optimizations that affect
floating-point accuracy.

More...

-
IPF_fltacc-

-ipo Enables interprocedural
optimization across files.
Compile all objects over entire
program with multifile
interprocedural optimizations.

More...

OFF

-ipo_c Optimizes across files and
produces a multifile object file.
This option performs
optimizations as
-ipo, but stops prior to the final
link stage, leaving an optimized
object file.

More...

OFF

-ipo_obj Forces the generation of real
object files. Requires -ipo.

More...

IA-32: OFF
Itanium
Compiler: ON

-ipo_S Optimizes across files and
produces a multifile assembly
file. This option performs
optimizations as
-ipo, but stops prior to the final
link stage, leaving an optimized
assembly file.

More...

OFF

-ivdep_parallel
Itanium compiler

Indicates there is absolutely no
loop-carried memory
dependency in the loop where
IVDEP directive is specified.

More...

OFF

-Kpic, -KPIC Generates position-independent
code.

OFF

Intel® Fortran Compiler User's Guide

22

-Ldir Instructs linker to search dir
for libraries.

More...

OFF

-lname Links with a library indicated in
name.

More...

OFF

-list Prints a source listing to
stdout (typically, your terminal
screen) without contents of
include files.

More...

OFF

-list -showinclude Prints a source listing to
stdout with contents of
include files expanded.

More...

OFF

-lowercase Sets the case of external linker
symbols such as subroutine
names to be lowercase
characters.

More...

ON

-module[path],
-nomodule

Specifies the directory where
the module files
(extension .mod) are placed.
Omitting this option or
specifying -nomodule results
in placing the .mod files in the
directory where the source files
are being compiled.

More...

-nomodule

-mp Maintains declared floating
point precision as well as
conformance to the IEEE* 754
standards for floating-point
arithmetic. Optimization is
reduced accordingly.

More...

OFF

-mp1 Restricts floating point precision
to be closer to declared
precision. Some speed impact,
but less than -mp.

More...

OFF

Intel® Fortran Compiler User's Guide

23

-nbs Treats backslash (\) as a
normal graphic character, not
an escape character.

More...

OFF

-nobss_init Disables placement of zero-
initialized variables in BSS
(using DATA section)

More...

OFF

-nolib_inline Disables inline expansion of
intrinsic functions.

More...

ON

-nologo Suppresses compiler version
information.

More...

ON

-nus Disables appending an
underscore to external
subroutine names.

More...

OFF

-nusfile Disables appending an
underscore to subroutine
names listed in file.

More...

OFF

-O, -O1, -O2
IA-32 compiler

Optimize for speed. Disable -
fp. option. More...

OFF

-O1
Itanium compiler

Optimizes to favor code size:
turns off software pipelining to
reduce code size. Enables the
same optimizations as -O
except for loop unrolling and
software pipelining.

More...

OFF

-O2 Optimizes for speed. Disables -
fp. option.

More...

ON

-O0 Disables optimizations.
More...

OFF

Intel® Fortran Compiler User's Guide

24

-O3 Enables -O2 option with more
aggressive optimization, for
example, loop transformation.
Optimizes for maximum speed,
but may not improve
performance for some
programs.

More...

OFF

-Ob{0|1|2} Controls the compiler's inline
expansion. The amount of inline
expansion performed varies as
follows:

-Ob0: disable inlining

-Ob1: disables inlining unless -
ip or -Ob2 is specified.
Enables inlining of functions.

-Ob2: Enables inlining of any
function. However, the compiler
decides which functions are
inlined. This option enables
interprocedural optimizations
and has the same effect as
specifying the -ip option.

-Ob1

-ofile Indicates the executable file
name in file ; for example, -
omyfile.

Combined with -S, indicates
assembly listing file name.
Combined with -c, indicates
object file name.

More...

OFF

-onetrip Executes any DO loop at least
once. (Identical to the
-1 option.)

More...

OFF

-openmp Enables the parallelizer to
generate multithreaded code
based on the OpenMP
directives. This option implies
that -fpp and -auto are ON.

More...

OFF

Intel® Fortran Compiler User's Guide

25

-openmp_
report{0|1|2}

Controls the OpenMP
parallelizers diagnostic levels.

-openmp
_report1

-openmp_stubs Sets compilation of the
OpenMP programs to be in
sequential mode. The OpenMP
directives are ignored and a
stub OpenMP library is linked
(sequentially).

OFF

-opt_report
Itanium compiler

Generates optimizations report
and directs to stderr unless
-opt_report_file is
specified.

More...

OFF

-opt_report_file
filename
Itanium compiler

Specifies the filename to hold
the optimizations report.

More...

OFF

-opt_report_level
{min|med|max}
Itanium compiler

Specifies the detail level of the
optimizations report.

More...

-opt_
report_
levelmin

-opt_report_phasephase
Itanium compiler

Specifies the optimization to
generate the report for. Can be
specified multiple times on the
command line for multiple
optimizations.

More...

OFF

-opt_report_help
Itanium compiler

Prints to the screen all available
phases for -
opt_report_phase.

More...

OFF

-opt_report_routine
routine_substring
Itanium compiler

Generates reports from all
routines with names containing
the substring as part of their
name. If not specified, reports
from all routines are generated.

More...

OFF

-P Preprocesses the fpp files and
writes the results to files named
according to the compilers
default file-naming conventions.

More...

OFF

Intel® Fortran Compiler User's Guide

26

-pad, -nopad Enables/disables changing
variable and array memory
layout.

More...

-nopad

-pad_source Enables the acknowledgment of
blanks at the end of a line.

More...

OFF

-parallel Enables the auto-parallelizer to
generate multithreaded code for
loops that can be safely
executed in parallel.

More...

OFF

-par_threshold Sets a threshold for the auto-
parallelization of loops based
on the probability of profitable
execution of the loop in parallel,
n=0 to 100.

More...

n=75

-par_report{0|1|2|3}

Controls the auto-parallelizer's
diagnostic levels.

More...

-par_
report1

-pc32
-pc64
-pc80
IA-32 compiler

Enables floating-point
significand precision control as
follows:
-pc32 to 24-bit significand
-pc64 to 53-bit significand, and

-pc80 to 64-bit significand
More...

-pc64

-pg

IA-32 compiler

Compile and link for function
profiling with Linux gprof tool.

More...

OFF

-posixlib Enables linking to the POSIX*
library (libPOSF90.a) in the
compilation.

More...

OFF

-prec_div
IA-32 compiler

Disables floating point division-
to-multiplication optimization
resulting in more accurate
division results. Slight speed
impact.

More...

OFF

Intel® Fortran Compiler User's Guide

27

-prefetch[-]
IA-32 compiler

Enables or disables prefetch
insertion (requires -O3).

More...

ON

-prof_dirdir Specifies the directory to hold
profile information in the
profiling output files, *.dyn and
*dpi.

More...

OFF

-prof_gen Instruments the program for
profiling: to get the execution
count of each basic block.

More...

OFF

-prof_filefile Specifies file name for profiling
summary file.

More...

OFF

-prof_use Enables the use of profiling
dynamic feedback information
during optimization.

More...

OFF

-q Suppresses compiler output to
standard error, __stderr.

More...

OFF

-Qdyncom"blk1,blk2,..." Enables dynamic allocation of
given COMMON blocks at run
time.

More...

OFF

-Qinstalldir Sets dir as a root directory for
compiler installation.

More...

OFF

-Qlocation,tool,path Sets path as the location of the
tool specified by tool.

More...

OFF

-Qloccom
"blk1,blk2,..."

Enables local allocation of given
COMMON blocks at run time.

More...

OFF

-Qoption,tool,opts Passes the options, opts, to
the tool specified by tool.

More...

OFF

Intel® Fortran Compiler User's Guide

28

-qp, -p Compile and link for function
profiling with UNIX* prof tool.

More...

OFF

-r{8|16} Defines the KIND for real
variables to be 8, or 16 bytes.
By default, variables of type
REAL (4) are used.
-r8: change the size and
precision of default REAL
entities to DOUBLE
PRECISION. Same as the -
autodouble.
-r16: change the size and
precision of default REAL
entities to REAL (KIND=16)

More...

OFF

-rcd
IA-32 compiler

Disables changing of rounding
mode for floating-point-to-
integer conversions.

More...

OFF

-S Produces an assembly output
file.

More...

OFF

-safe_cray_ptr Specifies that Cray* pointers do
not alias with other variables.

More...

OFF

-save Saves all variables (static
allocation). Opposite of -auto.

More...

OFF

-scalar_rep[-]
IA-32 compiler

Enables or disables scalar
replacement performed during
loop transformations (requires -
O3).

More...

OFF

-sox[-]
IA-32 compiler

Enables or disables (default)
saving of compiler options and
version in the executable.
Itanium compiler: accepted for
compatibility only.

More...

OFF

Intel® Fortran Compiler User's Guide

29

-shared Instructs the compiler to build a
Dynamic Shared Object (DSO)
instead of an executable.

More...

OFF

-static Sets static linking of the shared
libraries (.so).

More...

OFF

-syntax Enables syntax check only.
Same as -y.

More...

OFF

-Tffile Compiles file as a Fortran
source.

More...

OFF

-tpp1
Itanium compiler

Targets optimization to the
Intel® Itanium® processor for
best performance.

More...

OFF

-tpp2
Itanium compiler

Targets optimization to the
Intel® Itanium® 2 processor for
best performance. Generated
code is compatible with the
Itanium processor.

More...

ON

-tpp{5|6|7}
IA-32 compiler

-tpp5 optimizes for the Intel
Pentium processor.
-tpp6 optimizes for the Intel
Pentium Pro, Pentium II, and
Pentium III processors.
-tpp7 optimizes for the Intel
Pentium 4 and Xeon(TM)
processor.

More...

-tpp7

-u Sets IMPLICIT NONE by
default. Same as
-implicitnone.

More...

ON

-Uname Removes a defined macro
specified by name; equivalent to
an #undef preprocessing
directive.

More...

OFF

Intel® Fortran Compiler User's Guide

30

-unroll[n] -Use n to set maximum number
of times to unroll a loop.
-Omit n to let the compiler
decide whether to perform
unrolling or not.
-Use n = 0 to disable unroller.
The Itanium compiler currently
recognizes only n = 0; all other
values are ignored.

More...

ON

-uppercase Sets the case of external linker
symbols such as subroutine
names to be uppercase
characters.

More...

OFF

-us Appends (default) an
underscore to external
subroutine names.

More...

ON

-use_asm Produces objects through the
assembler.

More...

OFF

-V Displays compiler version
information.

More...

OFF

-v Shows driver tool commands
and executes tools.

More...

OFF

-Vaxlib Enables linking to portability
library (libPEPCF90.a) in the
compilation.

More...

OFF

-vec
_report{0|1|2|3|4|5}

IA-32 compiler

Controls amount of vectorizer
diagnostic information as
follows:
n = 0: no information
n = 1: indicate vectorized /non-
vectorizerd loops
n = 2: indicate vectorized /non-
vectorized loops
n = 3: indicate vectorized /non-
vectorized loops and prohibit
data dependence information
n = 4: indicate non-vectorized
loops

-vec
_report1

Intel® Fortran Compiler User's Guide

31

n = 5: indicate non-vectorized
loops and the reason why they
were not vectorized.

More...

-vms Enables support for a certain
set of extensions to Fortran that
were introduced by Digital*
VMS* and Compaq* Fortran
compilers.

More...

OFF

-w Suppresses all warning
messages.

More...

OFF

-w90, -w95 Suppresses warning messages
about Fortran features which
are deprecated or obsoleted in
Fortran 95.

More...

OFF

-W{n} Suppresses or displays all
warning messages.
n=0: suppresses all warnings
n=1: displays all warnings
(default).

More...

-W1

-WB On a bound check violation,
issues a warning instead of an
error.

More...

OFF

-x{i|M|K|W}

IA-32 compiler

Generates code that is
optimized for a specific
processor corresponding to one
of codes: i, M, K, and W, but
that will execute on any IA-32
processor. With this option, the
resulting program may not run
on processors older than the
target specified.

More...

OFF

-X Removes standard directories
from the include file search.

More...

OFF

-y Enables syntax check only.
More...

OFF

Intel® Fortran Compiler User's Guide

32

Compiler Options by Functional Groups
Options entered on the command line change the compiler's default behavior, enable or
disable compiler functionalities, and can improve the performance of your application. This
section presents tables of compiler options grouped by Intel® Fortran Compiler functionality
within these categories:

! Customizing Compilation Process Option Groups

! Language Conformance Option Groups

! Application Performance Optimizations

Key to the Tables

In each table:

! The functions are listed in alphabetical order

! The default status ON or default value is indicated; if not mentioned, the default is OFF

! The IA-32 or Itanium® architectures are indicated as follows:
- not mentioned = used by both architectures
- indicated in a row = used in the following rows exclusively by indicated architecture.

Each option group is described in detailed form in the sections of this documentation. Some
options can be viewed as belonging to more than one group; for example, option -c that
tells compiler to stop at creating an object file, can be viewed as monitoring either
compilation or linking. In such cases, the options are mentioned in more than one group.

Customizing Compilation Process Options
Alternate Tools and Locations

-zero Implicitly initializes to zero all
data that is uninitialized. Used
in conjunction with -save.

More...

OFF

-Zp{1|2|4|8|16} Specifies alignment constraint
for structures on 1-, 2-, 4-, 8- or
16-byte boundary.

More...

IA-32: -Zp4
Itanium
Compiler: -
Zp8

Intel® Fortran Compiler User's Guide

33

Preprocessing

See the Preprocessing section for more information.

Option Description Default
-Qlocation,tool,path

Enables you to specify a
path as the location of the
specified tool (such as the
assembler, linker,
preprocessor, and compiler).
See Specifying Alternate
Tools and Locations.

OFF

-Qoption,tool,opts

Passes the options specified
by opts to a tool, where
opts is a comma-separated
list of options. See Passing
Options to Other Tools.

OFF

Option Description Default
-cpp{n} Same as -fpp{n}. OFF
-Dname
[=text]

Defines the macro name and associates it
with the specified value. The default (-
Dname) defines a macro with value =1.

OFF

-E

Directs the preprocessor to expand your
source file and write the result to standard
output.

OFF

-EP Same as -E but does not include #line
directives in the output.

OFF

-F Preprocesses to an indicated file. Directs the
preprocessor to expand your source module
and store the result in a file in the current
directory.

OFF

-fpp{n} Uses the fpp preprocessor on Fortran source
files.
n=0: disable CVF and #directives
n=1: enable CVF conditional compilation and
directives; when fpp runs, -fpp1 is the
default
n=2: enable only #directives,
n=3: enable only CVF conditional compilation
directives.

OFF

(-fpp1
when
fpp
runs)

-Idir Adds directory dir to the include and module
file search path.

OFF

-P Directs the preprocessor to expand your
source file and store the result in a file in the
current directory.

OFF

Intel® Fortran Compiler User's Guide

34

Compiling

See detailed Compiling section.

-Uname Eliminates any definition name currently in
effect.

OFF

-X Removes standard directories from the
include file search path.

OFF

Option Description Default
-0f_check
IA-32 only

Avoid incorrect decoding of some 0f
instructions; enable the patch for the
Pentium® 0f erratum.

OFF

-align

Analyzes and reorders memory layout for
variables and arrays.

-align

-noalign Disables -align. OFF
-c Compile to object only (.o), do not link. OFF
-dynamic-
linkerfile

Specifies in file a dynamic linker of choice,
rather than default.

OFF

-falias Assumes aliasing in program. ON
-fno-alias Assumes no aliasing in program.. OFF
-ffnalias Assumes aliasing within functions. ON
-fno-fnalias Assumes no aliasing within functions, but

assumes aliasing across calls.
OFF

-fp
IA-32 only

Disables using ebp as general purpose
register in optimizations. Directs to use the
ebp-based stack frame for all functions.

OFF

-ftz
Itanium®-based
systems

Flushes denormal results (floating-point
values smaller than smallest normalized
floating-point number) to zero. Use this
option when the denormal values are not
critical to application behavior.

OFF

-Idir Adds directory dir to the include and
module file search path.

OFF

-Kpic, -KPIC Generate position-independent code. OFF
-module[path],
-nomodule

Specifies the directory where the module
files (extension .mod) are placed. Omitting
this option or specifying -nomodule results
in placing the .mod files in the directory
where the source files are being compiled.

-
nomodule

-nobss_init Disable placement of zero-initialized
variables in BSS (using Data).

OFF

Intel® Fortran Compiler User's Guide

35

Linking

See detailed Linking section.

-p, -qp Compile and link for function profiling with
UNIX* prof tool.

OFF

-pg
IA-32 only

Compile and link for function profiling with
Linux* gprof tool.

OFF

-Qinstall,dir Sets root directory of compiler installation,
indicated in dir to contain all compiler
install files and subdirectories.

OFF

-S

Produce assembly file named file.asm
with optional code or source annotations. Do
not link.

OFF

-sox[-]
IA-32 only

Enable (default) or disable saving of compiler
options and version in the executable.

OFF

-Tffile Compile file as Fortran source. OFF
-use_asm

Produces objects through the assembler. OFF

-Zp{n} Specifies alignment constraint for structures
on n-byte boundary (n = 1, 2, 4, 8, 16). The -
Zp16 option enables you to align Fortran
structures such as common blocks.

IA-32:
-Zp4
Itanium®
Compiler:
-Zp8

Option Description Default
-Bdynamic Used with -lname (see below), enables

dynamic linking of libraries at run time.
Compared to static linking, results in
smaller executables.

OFF

-Bstatic Enables linking a user's library statically.
-c Compile to object only (.o), do not link. OFF
-C90 Link with alternate I/O library for mixed

output with the C language.
OFF

-dynamic-
linkerfile

Specifies in file a dynamic linker of
choice, rather than default.

OFF

-i_dynamic Enables to link Intel-provided libraries
dynamically.

OFF

-Ldir Instructs linker to search dir for libraries. OFF

Intel® Fortran Compiler User's Guide

36

Compilation Output

See the Specifying Compilation Output section for more information.

-lname Link with a library indicated in name. OFF
-p, -qp Compile and link for function profiling with

UNIX prof tool.
OFF

-pg
IA-32 only

Compile and link for function profiling with
Linux gprof tool.

OFF

-posixlib Enables linking with POSIX* library. OFF
-shared Instructs the compiler to build a Dynamic

Shared Object (DSO) instead of an
executable.

OFF

-static Enables static linking of libraries. OFF
-Vaxlib Enable linking with portability library. OFF

Option Description Default
-c Compile to object only (.o), do not

link.
OFF

-fcode-asm Produces assembly file with optional
code byte information.

OFF

-fsource-asm Produces assembly file with optional
high-level source code information.

OFF

-fverbose-asm Produces assembly file with
compiler comments including
compiler version and options used.
Enabled by default when producing
an assembly file.

OFF

-fnoverbose-asm Produces assembly file without
compiler comments.

OFF

-list Prints a source listing to stdout. OFF
-list -showinclude Prints a source listing to stdout

with contents of include files
expanded.

OFF

-ofile Produces the executable file name
specified in file;
for example, -omyfile.
Combined with -S, indicates
assembly listing file name.
Combined with -c, indicates object
file name.

OFF

-S Produce assembly file named
file.asm with optional code or
source annotations. Do not link.

OFF

Intel® Fortran Compiler User's Guide

37

Debugging

See the Debugging section for more information.

Libraries

See detailed section on Libraries.

Option Description Default
-DD

Compiles debug statements
indicated by a D or a d in column 1; if
this option is not set these lines are
treated as comments

OFF

-DX

Compiles debug statements
indicated by a X (not an x) in column
1; if this option is not set these lines
are treated as comments.

OFF

-DY

Compiles debug statements
indicated by a Y (not a y) in column
1; if this option is not set these lines
are treated as comments.

OFF

-inline_debug_info Keeps the source position of inline
code instead of assigning the call-site
source position to inlined code.

OFF

-g Produces symbolic debug
information in the object file.

OFF

-y, -syntax Both perform syntax check only. OFF

Option Description Default
-C90 Link with alternate I/O library for

mixed output with the C language.
OFF

-i_dynamic Enables to link Intel-provided libraries
dynamically.

OFF

-Ldir Instructs linker to search dir for
libraries.

OFF

-lname Links with the library indicated in
name.

OFF

-posixlib Link with POSIX* library. OFF
-shared Instructs the compiler to build a

Dynamic Shared Object (DSO)
instead of an executable.

OFF

-static Enables to link shared libraries (.so)
statically.

OFF

-Vaxlib Link with portability library. OFF

Intel® Fortran Compiler User's Guide

38

Diagnostics and Messages

See Diagnostics and Messages section for more information.

Runtime Diagnostics (IA-32 Compiler only)

Compiler Information Messages

Option Description Default
-C Equivalent to: (-CA, -CB, -CS, -CU, -CV)

extensive runtime diagnostics options.
OFF

-CA Use in conjunction with -d{n}. Checks for
nil pointers/allocatable array references at
runtime.

OFF

-CB

Use in conjunction with -d{n}. Generates
runtime code to check that array subscript
and substring references are within declared
bounds.

OFF

-CS

Use in conjunction with -d{n}. Generates
runtime code that checks for consistent
shape of intrinsic procedure.

OFF

-CU

Use in conjunction with -d{n}. Generates
runtime code that causes a runtime error if
variables are used without being initialized.

OFF

-CV

Use in conjunction with -d{n}. On entry to a
subprogram, tests the correspondence
between the actual arguments passed and
the dummy arguments expected. Both calling
and called code must be compiled with -CV
for the checks to be effective.

OFF

-d{n} Set the level of diagnostic messages, n=0, 1,
2, >2

-d0

Option Description Default
-nologo

Disables the display of the compiler
version (or sign-on) message: compiler ID,
version, copyright years.

OFF

-help

You can print a list and brief description of
the most useful compiler driver options by
specifying the -help option on the
command line.

OFF

-V Displays compiler version information. OFF
-v Shows driver tool commands and

executes tools.
OFF

-dryrun Shows driver tool commands, but does
not execute tools.

OFF

Intel® Fortran Compiler User's Guide

39

Comment and Warning Messages

Error Messages

Language Conformance Options
Data Type

See more details in Setting Data Types and Sizes.

Option Description Default
-cm Suppresses all comment messages. OFF
-cerrs[-] Enables/disables (default) a terse

format for diagnostic messages, for
example: "file", line no :
error message

-cerrs

-w Suppresses all warning messages. OFF
-w90, -w95 Suppresses warning messages about

 Fortran features which are
deprecated or obsoleted in Fortran 95.

OFF

-W{n} Suppresses or displays all warning
messages generated by
preprocessing and compilation.
n=0: suppresses all warnings
n=1: displays all warnings (default).

-W1

-WB

On a bound check violation, issues a
warning instead of an error
(accommodates old FORTRAN code,
in which array bounds of dummy
arguments were frequently declared
as 1.)

OFF

Option Description Default
-e90, -e95 Enable issuing of errors rather than

warnings for features that are non-
standard Fortran.

OFF

-q

Suppresses compiler output to
standard error, _stderr. When -q is
specified with -bd, then only fatal error
messages are output to _stderr.

OFF

Intel® Fortran Compiler User's Guide

40

Source Program

See more details in Source Program Features.

Option Description Default
-autodouble Sets the default size of real numbers to 8 bytes;

same as -r8.
OFF

-i{2|4|8} Specifies that all quantities of integer type
and unspecified kind occupy two bytes. All
quantities of logical type and unspecified
kind will also occupy two bytes. All logical
constants and all small integer constants
occupy two bytes.
-i4: All integer and logical types of
unspecified kind will occupy four bytes.
-i8: All integer and logical types of
unspecified kind will occupy eight bytes.

-i4

-r{4|8|16} Defines the KIND for real variables in 4
(default), 8, and 16 bytes.
-r8: change the size and precision of default
REAL entities to DOUBLE PRECISION. Same
as the -autodouble.
-r16: change the size and precision of default
REAL entities to REAL (KIND=16).

-r4

Option Description Default
-1 Same as -onetrip. OFF
-132 Enables fixed form source lines to

contain up to 132 characters.
OFF

-ansi_alias[-] Enables (default) or disables
assumption of the program’s ANSI
conformance.
Provides cross-platform
compatibility .

-ansi_alias

-dps, -nodps Enables (default) or disables DEC*
parameter statement recognition.

-dps

-extend_source Enables extended (132-character)
source lines. Same as -132.

OFF

-FI

Specifies that all the source code
is in fixed format; this is the default
except for files ending with the
suffix .f, .ftn, .for.

OFF

Intel® Fortran Compiler User's Guide

41

-FR

Specifies that all the source code
is in Fortran free format; this is the
default for files ending with the
suffix .f90.

OFF

-lowercase Controls the case of routine
names and external linker symbols
to all lowercase characters.

ON

-nbs

Treats backslash (\) as a normal
graphic character, not an escape
character. This may be necessary
when transferring programs from
non-UNIX* environments, for
example from VAX* VMS*. For the
effects of the escape character,
see the Escape Characters.

OFF

-nus[file]

Do not append an underscore to
subroutine names listed in file.
 Useful when linking with C
routines.

OFF

-onetrip

Compiles DO loops at least once if
reached (by default, Fortran 95 DO
loops are not performed at all if
the upper limit is smaller than the
lower limit). Same as -1.

OFF

-pad_source

Enforces the acknowledgment of
blanks at the end of a line.

OFF

-uppercase

Maps routine names to all
uppercase characters.

 Note
Do not use this option in
combination with -Vaxlib or
-posixlib.

OFF

-vms Enables support for extensions to
Fortran that were introduced by
Digital* VMS Fortran compilers.
The extensions are as follows:

! The compiler enables
shortened, apostrophe-
separated syntax for
parameters in I-O
statements.

! The compiler assumes that
the value specified for RECL
in an OPEN statement is

OFF

Intel® Fortran Compiler User's Guide

42

Arguments and Variables

See more details in Setting Arguments and Variables.

given in words rather than
bytes. This option also
implies -dps (on by default).

Option Description Default
-align

Analyze and reorder memory
layout for variables and arrays.

-align

-noalign Disables -align. OFF
-auto

Makes all local variables
AUTOMATIC. Causes all variables
to be allocated on the stack,
rather than in local static storage.

OFF

-auto_scalar Causes scalar variables of rank 0,
except for variables of the
COMPLEX or CHARACTER types, to
be allocated on the stack, rather
than in local static storage.
Enables the compiler to make
better choices concerning
variables that should be kept in
registers during program
execution. On by default.

ON

-common_args

Assumes "by reference"
subprogram arguments may have
aliases of one another.

OFF

-implicitnone Enables the default IMPLICIT
NONE.

OFF

-safe_cray_ptr Specifies that Cray pointers do
not alias with other variables.

OFF

-save

Forces the allocation of all
variables in static storage. If a
routine is invoked more than
once, this option forces the local
variables to retain their values
from the first invocation
terminated. Opposite of -auto.

OFF

-u Enables the default IMPLICIT
NONE. Same as
-implicitnone.

OFF

-zero

Initializes all data to zero. It is
most commonly used in
conjunction with -save.

OFF

Intel® Fortran Compiler User's Guide

43

Common Blocks

See Allocating Common Blocks for more information.

Application Performance Optimizations Options
Setting Optimization Level

See the Optimization Levels section for more information.

Floating-point Arithmetic Precision

See Floating-point Arithmetic Optimizations for more information.

Option Description Default
-Qdyncom"blk1,
blk2, ..."

Dynamically allocates COMMON
blocks at run time.

OFF

-Qloccom"blk1,
blk2, ..."

Enables local allocation of
given COMMON blocks at run
time.

OFF

Option Description Default
-O1 IA-32 compiler: Optimizes for speed.

 Disables -fp option.

Itanium® compiler: Turns off software
pipelining to reduce code size. Optimizes
to favor code size. Enables the same
optimizations as -O2 except for loop
unrolling.
Generally, -O2 is recommended over -O1.

OFF

-O, -O2 Optimizes for speed. Disables -fp. option. -O2

-O3

Enables -O2 option with more aggressive
optimization and sets high-level
optimizations, including loop
transformation, OpenMP, and prefetching.
High-level optimizations use the properties
of source code constructs such as loops
and arrays in applications written in high-
level programming languages.
Optimizes for maximum speed, but may
not improve performance for some
programs.

OFF

-O0 Disables optimizations -O1, -O2 and -O3.
Enables option -fp.

OFF

Intel® Fortran Compiler User's Guide

44

Option Description Default
-fp_port
IA-32 only

Rounds floating-point results
at assignments and casts.
Some speed impact.

OFF

-IFP_fma[-]
Itanium®-based systems

Enables/disables the
contraction of floating-point
multiply and add/subtract
operations into a single
operation.

-IFP_fma

-IPF_fp
_speculationmode
Itanium-based systems

Sets the compiler to speculate
on fp operations in one of the
following modes:
fast: speculate on fp
operations;
safe: speculate on fp
operations only when it is
safe;
strict: enables the
compiler's speculation on
floating-point operations
preserving floating-point status
in all situations; same as off
in the current version.
off: disables fp speculation.

-IPF_fpc64_
speculationfast

-IPF_flt_eval_method0
Itanium-based systems

-IPF_flt_eval_method0
directs the compiler to
evaluate the expressions
involving floating-point
operands in the precision
indicated by the program. (-
IPF_flt_eval_method2 is
not supported in the current
version.)

OFF

-IFP_fltacc[-]
Itanium-based systems

Enables/disables the compiler
to apply optimizations that
affect floating-point accuracy.

-IFP_fltacc-

-mp

Maintains declared precision
and ensures that floating-point
arithmetic conforms more
closely to the ANSI and IEEE*
754 standards. See details in
the Maintaining and
Restricting FP Arithmetic
Precision.

OFF

Intel® Fortran Compiler User's Guide

45

Processor Dispatch Support

See Processor Dispatch Extensions Support for more information.

-mp1 Restricts floating-point
precision to be closer to
declared precision. Some
speed impact, but less than -
mp. See details in the
Maintaining and Restricting FP
Arithmetic Precision.

OFF

-pc{32|64|80}
IA-32 only

Enables floating-point
significand precision control as
follows:
-pc32 to 24-bit significand
-pc64 to 53-bit significand
(Default)
-pc80 to 64-bit significand

-pc64

-prec_div
IA-32 only

Disables floating point
division-to-multiplication
optimization resulting in more
accurate division results.
Slight speed impact.

OFF

-rcd
IA-32 only

Disables changing of rounding
mode for floating-point-to-
integer conversions.

OFF

Option Description Default
-tpp1
Itanium®-based
systems

Targets optimization to the Intel® Itanium®
processor for best performance.

OFF

-tpp2
Itanium-based
systems

Targets optimization to the Intel® Itanium® 2
processor for best performance. Generated
code is compatible with the Itanium processor.

-tpp2

-tpp5
IA-32 only

Optimizes for the Intel Pentium® processor.
Enables best performance for Pentium®
processor

OFF

-tpp6
IA-32 only

Optimizes for the Intel Pentium Pro, Pentium II,
and Pentium III processors.
Enables best performance for the above
processors.

OFF

-tpp7
IA-32 only

Optimizes for the Pentium 4 and Xeon(TM)
processors. Requires the RedHat version 7.1
and support of Streaming SIMD Extensions 2.
Enables best performance for Pentium 4
processor

-tpp7

Intel® Fortran Compiler User's Guide

46

Interprocedural Optimizations

See Interprocedural Optimizations (IPO) section for more information.

-ax{i|M|K|W}
IA-32 only

Generates, in a single binary, code specialized
to the extensions specified by the codes:
i Pentium Pro, Pentium II processors
M Pentium with MMX(TM) technology
processor
K Pentium III processor (Streaming SIMD
Extensions)
W Pentium 4 and Xeon processors
In addition, -ax generates IA-32 generic code.
The generic code is usually slower.

OFF

-x{i|M|K|W}
IA-32 only

Generate specialized code to run exclusively on
the processors supporting the extensions
indicated by the codes:
i Pentium Pro, Pentium II processors
M Pentium with MMX technology processor
K Pentium III processor
W Pentium 4 and Xeon processors

OFF

Option Description Default
-ip

Enables single-file interprocedural
optimizations.
Enhances inline function expansion.

OFF

-ip_no_inlining

Disables full or partial inlining that
would result from the -ip
interprocedural optimizations. Requires
-ip or -ipo.

OFF

-ip_no_pinlining
IA-32 only

Disables partial inlining. Requires -ip
or -ipo.

OFF

-ipo

Enables interprocedural optimization
across files. Compile all objects over
entire program with multifile
interprocedural optimizations.
Enhances multifile optimization;
multifile inline function expansion,
interprocedural constant and function
characteristics propagation, monitoring
module-level static variables; dead
code elimination.

OFF

-ipo_c

Optimizes across files and produces a
multifile object file. This option
performs the same optimizations as -
ipo, but stops prior to the final link
stage, leaving an optimized object file.

OFF

Intel® Fortran Compiler User's Guide

47

Profile-guided Optimizations

See detailed Profile-guided Optimizations section.

-ipo_obj Forces the generation of real object
files. Requires
-ipo.

OFF

-ipo_S

Optimizes across files and produces a
multifile assembly file. This option
performs the same optimizations as -
ipo, but stops prior to the final link
stage, leaving an optimized assembly
file.

OFF

-inline_debug_info Preserve the source position of inlined
code instead of assigning the call-site
source position to inlined code.

OFF

-Ob{0|1|2} Controls the compiler's inline
expansion. The amount of inline
expansion performed varies as follows:

-Ob0: disable inlining

-Ob1: disables inlining unless -ip or -
Ob2 is specified. Enables inlining of
functions.

-Ob2: Enables inlining of any function.
However, the compiler decides which
functions are inlined. This option
enables interprocedural optimizations
and has the same effect as specifying
the -ip option.

-Ob1

-nolib_inline Disables inline expansion of intrinsic
functions.

OFF

Option Description Default
-fnsplit[-]
Itanium®
compiler

Disables function splitting, which is enabled
by
-prof_use.

OFF

-prof_dirdir

Specifies the directory to hold profile
information in the profiling output files,
*.dyn and *.dpi.

OFF

-
prof_filefile

Specifies file name for profiling summary
file.

OFF

-prof_gen

Instruments the program for profiling: to get
the execution count of each basic block.

OFF

Intel® Fortran Compiler User's Guide

48

High-level Language Optimizations

See detailed High-level Language Optimizations (HLO) section.

Parallelization

See detailed Parallelization section.

-prof_use

Enables the use of profiling dynamic
feedback information during optimization.
Profiles the most frequently executed areas
and increases effectiveness of IPO.

OFF

Option Description Default
-
ivdep_parallel
Itanium® compiler

Indicates there is absolutely no loop-carried
memory dependency in the loop where
IVDEP directive is specified.

OFF

-prefetch[-]
IA-32 only

Enables or disables prefetch insertion
(requires
-O3).
Reduces the wait time; optimum use is
determined empirically.

-prefetch

-scalar_rep[-]
IA-32 only

Enables (default) or disables scalar
replacement performed during loop
transformations (requires -O3).
Eliminates all loads and stores of that
variable
Increases register pressure.

-
scalar_rep

-unroll[n] n: set maximum number of times to unroll a
loop
n omitted: compiler decides whether to
perform unrolling or not.
n = 0: disables unroller.
Eliminates some code; hides latencies; can
increase code size.
For Itanium®-based applications, -unroll
[o] is used only for compatibility.

-unroll

Option Description Default
-openmp Enables the parallelizer to

generate multi-threaded code
based on the OpenMP*
directives.
Enables parallel execution on
both uni- and multiprocessor
systems. Requires -fpp.

OFF

Intel® Fortran Compiler User's Guide

49

Vectorization (IA-32 only)

See detailed Vectorization section.

-openmp_report{0|1|2} Controls the OpenMP
parallelizer's diagnostic levels:
0 - no information
1 - loops, regions, and sections
parallelized (default)
2 - same as 1 plus master
construct, single construct, etc.

-openmp
_report1

-openmp_stubs Enables to compile OpenMP
programs in sequential mode.
The OpenMP directives are
ignored and a stub OpenMP
library is linked (sequentially).

OFF

-parallel Enables the auto-parallelizer to
generate multithreaded code for
loops that can be safely
executed in parallel.

OFF

-par_report{0|1|2|3} Controls the auto-parallelizer's
diagnostic levels:
0 - no information
1 - successfully auto-
parallelized loops
2 - successfully and
unsuccessfully auto-parallelized
loops
3 - same as 2 plus additional
information about any proven or
assumed dependences
inhibiting auto-parallelization.

-par
_report1

-par_threshold{n} Sets a threshold for the auto-
parallelization of loops based
on the probability of profitable
execution of the loop in parallel,
n=0 to 100.

n=75

Option Description Default
-ax{i|M|K|W}
IA-32 only

Generates, on a single binary, code
specialized to the extensions specified by
the codes:
i Pentium Pro, Pentium II processors
M Pentium with MMX technology processor
K Pentium III processor
W Pentium 4 and Xeon(TM) processors
In addition, -ax generates IA-32 generic
code. The generic code is usually slower.

OFF

Intel® Fortran Compiler User's Guide

50

Optimization Reports (Itanium® Compiler)

See detailed Optimizer Report Generation.

These options are implemented with Itanium®-based systems only.

 Note: -axi is not a vectorizer option.
-x{i|M|K|W}
IA-32 only

Generate specialized code to run
exclusively on the processors supporting
the extensions indicated by the codes:
i Pentium Pro, Pentium II processors
M Pentium with MMX technology processor
K Pentium III processor
W Pentium 4 and Xeon processors

 Note: -xi is not a vectorizer option.

OFF

-vec_report
{0|1|2|3|4|5}
IA-32 only

Controls the diagnostic messages from the
vectorizer as follows:
n = 0: no information
n = 1: indicates vectorized /non-vectorizerd
loops
n = 2: indicates vectorized /non-vectorized
loops
n = 3: indicates vectorized /non-vectorized
loops and prohibit data dependence
information
n = 4: indicates non-vectorized loops
n = 5: indicates non-vectorized loops and
the reason why they were not vectorized

-vec
_report1

Option Description Default
-opt_report Generates optimizations report

and directs to stderr unless
-opt_report_file is
specified.

OFF

-opt_report
_filefilename

Specifies the filename to hold
the optimizations report.

OFF

-opt_report_level
min|med|max}

Specifies the detail level of the
optimizations report.

-opt_report
_levelmin

-opt_report
_phasephase

Specifies the optimization to
generate the report for. Can be
specified multiple times on the
command line for multiple
optimizations.

OFF

Intel® Fortran Compiler User's Guide

51

Windows* to Linux* Options Cross-reference
This section provides cross-reference table of the Intel® Fortran Compiler options used on
the Windows* and Linux* operating systems. The options described can be used for
compilations targeted to either IA-32 or Itanium®-based applications or both. See
Conventions Used in the Options Quick Guide Tables.

! Options specific to IA-32 architecture
! Options specific to the Itanium® architecture

All other options are available for both IA-32 and Itanium architectures.

 Note
The table is based on the alphabetical order of compiler options for Linux.

 Note
The value in the Default column is used for both Windows and Linux operating
systems unless indicated otherwise.

-opt_report_help Prints to the screen all available
phases for -
opt_report_phase.

OFF

-opt_report_routine
routine_substring

Generates reports from all
routines with names containing
the substring as part of their
name. If not specified, reports
from all routines are generated.

OFF

Windows Option Linux Option Description Default
/QI0f[-]
IA-32 only

-Of_check
IA-32 only

Enables a software patch
for Pentium® processor
0f erratum.

OFF

/1 -1 Executes any DO loop at
least once.

OFF

/4L
{72|80|132}

-72, -80, -
132

Specifies 72, 80 or 132
column lines for fixed form
source only. The compiler
might issue a warning for
non-numeric text beyond
72 for the
-72 option.

/4L72
-72

/align -align Analyzes and reorders
memory layout for
variables and arrays.

ON

Intel® Fortran Compiler User's Guide

52

/align- -noalign Disables .-align OFF

/Qansi_alias[-] -ansi_alias
[-]

Enables (default) or
disables assumption of the
programs ANSI
conformance.

ON

/Qauto -auto Makes all local variables
AUTOMATIC.

OFF

/Qautodouble -autodouble Sets the default size of
real numbers to 8 bytes;
same as -r8.

OFF

/Qauto_scalar -
auto_scalar

Makes scalar local
variables AUTOMATIC.

ON

/Qax{i|M|K|W}
IA-32 only

-ax
{i|M|K|W}
IA-32 only

Generates code that is
optimized for a specific
processor, but that will
 execute on any IA-32
processor. Compiler
generates multiple
versions of some routines,
and chooses the best
version for the host
processor at runtime.
supporting the extensions
indicated by processor-
specific codes i
(Pentium® Pro), M
(Pentium with MMX(TM)
technology), K (Pentium
III), and W (Pentium 4 and
Xeon(TM)).

OFF

None -Bdynamic Used with -lname (see in
this table), enables
dynamic linking of libraries
at run time. Compared to
static linking, results in
smaller executables.

OFF

None -Bstatic Enables linking a user's
library statically.

OFF

/c -c Stops the compilation
process after an object file
(.o) has been generated.

OFF

Intel® Fortran Compiler User's Guide

53

/C
IA-32 only

-C
IA-32 only

Enable extensive runtime
error checking. Equivalent
to: -CA,
-CB, -CS, -CU, or -CV
runtime diagnostics
options.

OFF

/CA
IA-32 only

-CA
IA-32 only

Generates code check at
runtime to ensure that
referenced pointers and
allocatable arrays are not
nil. Should be used in
conjunction with -d{n}.

OFF

/CB
IA-32 only

-CB
IA-32 only

Generates code to check
that array subscript and
substring references are
within declared bounds.
Should be used in
conjunction with -d{n}.

OFF

/CS
IA-32 only

-CS
IA-32 only

Generates code to check
the shapes of array
arguments to intrinsic
procedures. Should be
used in conjunction with -
d{n}.

OFF

/CU
IA-32 only

-CU
IA-32 only

Generates code that
causes a runtime error if
variables are used without
being initialized. Should be
used in conjunction with -
d{n}.

OFF

/CV
IA-32 only

-CV
IA-32 only

On entry to a subprogram,
tests the correspondence
between the actual
arguments passed and the
dummy arguments
expected. Both calling and
called code must be
compiled with -CV for the
checks to be effective.
Should be used in
conjunction with
-d{n}.

OFF

/C90 -C90 Links with an alternative
I/O library
(libCEPCF90.a) that
supports mixed input and
output with C on the
standard streams.

OFF

Intel® Fortran Compiler User's Guide

54

/cerrs[-] -cerrs[-] Enables/disables errors
and warning messages to
be printed in a terse
format.

Windows
ON
Linux:
OFF

/cm -cm Suppresses all comment
messages.

OFF

/Qcommon_args -
common_args

Assumes by reference
subprogram arguments
may have aliases of one
another.

OFF

/Qcpp[n] -cpp[n] Same as -fpp. OFF
/Qd_lines -DD Compiles debugging

statements indicated by
the letter D in column 1 of
the source code.

OFF

/Qdx_lines -DX Compiles debugging
statements indicated by
the letters X in column 1 of
the source code.

OFF

/Qdy_lines -DY Compiles debugging
statements indicated by
the letters Y in column 1 of
the source code.

OFF

/d{n}
IA-32 only

-d{n}
IIA-32 only

Sets diagnostics level as
follows:
-d0 - displays procedure
name and line
-d1 - displays local scalar
variables
-d2 - local and common
scalars
-d>2 - display first n
elements of local and
COMMON arrays, and all
scalars.

-d0

/Dname
[={#|text}]

-Dname
[={#|text}]

Defines a macro name
and associates it with the
specified value.

OFF

/Qdps[-] -dps, -
nodps

Enable (default) or disable
DEC* parameter
statement recognition.

Windows
ON
Linux: -
dps

None -dryrun Show driver tool
commands but do not
execute tools.

OFF

None -dynamic-
linker
(file)

Specifies in file a
dynamic linker of choice,
rather than default.

OFF

Intel® Fortran Compiler User's Guide

55

/E -E Preprocesses the source
files and writes the results
to _stdout. If the file
name ends with capital F,
the option is treated as
fpp.

OFF

/4{Y|N}s -e90, -e95 Enables/disables issuing
of errors rather than
warnings for features that
are non-standard Fortran.

OFF

/EP -EP Preprocesses the source
files and writes the results
to stdout omitting the #line
directives.

OFF

/Qextend_source -
extend_source

Enables extended (132-
character) source lines.
Same as -132.

OFF

/P -F Preprocesses the source
files and writes the results
to file.

OFF

/Oa- -falias Assumes aliasing in
program.

ON

/Oa -fno-alias Assumes no aliasing in
program.

OFF

/Ow- -ffnalias Assumes aliasing within
functions.

ON

/Ow -fno-
fnalias

Assumes no aliasing
within functions, but
assumes aliasing across
calls.

OFF

/FAc -fcode-asm Produces assembly file
with optional code byte
annotations.

OFF

/FAs -fsource-
asm

Produces assembly file
with optional high-level
source code annotations.

OFF

None -fverbose-
asm

Produces assembly file
with compiler comments
including compiler version
and options. Enabled by
default when producing an
assembly file.

ON

None -
fnoverbose-
asm

Produces assembly file
without compiler
comments.

OFF

Intel® Fortran Compiler User's Guide

56

/FI -FI Specifies that the source
code is in fixed format.
This is the default for
source files with the file
extensions .for, .f,
or .ftn.

OFF

/Qfnsplit- -fnsplit-
Itanium-based
systems

Disables function splitting,
which is enabled by
-prof_use.

OFF

/Oy-
IA-32 only

-fp
IA-32 only

Disables the use of the
ebp register in
optimizations. Directs to
use the ebp-based stack
frame for all functions.

OFF

/Qfp_port -fp_port
IA-32 only

Rounds floating-point
results at assignments and
casts. Some speed
impact.

OFF

/Qfpp{n} -fpp{n} Enables the Fortran
preprocessor (fpp) on all
Fortran source files prior to
compilation.
n=0 disable CVF and #
directives, equivalent to no
fpp.
n=1 enable CVF
conditional compilation
and # directives; when
fpp runs, -fpp1 is the
default
n=2 enable only #
directives
n=3 enable only CVF
conditional directives

OFF

/FR -FR Specifies that the source
code is in Fortran 95 free
format. This is the default
for source files with
the .f90 file extensions.

OFF

-Qftz
Itanium-based
systems

-ftz
Itanium-based
systems

Flushes denormal results
to zero.

OFF

/ZI, /Z7 -g Generates symbolic
debugging information and
line numbers in the object
code for use by source-
level debuggers.

OFF

Intel® Fortran Compiler User's Guide

57

/help -help Prints help message. OFF
/4I{2|4|8} -i{2|4|8} Defines the default KIND

for integer variables and
constants in 2, 4, and 8
bytes.

/4I4
-i4

None -i_dynamic Enables to link Intel-
provided libraries
dynamically.

OFF

/Idir -Idir Specifies an additional
directory to search for
include and module files
whose names do not begin
with a slash (/).

OFF

/4{Y|N}d -
implicitnone

Enables/disables the
IMPLICIT NONE.

OFF

/Qinline_
debug_info

-inline
_debug_info

Keep the source position
of inline code instead of
assigning the call-site
source position to inlined
code.

OFF

/Qip -ip Enables single-file
interprocedural
optimizations within a file.

OFF

/Qip_no
_inlining

-ip_no
_inlining

Disables full or partial
inlining that would result
from the -ip
interprocedural
optimizations. Requires -
ip or -ipo.

ON

/Qip_no
_pinlining
IA-32 only

-ip_no_
pinlining
IA-32 only

Disables partial inlining.
Requires -ip or -ipo.

OFF

/QIPF_fma[-]
Itanium-based
systems

-IPF_fma[-]
Itanium-based
systems

Enables/disables the
contraction of floating-
point multiply and add/
subtract operations into a
single operation.

ON

/QIPF_fp
_speculationmode
Itanium-based
systems

-IPF_fp_
speculationmode
Itanium-based
systems

Sets the compiler to
speculate on fp operations
in one of the following
modes:
fast: speculate on fp
operations;
safe: speculate on fp
operations only when it is
safe;
strict: enables the

mode=
fast

Intel® Fortran Compiler User's Guide

58

compiler's speculation on
floating-point operations
preserving floating-point
status in all situations;
off: disables the fp
speculation.

/QIPF_flt_eval
_method0
Itanium-based
systems

-
IPF_flt_eval
_method0
Itanium-based
systems

-
IPF_flt_eval_method0
directs the compiler to
evaluate the expressions
involving floating-point
operands in the precision
indicated by the program.

OFF

/QIPF_fltacc[-]
Itanium-based
systems

-IPF_fltacc
[-]
Itanium-based
systems

Enables/disables the
compiler to apply
optimizations that affect
floating-point accuracy.

OFF

/Qipo -ipo Enables interprocedural
optimization across files.
Compile all objects over
entire program with
multifile interprocedural
optimizations.

OFF

/Qipo_c -ipo_c Optimizes across files and
produces a multifile object
file. This option performs
optimizations as -ipo, but
stops prior to the final link
stage, leaving an
optimized object file.

OFF

/Qipo_obj -ipo_obj Forces the generation of
real object files. Requires
-ipo.

IA-32:
OFF
Itanium
Compiler
ON

/Qipo_S -ipo_S Optimizes across files and
produces a multifile
assembly file. This option
performs optimizations as
-ipo, but stops prior to
the final link stage, leaving
an optimized assembly
file.

OFF

/Qivdep_parallel
Itanium-based
systems

-
ivdep_parallel
Itanium-based
systems

Indicates there is
absolutely no loop-carried
memory dependency in
the loop where IVDEP
directive is specified.

OFF

Intel® Fortran Compiler User's Guide

59

None -Kpic, -
KPIC

Generates position-
independent code.

OFF

None -Ldir Instructs linker to search
dir for libraries.

OFF

None -lname Links with the library
indicated in name.

/list -list Prints a source listing to
stdout (typically, your
terminal screen) without
contents of INCLUDE files.

OFF

/list /show:include -list
-
showinclude

Prints a source listing to
stdout with contents of
include files expanded.

OFF

/Qlowercase -lowercase Changes routine names to
lowercase characters
which are uppercase by
default. (Linux: also
controls the external
symbol names in
lowercase.)

Windows
OFF
Linux: ON

/Fmfilename None Instructs the linker to
produce a map file.

OFF

/module[path],
/nomodule

-module
[path],
-nomodule

Specifies the directory
where the module files
(extension .mod) are
placed. Omitting this
option or specifying -
nomodule results in
placing the .mod files in
the directory where the
source files are being
compiled.

-
nomodul

/Op[-] -mp Maintains declared
floating-point precision as
well as conformance to the
IEEE 754 standards for
floating-point arithmetic.
Optimization is reduced
accordingly.

OFF

/Qprec -mp1 Restricts floating floating-
point precision to be closer
to declared precision.
Some speed impact, but
less than -mp.

OFF

Intel® Fortran Compiler User's Guide

60

/nbs -nbs Treats backslash (\) as a
normal graphic character,
not an escape character.

OFF

/Qnobss_init -nobss_init Disables placement of
zero-initialized variables in
BSS (using DATA section)

OFF

/Oi- -
nolib_inline

Disables inline expansion
of intrinsic functions.

ON

/nologo -nologo Suppresses compiler
version information.

OFF

None -nus Disables appending an
underscore to external
subroutine names.

OFF

/us None Append an underscore to
external subroutine names

OFF

/Od -O0 Disables optimizations. OFF
/O2 -O, -O1, -

O2
Optimize for speed., but
disable some
optimizations that increase
code size for a small
speed benefit.
For Itanium compiler, -O1
turns off software
pipelining to reduce code
size.

ON

/O3 -O3 Enables -O2 option with
more aggressive
optimization, for example,
loop transformation.
Optimizes for maximum
speed, but may not
improve performance for
some programs.

OFF

/Ob{0|1|2} -Ob{0|1|2} Controls the compiler's
inline expansion. The
amount of inline expansion
performed varies as
follows:

-Ob0: disable inlining

-Ob1: disables inlining
unless -ip or -Ob2 is
specified. Enables inlining
of functions.

-Ob2: Enables inlining of

-Ob1

Intel® Fortran Compiler User's Guide

61

any function. However, the
compiler decides which
functions are inlined. This
option enables
interprocedural
optimizations and has the
same effect as specifying
the -ip option.

/Fofilename -ofile Name the object file or
directory for multiple files.

OFF

/Fafilename None Name assembly file or
directory for multiple files.

/Fefilename None Name executable file or
directory.

/Qonetrip -onetrip Executes any DO loop at
least once. (Identical to
the -1 option.).

OFF

/Qopenmp -openmp Enables the parallelizer to
generate multithreaded
code based on the
OpenMP* directives. This
option implies that -fpp is
ON.

OFF

/Qopenmp
_report{0|1|2}

-openmp
_report
{0|1|2}

Controls the OpenMP
parallelizers diagnostic
levels.

-openmp
_report

/Qopenmp_stubs -
openmp_stubs

Enables to compile
OpenMP programs in
 sequential
mode. The OpenMP
directives are ignored and
a stub OpenMP library is
linked (sequentially).

OFF

/Qopt_report
Itanium-based
systems

-opt_report
Itanium-based
systems

Generates optimizations
report and directs to
stderr unless
-opt_report_file is
specified.

OFF

/Qopt_report
_filefilename
Itanium-based
systems

-opt_report
_filefilename

Itanium-based
systems

Specifies the filename to
hold the optimizations
report.

OFF

/Qopt_report
_help
Itanium-based
systems

-opt_report
_help
Itanium-based
systems

Prints to the screen all
available phases for
-opt_report_phase.

OFF

Intel® Fortran Compiler User's Guide

62

/Qopt
_report_level
{min|med|max}
Itanium-based
systems

-opt
_report_level
{min|med|max}
Itanium-based
systems

Specifies the detail level of
the optimizations report.

-opt
_report
-level
min

/Qopt_report
_phasephase
Itanium-based
systems

-opt_report
_phasephase
Itanium-based
systems

Specifies the optimization
to generate the report for.
Can be specified multiple
times on the command
line for multiple
optimizations.

OFF

/Qopt_report
_routineroutine
_substring
Itanium-based
systems

-
opt_report_
routineroutine_
substring
Itanium-based
systems

Generates reports from all
routines with names
containing the substring
as part of their name. If
not specified, reports from
all routines are generated.

OFF

/P -P Preprocesses the fpp files
and writes the results to
files named according to
the compilers default file-
naming conventions.

OFF

/Qpad[-] -pad Enables/disables changing
variable and array memory
layout.

OFF

/Qpad_source -pad_source Enforces the
acknowledgment of blanks
at the end of a line.

OFF

/Qparallel -parallel Enables the auto-
parallelizer to generate
multi-threaded code for
loops that can be safely
executed in parallel.

OFF

/Qpar_
report{0|1|2|3}

-par_
report
{0|1|2|3}

Controls the auto-
parallelizer's diagnostic
levels.

-par
_report

/Qpar
_threshold{n}

-par
_threshold
{n}

Sets a threshold for the
auto-parallelization of
loops based on the
probability of profitable
execution of the loop in
parallel, n=0 to 100. This
option is used for loops
whose computation work
volume cannot be
determined at compile-
time.

n=75

Intel® Fortran Compiler User's Guide

63

/Qpc{32|64|80}
 IA-32 only

-pc32
-pc64
-pc80
IA-32 only

Enables floating-point
significand precision
control as follows:
-pc32 to 24-bit significand

-pc64 to 53-bit significand
-pc80 to 64-bit significand

/Qpc64
-pc64

None -pg
IA-32 only

Compile and link for
function profiling with
Linux gprof tool.

OFF

/4{Y|N}posixlib -posixlib Enables/disables
(Windows) linking to the
POSIX* library
(libPOSF90.a) in the
compilation.

OFF

/Qprec_div
IA-32 only

-prec_div
IA-32 only

Disables floating point
division-to-multiplication
optimization resulting in
more accurate division
results. Slight speed
impact.

OFF

/Qprefetch[-]
IA-32 only

-prefetch[-
]
IA-32 only

Enables or disables
prefetch insertion (requires
-O3).

OFF

/Qprof_dirdir -
prof_dirdir

Specifies the directory to
hold profile information in
the profiling output files,
*.dyn and *dpi.

OFF

/Qprof_gen -prof_gen Instruments the program
for profiling: to get the
execution count of each
basic block.

OFF

/Qprof_filefile -
prof_filefile

Specifies file name for
profiling summary file.

OFF

/Qprof_use -prof_use Enables the use of
profiling dynamic feedback
information during
optimization.

OFF

/q -q Suppresses compiler
output to standard error,
__stderr.

OFF

/Qdyncomcom1
[,com2]

-Qdyncom
com1[,com2]

Enables dynamic
allocation of given COMMON
blocks at run time.

OFF

None -
Qinstall,dir

Sets dir as a root directory
for compiler installation.

OFF

Intel® Fortran Compiler User's Guide

64

/Qlocation,
tool,path

-Qlocation,
tool,path

Specifies an alternate
version of a tool located at
path.

OFF

/Qloccom,com1[,
com2,...comn]

-
Qloccom,com1
[,
com2,...comn]

Enables local allocation of
given COMMON blocks at
run time.

OFF

/Qoption,
tool,opts

-
Qoption,tool,
opts

Passes the options, opts,
to the tool specified by
tool.

OFF

None. -qp, -p Compile and link for
function profiling with
UNIX* prof tool.

OFF

/4R{4|8|16} -r{4|8|16} Defines the KIND for real
variables in 4 (default), 8,
and 16 bytes.
-r8: change the size and
precision of default REAL
entities to DOUBLE
PRECISION. Same as the
-autodouble.
-r16: change the size and
precision of default REAL
entities to REAL (KIND=16)

-r8

/Qrcd
IA-32 only

-rcd
IA-32 only

Disables changing of
rounding mode for
floating-point-to-integer
conversions.

OFF

/S -S Produces an assembly
output file with optional
code.

OFF

/Qsafe_cray_ptr -
safe_cray_ptr

Specifies that Cray*
pointers do not alias with
other variables.

OFF

/Qsave -save Saves all variables (static
allocation). Opposite of -
auto.

OFF

/Qscalar_rep[-]
IA-32 only

-scalar_rep
[-]
IA-32 only

Enables or disables scalar
replacement performed
during loop
transformations (requires
-O3).

OFF

Intel® Fortran Compiler User's Guide

65

/Qsox[-] -sox[-]
IA-32 only

Enables or disables
(default) saving of
compiler options and
version in the executable.
Itanium compiler:
accepted for compatibility
only.

OFF

None -shared Instructs the compiler to
build a Dynamic Shared
Object (DSO) instead of
an executable.

OFF

None -static Enables to link shared
libraries (.so) statically.

OFF

None -syntax Enables syntax check
only. Same as -y.

OFF

/Tffile -Tffile Compile file as Fortran
source.

OFF

/G1
Itanium-based
systems

-tpp1
Itanium-based
systems

Targets optimization to the
Intel® Itanium® processor
for best performance.

OFF

/G2
Itanium-based
systems

-tpp2
Itanium-based
systems

Targets optimization to the
Intel® Itanium® 2
processor for best
performance. Generated
code is compatible with
the Itanium processor.

/G2
-tpp2

/G{5|6|7}
IA-32 only

-tpp{5|6|7}
IA-32 only

-tpp5 optimizes for the
Intel Pentium processor.
-tpp6 optimizes for the
Intel Pentium Pro, Pentium
II, and Pentium III
processors.
-tpp7 optimizes for the
Intel Pentium 4 and Xeon
processors; requires the
support of Streaming
SIMD Extensions 2.

/G7
-tpp7

/4{Y|N}d -u Sets IMPLICIT NONE by
default.

ON

/Uname -Uname Removes a defined
macro; equivalent to an
#undef preprocessing
directive.

OFF

Intel® Fortran Compiler User's Guide

66

/Qunroll[n] -unroll[n] - Use n to set maximum
number of times to unroll a
loop.
- Omit n to let the compiler
decide whether to perform
unrolling or not.
- Use n = 0 to disable
unroller.
The Itanium compiler
currently uses only n = 0;
all other values are NOPs.

ON

/Quppercase -uppercase Changes routine names to
all uppercase characters.

Windows
ON
Linux:
OFF

None -use_asm

Generates an assembly
file and tells the assembler
to generate the object file.

OFF

/Vstring -V Displays compiler version
information.

OFF

None -v Shows driver tool
commands and executes
tools.

OFF

/4{Y|N}portlib -Vaxlib Enables/disables linking to
portlib library
(libPEPCF90.a) in the
compilation.

OFF

/Qvec_report{n}
IA-32 only

-vec_report
{n}
IA-32 only

Controls amount of
vectorizer diagnostic
information as follows:
n = 0: no information
n = 1: indicate vectorizer
loops
n = 2: same as n = 1 plus
non-vectorizer loops
n = 3: same as n = 1 plus
dependence information.
n = 4: indicate non-
vectorized loops
n = 5: indicate non-
vectorized loops and and
the reason why they were
not vectorized.

n = 1

Intel® Fortran Compiler User's Guide

67

/Qvms -vms Enables support for I/O
and DEC extensions to
Fortran that were
introduced by Digital* VMS
and Compaq* Fortran
compilers.

OFF

/w -w Suppresses all warning
messages.

OFF

/W0 -W0 Disables display of
warnings.

OFF

/W1 -W1 Displays warnings. ON
/w90, /w95 -w90, -w95 Suppresses warning

messages about Fortran
features which are
deprecated or obsoleted in
Fortran 95.

OFF

/WB -WB Issues a warning about
 compile time bound check
violation.

OFF

/Qx{i|M|K|W}
IA-32 only

-x{i|M|K|W}
IA-32 only

Generates processor-
specific code
corresponding to one of
codes: i, M, K, and W while
also generating generic IA-
32 code. This differs from
-ax{n} in that this targets
a specific processor. With
this option, the resulting
program may not run on
processors older than the
target specified.
i = Pentium Pro &
Pentium II processor
information
M = MMX(TM) instructions
K = streaming SIMD
extensions W = Pentium®
4 and Xeon new
instructions.

OFF

/X -X Removes standard
directories from the
include file search.

OFF

None -y Enables syntax check
only.

OFF

/Qzero -zero Implicitly initializes to zero
all data that is uninitialized
otherwise. Used in
conjunction with -save.

OFF

Intel® Fortran Compiler User's Guide

68

/Zp{1|2|4|8|16} -Zp
{1|2|4|8|16}

Specifies alignment
constraint for structures on
1-, 2-, 4-, 8- or 16-byte
boundary.

Windows
OFF
Linux:
IA-32: -
Zp4
Itanium
Compiler
-Zp8

Intel® Fortran Compiler User's Guide

69

Getting Started with the Intel® Fortran
Compiler
Invoking Intel® Fortran Compiler
The Intel® Fortran Compiler has the following variations:

! Intel® Fortran Compiler for 32-bit Applications is designed for IA-32 systems, and its
command is ifc. The IA-32 compilations run on any IA-32 Intel processor and
produce applications that run on IA-32 systems. This compiler can be optimized
specifically for one or more Intel® IA-32 processors, from Intel® Pentium® to Pentium
4 to Celeron(TM) and Xeon(TM) processors.

! Intel® Fortran Itanium® Compiler for Itanium®-based Applications, or native compiler,
is designed for Itanium architecture systems, and its command is efc. This compiler
runs on Itanium-based systems and produces Itanium-based applications. Itanium-
based compilations can only operate on Itanium-based systems.

You can invoke compiler from:

! compiler command line

! makefile command line

Invoking from the Compiler Command Line
To invoke the Intel® Fortran Compiler from the command line requires these steps :

1. Set the environment variables

2. Issue the compiler command, ifc or efc

Setting the Environment Variables

Set the environment variables to specify locations for the various components. The Intel
Fortran Compiler installation includes shell scripts that you can use to set environment
variables. From the command line, execute the shell script that corresponds to your
installation. With the default compiler installation, these scripts are located at:

IA-32 systems:
/opt/intel/compiler60/ia32/bin/ifcvars.sh

Itanium®-based systems:
/opt/intel/compiler60/ia64/bin/efcvars.sh

Intel® Fortran Compiler User's Guide

70

Running the Shell Scripts

To run the ifcvars.sh script on IA-32, enter the following on the command line:

prompt>. /opt/intel/compiler70/ia32/bin/ifcvars.sh

If you want the ifcvars.sh to run automatically when you start Linux*, edit
your .bash_profile file and add the following line to the end of your file:

set up environment for Intel compiler ifc
. /opt/intel/compiler70/ia32/bin/ifcvars.sh

The procedure is similar for running the efcvars.sh shell script on Itanium®-based
systems.

Command Line Syntax

The command for invoking the compiler depends on what processor architecture you are
targeting the compiled file to run on, IA-32 or Itanium®-based applications. The following
describes how to invoke the compiler from the command line for each targeted architecture.

! Targeted for IA-32 architecture:
prompt>ifc [options] file1.f [file2.f . . .]

! Targeted for Itanium® architecture:
prompt>efc [options] file1.f [file2.f]

 Note
Throughout this manual, where applicable, command line syntax is given for both IA-
32- and Itanium-based compilations as seen above.

 Note
Specified options on the command line apply to all files. For example, in the following
command line, the -c and -w options apply to both files x.f and y.f:

options Indicates one or more command-line options. The compiler
recognizes one or more letters preceded by a hyphen (-) as
an option.

Some options take arguments in the form of filenames,
strings, letters, or numbers. Except where otherwise noted,
you can enter a space between the option and its argument
(s) or you can combine them.

file1, file2 . . . Indicates one or more files to be processed by the
compilation system. You can specify more than one file.
Use a space as a delimiter for multiple files. See Compiler
Input Files.

Intel® Fortran Compiler User's Guide

71

prompt>ifc -c x.f -w y.f

prompt>efc -c x.f -w y.f

Command Line with make
To specify a number of files with various paths and to save this information for multiple
compilations, you can use makefiles. To use a makefile to compile your input files using the
Intel® Fortran Compiler, make sure that /usr/bin and /usr/local/bin are on your
path.

If you use the C shell, you can edit your .cshrc file and add

setenv PATH /usr/bin:/usr/local/bin:<your path>

Then you can compile as

make -f <Your makefile>

where -f is the make command option to specify a particular makefile.

For some versions of make, a default Fortran compiler macro F77 is available. If you want
to use it, you should provide the following settings in the startup file for your command shell:

! On an IA-32 system: F77 ifc

! On an Itanium®-based system: F77 efc

Input Files
The Intel® Fortran Compiler interprets the type of each input file by the filename extension;
for example, .a, .f, .for, .o, and so on.

Filename Interpretation Action
filename.a object library Passed to ld.
filename.f Fortran

source
Compiled by Intel® Fortran Compiler,
assumes fixed-form source.

filename.ftn Fortran source Compiled by Intel Fortran Compiler;
assumes fixed form source.

filename.for Fortran source Compiled by Intel Fortran Compiler;
assumes fixed form source.

filename.fpp Fortran fixed-
form source

Preprocessed by the Intel Fortran
preprocessor fpp; then compiled by
the Intel Fortran Compiler.

Intel® Fortran Compiler User's Guide

72

You can use the compiler configuration file ifc.cfg for IA-32 or efc.cfg for Itanium-
based applications to specify default directories for input libraries and for work files. To
specify additional directories for input files, temporary files, libraries, and for the assembler
and the linker, use compiler options that specify output file and directory names.

Default Behavior of the Compiler
By default, the compiler generates executable file(s) of the input file(s) and performs the
following actions:

! Searches for all files, including library files, in the current directory

! Passes options designated for linking as well as user-defined libraries to the linker

! Displays error and warning messages

! Supports the extended ANSI standard for the Fortran language.

! Performs default settings and optimizations using options summarized in the Default
Behavior of the Compiler Options section.

! For IA-32 applications, the compiler uses -tpp7 option to optimize the code for the
Pentium® 4 and Xeon(TM) processor; for Itanium®-based applications, the compiler
uses -tpp2 option to optimize the code for the Itanium® 2 processor.

For unspecified options, the compiler uses default settings or takes no action. If the
compiler cannot process a command-line option, that option is passed to the linker.

Default Behavior of the Compiler Options
If you invoke the Intel® Fortran Compiler without specifying any compiler options, the
default state of each option takes effect. The following tables summarize the options whose
default status is ON as they are required for Intel Fortran Compiler default operation. The
tables group the options by their functionality.

Per your application requirement, you can disable one or more options.

filename.f90 Fortran 90/95
source

Compiled by Intel Fortran Compiler;
free-form source.

filename.F Fortran fixed-
form source

Passed to preprocessor (fpp) and then
compiled by the Intel Fortran compiler

filename.s IA-32
assembly file

Passed to the assembler.

filename.s Itanium®
assembly file

Passed to the Intel Itanium assembler.

filename.o Compiled
object file

Passed to ld(1).

Intel® Fortran Compiler User's Guide

73

For the default states and values of all options, see the Compiler Options Quick Reference
Alphabetical table. The table provides links to the sections describing the functionality of the
options. If an option has a default value, such value is indicated. If an option includes an
optional minus [-], this option is ON by default.

The following tables list all options that compiler uses for its default execution.

Data Setting and Language Conformance

Default Option Description
-72 -72,-80,-132 specifies the column length for

fixed form source only. The compiler might issue
a warning for non-numeric text beyond 72 for
the -72 option.

-align Analyzes and reorders memory layout for
variables and arrays.

-ansi_alias[-] Enables assumption of the program's ANSI
conformance.

 -r4

Specifies the size of the real numbers to four
bytes.
-r{8|16} works the same as -align only with
specific settings: specifies the size of real
numbers to 8 (IA-32 systems, same as -
autodouble) or 16 bytes for Itanium®
compiler.

-auto_scalar Makes scalar local variables AUTOMATIC.
-dps Enables DEC* parameter statement recognition.
-i4 -i{2|4|8} defines the default KIND for integer

variables and constants in 2, 4, and 8 bytes.
-lowercase Controls the case of routine names and external

linker symbols to all lowercase characters.
-pad Enables changing variable and array memory

layout.
-pc64
IA-32 only

-pc{32|64|80} enables floating-point
significand precision control as follows: -pc32
to 24-bit significand, -pc64 to 53-bit significand,
and -pc80 to 64-bit significand.

-save Saves all variables in static allocation. Disables
-auto, that is, disables setting all variables
AUTOMATIC.

-u Sets IMPLICIT NONE.
-us Appends an underscore to external subroutine

names.

Intel® Fortran Compiler User's Guide

74

Optimizations

IA-32: -Zp4
Itanium compiler: -Zp8

-Zp{n} specifies alignment constraint for
structures on 1-, 2-, 4-, 8-, or 16-byte boundary.
To disable, use
-align-.

Default Option Description
-fp
IA-32 only

Disables the use of the ebp register in
optimizations. Directs to use the ebp-
based stack frame for all functions.

-ip_no_inlining Disables full or partial inlining that would
result from the -ip interprocedural
optimizations. Requires -ip or -ipo.

-IPF_fma
Itanium® compiler

Enables the contraction of floating-point
multiply and add/subtract operations into a
single operation.

-IPF_fp_speculation
fast
Itanium compiler

Sets the compiler to speculate on floating-
point operations. -
IPF_fp_speculationoff disables this
optimization.

-ipo_obj
Itanium compiler

Forces the generation of real object files.
Requires -ipo.
IA-32 systems: OFF

-O, -O1, -O2 Optimize for maximum speed.
-Ob1 Disables inlining unless -ip or -Ob2 is

specified.
-openmp_report1 Indicates loops, regions, and sections

parallelized.
-
opt_report_levelmin

Specifies the minimal level of the
optimizations report.

-par_report1 Indicates loops successfully auto-
parallelized.

-tpp2
Itanium compiler

Optimizes code for the Intel® Itanium® 2
processor for Itanium-based applications.
Generated code is compatible with the
Itanium processor.

-tpp7
IA-32 only

Optimizes code for the Intel® Pentium® 4
and Xeon(TM) processor for IA-32
applications.

Intel® Fortran Compiler User's Guide

75

Compilation

Messages and Diagnostics

Disabling Default Options

To disable an option, use one of the following as applies:

! Generally, to disable one or a group of optimization options, use -O0 option. For
example:

IA-32 applications:

prompt>ifc -O2 -O0 input_file(s)

-unroll -unroll[n]: omit n to let the compiler
decide whether to perform unrolling or not
(default).
Specify n to set maximum number of times
to unroll a loop.
The Itanium compiler currently uses only
n = 0, -unroll0 (disabled option) for
compatibility.

-vec_report1 Indicates loops successfully vectorized.

Default Option Description
-falias Assumes aliasing in program.
-ffnalias Assumes aliasing within functions.
-fverbose-asm Produces assembly file with compiler

comments including compiler version and
options used.

-fpp1
(for preprocessor only)

When preprocessor runs, enables CVF
conditional and # directives.

-sox- Disables saving of compiler options and
version in the executable. For Itanium-based
systems, accepted for compatibility only.

Default Option Description
-cerrs Enables errors and warning messages to be

printed in a terse format. To disable, use
-cerrs-.

-d0 Displays only the procedure name and the
number of the line at which the failure
occurred.

-W1 Displays warnings.

Intel® Fortran Compiler User's Guide

76

Itanium-based applications:

prompt>efc -O2 -O0 input_file(s)

 Note
The -O0 option is part of a mutually-exclusive group of options that
includes -O0, -O, -O1, -O2, and -O3. The last of any of these options
specified on the command line will override the previous options from this
group.

! To disable options that include optional "-" shown as [-], use that version of the
option in the command line, for example: -align-.

! To disable options that have {n} parameter, use n=0 version, for example: -
unroll0.

 Note
If there are enabling and disabling versions of switches on the line, the last one takes
precedence.

Resetting Default Data Types

To reset data type default options, you need to indicate a new option which overrides the
default setting. For example:

IA-32 applications:

prompt>ifc -i2 input_file(s)

Itanium-based applications:

prompt>efc -i2 input_file(s)

Option -i2 overrides default option -i4.

Default Libraries and Tools
For the libraries provided with Intel® Fortran Compiler, see IA-32 compiler libraries list and
Itanium® compiler libraries list.

The default tools are summarized in the table below.

Intel® Fortran Compiler User's Guide

77

You can specify alternate to default tools and locations for preprocessing, compilation,
assembly, and linking.

Assembler

By default, the compiler generates an object file directly without calling the assembler.
However, if you need to use specific assembly input files and then link them with the rest of
your project, you can use an assembler for these files.

IA-32 Applications

For 32-bit applications, Linux supplies its own assembler, as. For Itanium-based
applications, to compile to assembly files and then use an assembler to produce
executables, use the Itanium assembler, ias.

Itanium®-based Applications

If you need to assemble specific input files and link them to the rest of your project object
files, produce object files using Intel® Itanium® assembler with ias command. For
example, if you want to link some specific input file to the Fortran project object file, do the
following:

1. Issue command using -S option to generate an assembly code file, file.s.

prompt>efc -S -c file.f

2. To assemble the file.s file, call Itanium® assembler with this command:

prompt>ias -Nso -p32 -o file.o file.s

where the following assembler options are used:

-Nso suppresses sign-on message

-p32 enables defining 32-bit elements as relocatable data elements. Kept for backward
compatibility

-ofile indicates the output object file name

Tool Default Provided with
Intel Fortran
Compiler

IA-32 Assembler Linux* Assembler, as No
Itanium®
Assembler

Intel® Itanium®
Assembler

Yes

Linker No

Intel® Fortran Compiler User's Guide

78

The above command generates an object file, file.o, which you can link with the object
file of the whole project.

Linker

The compiler calls the system linker, ld(1), to produce an executable file from object files.
The linker searches the environment variable LD_LIBRARY_PATH to find available libraries.

Compilation Phases
To produce the executable file filename, the compiler performs by default the compile
and link phases. When invoked, the compiler driver determines which compilation phases
to perform based on the extension of the source filename and on the compilation options
specified in the command line.

The table that follows lists the compilation phases and the software that controls each
phase.

The compiler passes object files and any unrecognized filename to the linker. The linker
then determines whether the file is an object file (.o) or a library (.a). The compiler driver
handles all types of input files correctly, thus it can be used to invoke any phase of
compilation.

Application Development Cycle

The relationship of the compiler to system-specific programming support tools is presented
in the Application Development Cycle diagram.

The compiler processes Fortran language source and generates object files. You decide
the input and output by setting options when you run the compiler. The figure shows how
the compiler fits into application development environment.

Phases Software IA-32 or Itanium®
Architecture

Preprocess
(Optional)

fpp Both

Compile f90com Both
Assemble ias Itanium architecture
Link ld Both

Application Development Cycle

Intel® Fortran Compiler User's Guide

79

Intel® Fortran Compiler User's Guide

80

Customizing Compilation Environment
You can customize the compilation process of your Fortran programs with the Fortran
Compilation Environment (FCE) included with the Intel® Fortran Compiler. FCE provides a
methodology of handling compilation according to the size and structure of your program. In
addition, the FCE provides a methodology for code reusability and other automated
features. The modular approach also facilitates several levels of use, from short programs
to complex and large-scale projects.

To customize the environment used during compilation, you can specify the variables,
options, and files as follows:

! Environment variables to specify paths where the compiler searches for special files
such as libraries and "include" files

! Configuration files to use the options with each compilation

! Response files to use the options and files for individual projects

! Include Files to use for your application

Environment Variables
There are a number of environment variables that control the compiler ’s behavior. These
environment variables can be set in the startup file for your command shell, or your .login
file. Alternatively, you can invoke the setting variables script before running the compiler.

You can also set the PATH and LD_LIBRARY_PATH in your .login file only, there will no
longer be any need to execute the setting variables script before running the compiler.

The following variables are relevant to your compilation environment.

EFCCFG Specifies the configuration file that the
compiler should use instead of the
default configuration file for the
Itanium® compiler.

IFCCFG Specifies the configuration file that the
compiler should use instead of the
default configuration file for the IA-32
compiler.

F_UFMTENDIAN Specifies the numbers of the units to
be used for little-endian-to-big-endian
conversion purposes.

LD_LIBRARY_PATH Specifies the directory path for the
libraries loaded at run-time.

Intel® Fortran Compiler User's Guide

81

Configuration File Environment Variables

IFCCFG and EFCCFG environment variables specify the configuration file that the compiler
should use instead of the default configuration file. The default configuration files are
ifc.cfg for the 32-bit Intel Fortran compiler and efc.cfg for the Itanium compiler in
the /bin directory, and by default, the compiler always picks up the .cfg file from the
same directory where the compiler executable resides. However, if the user needs to use a
configuration file in a different location, they can use the IFCCFG or EFCCFG environment
variable and assign the directory and filename of the .cfg file that needs to be picked up
by the compiler.

Configuration Files
To decrease the time when entering command line options and ensure consistency of
often-used command-line entries, use the configuration files. You can insert any valid
command-line options into the configuration file. The compiler processes options in the
configuration file in the order they appear followed by the command-line options that you
specify when you invoke the compiler.

 Note

Be aware that options placed in the configuration file will be included each time you
run the compiler. If you have varying option requirements for different projects, see
Response Files.

These files can be added to the directory where Intel® Fortran Compiler is installed.

Examples that follow illustrate sample .cfg files. The pound (#) character indicates that the
rest of the line is a comment.

IA-32 applications: ifc.cfg

You can put any valid command-line option into this file.

PATH Specifies the directory path for the
compiler executable files. Enables the
compiler to search for libraries or
include files. You can establish these
variables in the startup file for your
command shell. You can use the env
command to determine what
environment variables you already
have set.

TMP Specifies the directory in which to
store temporary files. If the directory
specified by TMP does not exist, the
compiler places the temporary files in
the current directory.

Intel® Fortran Compiler User's Guide

82

Itanium®-based applications: efc.cfg

Response Files
Use response files to specify options used during particular compilations for particular
projects, and to save this information in individual files. Response files are invoked as an
option on the command line. Options specified in a response file are inserted in the
command line at the point where the response file is invoked.

Response files are used to decrease the time spent entering command -line options, and to
ensure consistency by automating command-line entries. Use individual response files to
maintain options for specific projects; in this way you avoid editing the configuration file
when changing projects.

You can place any number of options or filenames on a line in the response file. Several
response files can be referenced in the same command line.

Sample ifc.cfg file for IA-32
applications
##
Define preprocessor macro MY_PROJECT.
-Dmy_project
##
Set extended-length source lines.
-132
##
Set maximum floating-point significand
precision.
-pc80
##
Link with alternate I/O library for
mixed output with the
C language.
-C90

Sample efc.cfg file for Itanium®-based
applications
##
Define preprocessor macro MY_PROJECT.
-Dmy_project
##
Enable extended-length source lines.
-132
##
Link with alternate I/O library for
mixed output with the
C language.
-C90

Intel® Fortran Compiler User's Guide

83

The syntax for using response files is as follows :

IA-32 applications:

prompt>ifc @response_filename

prompt>ifc @response_filename1 @response_filename2

Itanium®-based applications:

prompt>efc @response_filename

prompt>efc @response_filename1 @response_filename2

 Note

An "at" sign (@) must precede the name of the response file on the command line.

Include Files
Include files are brought into the program with the #include preprocessor directive or the
INCLUDE statement. In addition, you can define a specific location of include files with the
compiler options, -Idir and -X. See Searching for Include Files in Preprocessing.

Intel® Fortran Compiler User's Guide

84

Customizing Compilation Process
This section describes options that customize compilation process—preprocessing,
compiling, and linking. In addition, it discusses various compilation output and debug
options and also shows how little-endian-to-big-endian conversions are enabled for
unformatted sequential files.

You can find information on the link-time libraries used by compiler, compiler diagnostics,
and mixing C and Fortran in the corresponding sections.

Specifying Alternate Tools and Locations
The Intel® Fortran Compiler lets you specify alternate to default tools and locations for
preprocessing, compilation, assembly, and linking. Further, you can invoke options specific
to your alternate tools on the command line. This functionality is provided by -Qlocation
and -Qoption.

Specifying an Alternate Component
(-Qlocation,tool,path)

-Qlocation enables to specify the pathname locations of supporting tools such as the
assembler, linker, preprocessor, and compiler. This option's syntax is:

-Qlocation,tool,path

Example:

prompt>ifc -Qlocation,fpp,/usr/preproc myprog.f

Passing Options to Other Tools (-Qoption,tool,opts)

-Qoption passes an option specified by opts to tool, where opts is a comma-
separated list of options. The syntax for this option is:

-Qoption,tool,opts

tool Designates one or more of these
tools:

fpp Intel Fortran preprocessor
f Fortran compiler (f90com)
asm IA-32 assembler
ias Itanium® assembler
link Linker (ld(1))

path The location of the component.

Intel® Fortran Compiler User's Guide

85

If the argument contains a space or tab character, you must enclose the entire argument in
quotation characters (" "). You must separate multiple arguments with commas including
those in quotation marks.

The following example directs the linker to link with alternate I/O library for mixed output
with the C language for respective targeted compilations.

IA-32 applications:

prompt>ifc -Qoption,link,-C90 prog1.f

Itanium®-based applications:

prompt>efc -Qoption,link,-C90 prog1.f

Preprocessing
This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file
inclusion. You can use the preprocessing options to direct the operations of the
preprocessor from the command line. The compiler preprocesses files as an optional first
phase of the compilation.

The Intel® Fortran Compiler provides the fpp binary to enable preprocessing. If you want
to use another preprocessor, you must invoke it before you invoke the compiler. Source
files that use a .fpp or .F file extension are automatically preprocessed.

 Caution
Using a preprocessor that does not support Fortran can damage your Fortran code,
especially with FORMAT statements. For example, FORMAT (\\I4) changes the
meaning of the program because the backslash "\" indicates end-of-record.

Preprocessor Options

Use the options in this section to control preprocessing from the command line. If you
specify neither option, the preprocessed source files are not saved but are passed directly
to the compiler. Table that follows provides a summary of the available preprocessing

tool Designates one or more of these
tools:

fpp Intel Fortran preprocessor
f Fortran compiler (f90com)
link Linker (ld(1))

opts Indicates one or more valid
argument strings for the
designated program.

Intel® Fortran Compiler User's Guide

86

options.

Preprocessing Fortran Files

You do not usually preprocess Fortran source programs. If, however, you choose to
preprocess your source programs, you must use the preprocessor fpp, or the
preprocessing capability of a Fortran compiler. It is recommended to use fpp, which is the
preprocessor supplied with the Intel® Fortran Compiler.

The compiler driver automatically invokes the preprocessor, depending on the source
filename suffix and the option specified. For example, to preprocess a source file that
contains standard Fortran preprocessor directives, then pass the preprocessed file to the
compiler and linker, enter the following command:

IA-32 applications:

prompt>ifc source.fpp/source.F90

Itanium®-based applications:

Option Description
-A[-] Removes all predefined macros.
-Dname=
{#|text}]

Defines the macro name and associates it with
the specified value. The default (-Dname) defines
a macro with value =1.

-E Directs the preprocessor to expand your source
module and write the result to standard output.

-EP Same as -E but does not include #line directives
in the output.

-F Preprocess to an indicated file.
-fpp{n} Uses the fpp preprocessor on Fortran source

files.
n=0: disable CVF and #directives n=1: enable
CVF conditional compilation and #directives
(default)
n=2: enable only #directives,
n=3: enable only CVF conditional compilation
directives.

-P Directs the preprocessor to expand your source
module and store the result in a file in the current
directory.

-Uname Eliminates any definition currently in effect for the
specified macro.

-Idir Adds directory to the include file search path.
-X Removes standard directories from the include

file search path.

Intel® Fortran Compiler User's Guide

87

prompt>efc source.fpp/source.F90

The .fpp or .F90 file extension invokes the preprocessor. Note the capital F in the file
extension to produce the effect.

 Note
Using the preprocessor can make debugging difficult. To get around this, you can
save the preprocessed file (-P), and compile it separately, so that the proper file
information is recorded for the debugger.

Enabling Preprocessing with CVF

You can enable the Preprocessor for any Fortran file by specifying the -fpp option. With -
fpp, the compiler automatically invokes the fpp (preprocessor) to preprocess files with
the .f, .ftn, .for or .f90 extension in the mode set by n:

n=0: disable CVF and #directives

n=1: enable CVF conditional compilation and #directives; -fpp1 is the default when
the preprocessor is invoked.

n=2: enable only #directives

n=3: enable only CVF conditional compilation directives.

 Note
Option -openmp automatically invokes the preprocessor.

String Constants for IA-32 Systems

Intel Fortran fpp conforms to cpp and accepts the cpp style directives. cpp prohibits the
use of a string constant value in #if expression. So fpp won't support it either.

Preprocessing Only: -E, -EP, -F, and -P

Use either the -E, -P, or the -F option to preprocess your .fpp source files without
compiling them.

#define system "ia32"
#if system == "ia32"
void main() {
printf("ia32\n");
}
#else
int main() {
printf("non ia32\n");
}#endif

Intel® Fortran Compiler User's Guide

88

When you specify the -E option, the Intel® Fortran Compiler's preprocessor expands your
source file and writes the result to standard output. The preprocessed source contains
#line directives, which the compiler uses to determine the source file and line number
during its next pass. For example, to preprocess two source files and write them to stdout,
enter the following command:

IA-32 applications:

prompt>ifc -E prog1.fpp prog2.fpp

Itanium®-based applications:

prompt>efc -E prog1.fpp prog2.fpp

When you specify the -P option, the preprocessor expands your source file and stores the
result in a file in the current directory. By default, the preprocessor uses the name of each
source file with the .f extension, and there is no way to change the default name. For
example, the following command creates two files named prog1.f and prog2.f, which
you can use as input to another compilation:

IA-32 applications:

prompt>ifc -P prog1.fpp prog2.fpp

Itanium-based applications:

prompt>efc -P prog1.fpp prog2.fpp

The -EP option can be used in combination with -E or -P. It directs the preprocessor to not
include #line directives in the output. Specifying -EP alone is the same as specifying -E
and -EP.

 Caution
When you use the -P option, any existing files with the same name and extension are
not overwritten and the system returns the error message invalid preprocessor output
file.

Searching for Include and .mod Files

Include files are brought into the program with the #include preprocessor directive or the
INCLUDE statement. To locate such included files, the compiler searches by default for the
standard include files in the directories specified in the INCLUDE environment variable. In
addition, you can specify the compiler options, -I and -X.

Specifying and Removing Include Directory Search: -I, -X

You can use the -I option to indicate the location of include files and .mod files. To prevent

Intel® Fortran Compiler User's Guide

89

the compiler from searching the default path specified by the INCLUDE environment
variable, use -X option.

You can specify these options in the configuration files, ifc.cfg for IA-32 or efc.cfg for
Itanium®-based applications or on the command line.

Specifying an Include Directory, -Idir

Included files are brought into the program with a #include preprocessor directive or a
Fortran INCLUDE statement. Use the -Idir option to specify an alternative directory to
search for include files.

Files included by the Fortran INCLUDE statement are normally referenced in the same
directory as the file being compiled. The -I option may be used more than once to extend
the search for an INCLUDE file into other directories.

Directories are searched for include files in this order:

! directory of the source file that contains the include

! directories specified by the -I option

! current working directory

! directories specified with the INCLUDE environment variable

Compiling an Input File from a Different Directory

If you need to compile an input file that resides in a directory other than default (that is, the
directory where you issue a compilation command) and if your code contains an INCLUDE
statement, you must use the -Idir option on your command line. For example:

IA-32 applications:

prompt>ifc -Idir dir/file.f90

Itanium®-based applications:

prompt>efc -Idir dir/file.f90

where dir is the directory path where the file, file.f90 , you need to compile resides.

Specifying the .mod Files Directory

The programs that require modules located in multiple directories can be compiled using
the -Idir option to locate the .mod files (modules) that should be included in the program.
 For specifying the directory to locate .mod files, see Searching and Locating the .mod Files
in Large-Scale Projects.

Intel® Fortran Compiler User's Guide

90

Removing Include Directories, -X

Use the -X option to prevent the compiler from searching the default path specified by the
INCLUDE environment variable.

You can use the -X option with the -I option to prevent the compiler from searching the
default path for include files and direct it to use an alternate path. For example, to direct the
compiler to search the path /alt/include instead of the default path, do the following:

IA-32 applications:

prompt>ifc -X -I/alt/include newmain.f

Itanium-based applications:

prompt>efc -X -I/alt/include newmain.f

Defining Macros

You can use the /D option to define the assertion and macro names to be used during
preprocessing. The -Uname option disable macros.

Use the -D option to define a macro. This option performs the same function as the
#define preprocessor directive. The format of this option is:

 -Dname[=value(text]

where

If you do not enter a value, name is set to 1. The value should be enclosed in the
quotation marks if it contains spaces or special characters.

Preprocessing replaces every occurrence of name with the specified value. For example,
to define a macro called SIZE with the value 100 use the following command:

IA-32 applications: prompt>ifc -DSIZE=100 prog1.f

Itanium®-based applications: prompt>efc -DSIZE=100 prog1.f

Preprocessing replaces all occurrences of SIZE with the specified value before passing the
preprocessed source code to the compiler. Suppose the program contains the declaration:

REAL VECTOR(SIZE)

name The name of the macro to define.
value
[=text]

Indicates a value to be substituted
for name.

Intel® Fortran Compiler User's Guide

91

In the code sent to the compiler, the value 100 replaces SIZE in this declaration, and in
every other occurrence of the name SIZE.

Predefined Macros

The predefined macros available for the Intel® Fortran Compiler are described in the table
below. The Default column describes whether the macro is enabled (ON) or disabled (OFF)
by default. The Disable column lists the option which disables the macro.

Suppressing Macros

The -U option directs the preprocessor to suppress an automatic definition of a macro. Use
the -Uname option to suppress any macro definition currently in effect for the specified
name. The -U option performs the same function as an #undef preprocessor directive.

Preprocessor Macro for OpenMP*

A preprocessor macro is defined which may be useful for running OpenMP* depending on
the compiler environment:

_OPENMP

This macro has the form YYYYMM where YYYY is the year and MM is the month of the
OpenMP Fortran specification supported.

Compilation

Macro Name Default Architecture Description - When Used
__EFC ON Itanium

architecture
Identifies the Intel Fortran
Compiler

__IFC ON IA-32 Identifies the Intel Fortran
Compiler

__linux__ ON IA-32 Defined for Linux* applications
_M_IA64_linux ON Itanium®

architecture
Defined for Itanium-based Linux
applications

_M_IX86=n ON,n=700 IA-32 Defined based on the processor
option you specify:

n=500 if you specify -tpp5

n=600 if you specify -tpp6

n=700 if you specify -tpp7
_PGO_INSTRUMENT OFF Both Defined when you compile with -

prof_gen or -prof_genx
options.

Intel® Fortran Compiler User's Guide

92

This section describes all the Intel® Fortran Compiler options that determine the
compilation and linking process and their output. By default, the compiler converts source
code directly to an executable file. Appropriate options enable you to control the process
and obtain desired output file produced by the compiler.

Having control of the compilation process means, for example, that you can create a file at
any of the compilation phases such as assembly, object, or executable with -P or -c
options. Or you can name the output file or designate a set of options that are passed to
the linker with the -S, -o options. If you specify a phase-limiting option, the compiler
produces a separate output file representing the output of the last phase that completes for
each primary input file.

You can use the command line options to display and check for certain aspects of the
compiler's behavior. You can use these options to see which options and files are passed
by the compiler driver to the component executables f90com and ld(1) (option -sox[-
]).

Linking is the last phase in the compilation process discussed in a separate section. See
the Linking options.

A group of options monitors the outcome of Intel compiler -generated code without
interfering with the way your program runs. These options control some computation
aspects, such as allocating the stack memory, setting or modifying variable settings, and
defining the use of some registers.

The options in this section provide you with the following capabilities:

! GCC* compatibility

! controlling compilation

! monitoring data settings

! specifying the output files or directories

Finally, the output options are summarized in Compiler Output Options Summary.

Controlling Compilation

You can control and modify the compilation process with the option sets as follows.

Controlling Compilation Phases

You can control which compilation phases you need to include in the compilation process.

! The -c option directs the compiler to compile, assemble and generate object file(s),
but do not link.

Intel® Fortran Compiler User's Guide

93

! The -S option stops compiler at generating assembly files.

! If you need to link additional files and/or libraries, you use the -lname option. For
example, if you want to link libm.a, the command is:

IA-32 compiler:

prompt>ifc a.f -lm

Itanium® compiler:

prompt>efc a.f -lm

Aliasing

The following options manage compiler aliasing:

! -falias assumes aliasing in a program

! -fno-alias assumes no aliasing in a program

! -ffnalias assumes aliasing within functions

! -fno-fnalias assumes no aliasing within functions, but assumes aliasing across
calls

Translating Other Code to Fortran

The /Tffile option enables you to treat a text file as if it contains Fortran code. This
option is used if you have a Fortran file that has other than the .f/.for/.f90 extension or
no extension, and you need to compile it.

For example:

prompt>ifc -Tfa.f95 b.f

The above command will compile both a.f95 and b.f files as Fortran, link them, and
create executable a.

Profiling Support

Profiling information identifies those parts of your program where improving source code
efficiency would most likely improve runtime performance.

The options supporting profiling are -p and -qp, and -pg. (-pg is used for IA-32 only)

-p and -qp set up profiling by periodically sampling the value of the program counter for

Intel® Fortran Compiler User's Guide

94

use with the postprocessor prof tool.

These options only affect loading. When loading occurs, these options replace the standard
runtime startup routine option with the profiling runtime startup routine. When profiling
occurs, an output file is produced, which contains execution-profiling data for use with the
postprocessor prof command.

-pg (IA-32 only) sets up profiling for gprof tool, which produces a call graph showing the
execution of the program. When programs are linked with the -pg option and then run,
these files produced:

! a file containing a dynamic call graph and profile.

! a file containing a summarized dynamic call graph and profile.

To display the output, run gprof on the file containing a dynamic call graph and profile.

Saving Compiler Version and Options Information, -sox[-]

You can save the compiler version and options information in the executable with -sox.
The size of the executable on disk is increased slightly by the inclusion of these information
strings. The default is -sox-.

The -sox option forces the compiler to embed in each object file a string that contains
information on the compiler version and compilation options for each source file that has
been compiled. When you link the object files into an executable file, the linker places each
of the information strings into the header of the executable. It is then possible to use a tool,
such as a strings utility, to determine what options were used to build the executable file.

 Note
For Itanium®-based applications, the -sox option is accepted for compatibility, but it
does not have any effect.

Monitoring Data Settings

The options described below provide monitoring the outcome of Intel compiler -generated
code without interfering with the way your program runs.

Specifying Structure Tag Alignments

Use the -Zp{n} option to determine the alignment constraint for structure declarations, on
n-byte boundary (n = 1, 2, 4, 8, 16). Generally, smaller constraints result in smaller data
sections while larger constraints support faster execution.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in
the file prog1.f, use the following command:

IA-32 systems: prompt>ifc -Zp2 prog1.f

Intel® Fortran Compiler User's Guide

95

The default for IA-32 systems is -Zp4.

Itanium®-based systems: prompt>efc -Zp2 prog1.f
The default for Itanium-based systems is -Zp8.

The -Zp16 option enables you to align Fortran structures such as common blocks. For
Fortran structures, see STRUCTURE statement in Chapter 10 of Intel® Fortran
Programmer's Language Reference Manual.

The -align option applies mainly to structures and analyzes and reorders memory layout
for variables and arrays and basically functions as -Zp{n}. You can disable either option
with
-noalign.

The -pad option is effectively not different from -align when applied to structures and
derived types. However, the scope of -pad is greater because it applies also to common
blocks, derived types, sequence types, and Vax structures.

Allocation of Zero-initialized Variables, -nobss_init

By default, variables explicitly initialized with zeros are placed in the BSS section. But using
the
-nobss_init option, you can place any variables that are explicitly initialized with zeros in
the DATA section if required.

Correcting Computations for IA-32 Processors, -0f_check (IA-32 Systems)

Specify the -0f_check option to avoid the incorrect decoding of the instructions that have
2-byte opcodes with the first byte containing 0f. In rare cases, the Pentium® processor can
decode these instructions incorrectly.

The ebp Register Usage (IA-32 Systems)

The -fp option disables the use of the ebp register in optimizations. The option directs to
use the ebp-based stack frame for all functions. For details on the correlation between the
ebp register use for optimizations and debugging, see -fp Option and Debugging.
The -fp option is disabled by default or when -O1 or -O2 (see optimization-level options)
are specified.

Flushing to Zero Denormal Values, -ftz (Itanium®-based Systems)

Option -ftz flushes denormal results to zero when the application is in the gradual
underflow mode. Use this option if the denormal values are not critical to application
behavior.

Flushing the denormal values to zero with -ftz may improve performance of your
application.

Intel® Fortran Compiler User's Guide

96

The default status of -ftz is OFF. By default, the compiler lets results gradually
underflow.

Little-endian-to-Big-endian Conversion (IA-32)

The little-endian-to-big-endian conversion feature is intended for Fortran unformatted
input/output operations. It enables the development and processing of files with big-endian
data organization on the IA-32-based processors, which usually process the data in the little
endian format.

The feature also enables processing of the files developed on processors that accept big-
endian data format and producing the files for such processors on IA-32-based little-endian
systems.

The little-endian-to-big-endian conversion is accomplished by the following operations:

! The WRITE operation converts little endian format to big endian format.

! The READ operation converts big endian format to little endian format.

The feature enables the conversion of variables and arrays (or array subscripts) of basic
data types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment Variable

In order to use the little-endian-to-big-endian conversion feature, specify the numbers of the
units to be used for conversion purposes by setting the F_UFMTENDIAN environment
variable. Then, the READ/WRITE statements that use these unit numbers, will perform
relevant conversions. Other READ/WRITE statements will work in the usual way.

In the general case, the variable consists of two parts divided by a semicolon. No spaces
are allowed inside the F_UFMTENDIAN value. The variable has the following syntax:

F_UFMTENDIAN=MODE | [MODE;] EXCEPTION

where:

MODE = big | little
EXCEPTION = big:ULIST | little:ULIST | ULIST
ULIST = U | ULIST,U
U = decimal | decimal -decimal

! MODE defines current format of data, represented in the files; it can be omitted.
The keyword little means that the data have little endian format and will not be
converted. For IA-32 systems, this keyword is a default.
The keyword big means that the data have big endian format and will be converted.
This keyword may be omitted together with the colon.

Intel® Fortran Compiler User's Guide

97

! EXCEPTION is intended to define the list of exclusions for MODE; it can be omitted.
EXCEPTION keyword (little or big) defines data format in the files that are
connected to the units from the EXCEPTION list. This value overrides MODE value for
the units listed.

! Each list member U is a simple unit number or a number of units. The number of list
members is limited to 64.
decimal is a non-negative decimal number less than 232.

Converted data should have basic data types, or arrays of basic data types. Derived data
types are disabled.

Command lines for variable setting with different shells:

Sh: export F_UFMTENDIAN=MODE;EXCEPTION

Csh: setenv F_UFMTENDIAN MODE;EXCEPTION

Note

Environment variable value should be enclosed in quotes if semicolon is present.

Another Possible Environment Variable Setting

The environment variable can also have the following syntax:

F_UFMTENDIAN=u[,u] . . .

Command lines for the variable setting with different shells:

! Sh: export F_UFMTENDIAN=u[,u] . . .

! Csh: setenv F_UFMTENDIAN u[,u] . . .

See error messages that may be issued during the little endian – big endian conversion.
They are all fatal. You should contact Intel if such errors occur.

Little-to-Big Endian Conversion Usage Examples

1. F_UFMTENDIAN=big

All input/output operations perform conversion from big-endian to little-endian on
READ and from little-endian to big-endian on WRITE.

2. F_UFMTENDIAN="little;big:10,20"
or F_UFMTENDIAN=big:10,20
or F_UFMTENDIAN=10,20

Intel® Fortran Compiler User's Guide

98

In this case, only on unit numbers 10 and 20 the input/output operations perform big -
little endian conversion.

3. F_UFMTENDIAN="big;little:8"

In this case, on unit number 8 no conversion operation occurs. On all other units, the
input/output operations perform big-little endian conversion.

4. F_UFMTENDIAN=10-20

Define 10, 11, 12 … 19, 20 units for conversion purposes; on these units, the
input/output operations perform big-little endian conversion.

5. Assume you set F_UFMTENDIAN=10,100 and run the following program.

integer*4 cc4
integer*8 cc8
integer*4 c4
integer*8 c8
c4 = 456
c8 = 789

C prepare a little endian representation of
data

open(11,file='lit.tmp',form='unformatted')
write(11) c8
write(11) c4
close(11)

C prepare a big endian representation of data

open(10,file='big.tmp',form='unformatted')
write(10) c8
write(10) c4
close(10)

C read big endian data and operate with them
on
C little endian machine.

open(100,file='big.tmp',form='unformatted')
read(100) cc8
read(100) cc4

C Any operation with data, which have been
read

C . . .
close(100)

Intel® Fortran Compiler User's Guide

99

Now compare lit.tmp and big.tmp files with the help of od utility.

> od -t x4 lit.tmp

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034

> od -t x4 big.tmp

0000000 08000000 00000000 15030000 08000000
0000020 04000000 c8010000 04000000
0000034

You can see that the byte order is different in these files.

Specifying Compilation Output
When compiling and linking a set of source files, you can use the -o or -S option to give
the resulting file a name other than that of the first source or object file on the command
line.

If you are processing a single file, you can use the -ofile option to specify an alternate
name for an object file (.o), an assembly file (.s) or an executable file. You can also use
these options to override the default filename extensions: .o and .s.

See Compilation Output options summary.

Default Output Files

The default command line does not include any options and has a Fortran source file as its
input argument:

stop
end

-c Compile to object only (.o), do not link.
-S Produce assembly file or directory for multiple

assembly files. The compilation stops at producing
the assembly file.

-ofile Produce an output file based on the phase options
used previously: none, -c or -S. If no phase option
has been used, produces an executable and places
it in specified file. Combined with -S, indicates
assembly file or directory for multiple assembly files.
Combined with -c, indicates object file name or
directory for multiple object files.

Intel® Fortran Compiler User's Guide

100

IA-32 compiler:

prompt>ifc a.f90

Itanium® compiler:

prompt>efc a.f90

The default compiler command produces an a.out executable file. If the -c option was
used, the compiler command also produces an object file, a.o, and places it in the current
directory.

You can compile more than one input files:

IA-32 compiler:

prompt>ifc x.f90 y.f90 z.f90

Itanium compiler:

prompt>efc x.f90 y.f90 z.f90

The above command will do the following:

! compile and link three input source files

! produce three object files and assign the names of the respective source files: x.o,
y.o, and z.o

! produce an executable file and assign to it the default name a.out

! place all the files in the current directory.

To generate assembly files, use the -S option. The compilation stops at producing the
assembly file.

Specifying Executable Files

You can use the -ofile option to specify an alternate name for an executable file. This is
especially useful when compiling and linking a set of input files. You can use the -ofile
option to give the resulting file a name other than that of the first input file (source or object)
on the command line.

In the next example, the command produces an executable file named outfile as a result
of compiling and linking two source files.

IA-32 compiler:

Intel® Fortran Compiler User's Guide

101

prompt>ifc -ooutfile file1.f90 file2.f90

Itanium® compiler:

prompt>efc -ooutfile file1.f90 file2.f90

Without the -ooutfile option, the command above produces an executable file named
a.out, the default executable file name.

Specifying Object Files

The compiler command always generates and keeps object files of the input source files
and by default places them in the current directory. You can use the -ofile options to
specify an alternate name for an object file.

For example:

IA-32 compiler:

prompt>ifc -ofile.o x.f90

Itanium® compiler:

prompt>efc -ofile.o x.f90

In the above example, -o assigns the name file.o to an output object file rather than the
default x.o.

To generate object files, specify a different object file name, and suppress linking, use -c
and -o combination.

IA-32 applications:

prompt>ifc -c -ofile.o x.f90

Itanium compiler:

prompt>efc -c -ofile.o x.f90

-o assigns the name file.o to an output object file rather than the default (x.o)

-c directs the compiler to suppress linking.

Specifying Assembly Files

You can use the -S option to generate an assembly file. The compilation stops at producing
the assembly file. To specify an alternate name for this assembly file, use the -ofile

Intel® Fortran Compiler User's Guide

102

option .

IA-32 compiler:

prompt>ifc -S -ofile.s x.f90

Itanium® compiler:

prompt>efc -S -ofile.s x.f90

In the above example, -S tells the compiler to generate an assembly file, while -ofile.s
 assigns to it the name file.s rather than the default x.s.

The option -S tells compiler to:

! generate an assembly file of the source file

! use the name of the source file as a default assembly output file name

! place this file in the current directory.

 Note

The -S option stops the compiler upon generating and saving the assembly files.
Without the -S option, the compiler proceeds to generating object files without saving
the assembly files.

Producing Assembly Files with Annotations and Comments

Options -fcode-asm and -fsource-asm produce annotations in assembly files as
follows:

! -fcode-asm and inserts code byte information in the assembly file

! -fsource-asm and inserts high-level source code in the assembly file

In addition, the options -fverbose-asm and -fnoverbose-asm enable and disable,
respectively, inserting comments containing compiler version and options used in the
assembly file. The -fverbose-asm option is enabled by default when producing an
assembly file with -fcode-asm or -fsource-asm.

Compiler Output Options Summary

If no errors occur during processing, you can use the output files from a particular phase as
input to a later compiler invocation. The executable file is produced when you do not specify
any phase-limiting option. The filename of the first source or object file specified with an
absent suffix, is the default for the executable object file from the linker.

Intel® Fortran Compiler User's Guide

103

The table below describes the options to control the output.

Using the Assembler to Produce Object Code

By default the compiler generates an object file directly without going through the
assembler. But if you want to link some specific input file to the Fortran project object file,
you can use the -use_asm option to tell the compiler to use the Linux* Assembler for IA -32
systems or Itanium® Assembler for Itanium®-based systems.

prompt>ifc -use_asm file1.f

prompt>efc -use_asm file1.f

The above command generates an file1.o object file which you can link with the Fortran
object file(s) of the whole project.

Listing Options

The following options produce a source listing to the standard output, which by default is
the screen.

! The -list option writes a listing of the source file to standard output (typically, your
terminal screen), including any error or warning messages. The errors and warnings are

Last Phase
Completed

Option Compiler
Input

Compiler Output

preprocessing -P, -E, or
-EP

source files preprocessed files, see
Preprocessing

compile only -c source Compile to object only (.o),
do not link.

assembly
only

-S source Compile to assembly file
only (.s) and stop.

compilation,
linking, or
assembly

-o,name
-o,name

source,
assembly, or
object files

Assigns a name of your
choice to an output file

syntax
checking

 -y source files
preprocessed
files

diagnostic list

linking

(default)

source files
preprocessed
files
assembly
files
object files
libraries

executable file, map file

Intel® Fortran Compiler User's Guide

104

also output to standard error, stderr.

! The -list -showinclude prints a source listing to stdout with contents of
include files expanded.

Linking
This topic describes the options that enable you to control and customize the linking with
tools and libraries and define the output of the linking process. See the summary of linking
options.

 Note
These options are specified at compile time and have effect at the linking time.

Options to Link to Tools and Libraries

The following options enable you to link to various tools and libraries:

-Bdynamic Used with -lname (see below), enables dynamic
linking of libraries at run time. Compared to static
linking, results in smaller executables.

-Bstatic Enables linking a user's library statically.
-C90 Link with alternate I-O library for mixed output with

the C language.
-i_dynamic Enables to link the shared object versions of the

Intel-provided libraries dynamically.
-lname Link with a library indicated in name. For example,

-lm indicates to link with the math library.
-Ldir Instructs linker to search dir for libraries.
-posixlib Enables or disable linking with POSIX* library.
-shared Instructs the compiler to build the Dynamic Shared

Object (DSO) instead of an executable.
-static Enables to link shared libraries (.so) statically at

compile time. Compared to dynamic linking,
results in larger executables.

When -static is not used:

! /lib/ld-linux.so.2 is linked in

! libm, libcxa, and libc are linked
dynamically

! all other libraries are linked statically

When -static is used:

Intel® Fortran Compiler User's Guide

105

Controlling Linking and its Output

See Libraries for more information on using them.

Suppressing Linking

Use the -c option to suppress linking. Entering the following command produces the object
files file.o and file2.o, but does not link these files to produce an executable file.

IA-32 compiler:

prompt>ifc -c file.f file2.f

Itanium® compiler:

prompt>efc -c file.f file2.f

 Note
The preceding command does not link these files to produce an executable file.

Debugging
This section describes the basic command line options that you can use as tools to debug
your compilation and to display and check compilation errors. The options in this section
enable you to:

! support for symbolic debugging

! compile only designated lines and debug statements

! check the source files for syntax errors before creating output file

Support for Symbolic Debugging

Use the -g option to direct the compiler to generate code to support symbolic debugging.
For example:

IA-32 applications: prompt>ifc -g prog1.f

! /lib/ld-linux.sl.2 is not linked in

! all other libraries are linked statically

-Vaxlib Enable or disable linking with portability library.

-Ldir Instruct linker to search for dir libraries.

Intel® Fortran Compiler User's Guide

106

Itanium®-based applications: prompt>efc -g prog1.f

The compiler lets you generate code to support symbolic debugging while the -O1, or -O2
optimization options are specified on the command line along with -g.

If you specify the -O1, or -O2 options with the -g option, you can receive these results:

! some of the debugging information returned may be inaccurate as a side -effect of
optimization.

! for IA-32 applications, -O1, or -O2 options disable the -fp option. See -fp Option
and Debugging.

Debugging and Assembling

The compiler does not support the generation of debugging information in assembly files. If
you specify the -g option with -S, the assembly listing file is generated without debugging
information, but if you further produce an object file, it will contain debugging information. If
you link the object file and then use the GDB debugger on it, you will get full symbolic
representation.

Compiling Source Lines with Debugging Statements, -DD

This option is useful for the inclusion or exclusion of debugging lines. Use the -DD option to
compile source lines containing user debugging statements.

The -DD Option

Debugging statements included in a Fortran program source are indicated by the letter D in
column 1. The -DD option instructs the compiler to treat a D in column 1 of Fortran source
as a space character. The rest of that line is then parsed as a normal Fortran statement.

For example, to compile any debugging statements in program prog1.f, enter the
following command:

prompt>ifc -DD prog1.f

The above command causes the debugging statement

D PRINT *, "I= ",I

embedded in the prog1.f to execute and print lines designated for debugging.

By default, the compiler takes no action on these statements. In the following example, if -
DD is not specified (default), the D line is ignored:

Intel® Fortran Compiler User's Guide

107

But when -DD is specified, the compiler sees a write statement as if the code is:

The -DX and -DY Options

Two additional distinctions to compile source lines containing user debugging statements
are also available with these variations of the -DD option:

! -DX compiles debug statements indicated by a X (not an x) in column 1; if this option
is not set these lines are treated as comments.

! -DY compiles debug statements indicated by a Y (not an y) in column 1; if this option
is not set these lines are treated as comments.

Parsing for Syntax Only

Use the -y or -syntax option to stop processing source files after they have been parsed
for Fortran language errors. This option gives you a way to check quickly whether sources
are syntactically and semantically correct. The compiler creates no output file. In the
following example, the compiler checks a file named prog1.f. Any diagnostics appear on
the standard error output and in a listing, if you have requested one.

IA-32 applications: prompt>ifc -y prog1.f

Itanium®-based applications: prompt>efc -y prog1.f

Debugging and Optimizations

It is best to make your optimization and/or debugging choices explicit:

! If you need to debug your program excluding any optimization effect, use the -O0
option, which turns off all the optimizations.

! If you need to debug while still use optimizations, you can specify the -O1 or -O2
options on the command line along with -g.

If you do not make your optimization choice explicit when -g is specified, the -g option
implicitly disables optimization (as if -O0 were specified).

do 10 i = 1, n
a(i) = b(i)

D write (*,*) a(i)
10 continue

do 10 i = 1, n
a(i) = b(i)
write (*,*) a(i)

10 continue

Intel® Fortran Compiler User's Guide

108

-fp Option and Debugging (IA-32 only)

The -fp option disables use of the ebp register in optimizations, and can result in slightly
less efficient code. With this option, the compiler generates code for IA-32-targeted
compilations without turning off optimization, so that a debugger can still produce a stack
backtrace.

If you specify the -O1 or -O2 options, the -fp option is disabled. If you specify the -O0
option, -fp is enabled. Remember that the -fp option affects IA-32 applications only.

Summary

Refer to the table below for the summary of the effects of using the -g option with the
optimization options.

These
options

Imply these results

-g debugging information produced, -O0 enabled,
-fp enabled for IA-32-targeted compilations.

-g -O1 debugging information produced, -O1
optimizations enabled, -fp disabled for IA-32-
targeted compilations

-g -O2 debugging information produced, -O2
optimizations enabled, -fp disabled for IA-32-
targeted compilations

-g -O3 -fp debugging information produced, -O3
optimizations enabled, -fp enabled for IA-32-
targeted compilations.

-g -ip limited debugging information produced, -ip
option enabled.

Intel® Fortran Compiler User's Guide

109

Fortran Language Options
The Intel® Fortran Compiler implements Fortran language-specific options, which enable
you to set or specify:

! set data types and sizes

! define source program characteristics

! set arguments and variables

! allocate common blocks

For the size or number of Fortran entities the Intel® Fortran Compiler can process, see
Maximum Size and Number table.

Setting Integer and Floating-point Data Types
See the summary of these options.

Integer Data

The -i2, -i4, and -i8 options specify that all quantities of INTEGER type and unspecified
KIND occupy two, four or eight bytes, respectively. All quantities of LOGICAL type and
unspecified KIND also occupy two, four or eight bytes, respectively.

All logical constants and all small integer constants occupy two, four or eight bytes,
respectively.

The default is four bytes, -i4.

Floating-point Data

The -r{4|8|16} option defines the KIND for real variables in 4, 8, and 16 bytes. The
default is -r4.

The -r8, -autodouble, and -r16 options specify floating-point data.

The -r8 option directs the compiler to treat all variables, constants, functions and intrinsics
as DOUBLE PRECISION, and all complex quantities as DOUBLE COMPLEX. The -
autodouble option has the same effect as the -r8 option.

The -r16 option directs the compiler to treat all variables, constants, functions and
intrinsics as DOUBLE PRECISION, and all complex quantities as DOUBLE COMPLEX. This
option changes the default size of real numbers to 16 bytes.

Intel® Fortran Compiler User's Guide

110

Source Program Features
The options that enable the compiler to process a source program in a beneficial way for or
required by the application, can be divided in two groups described in the two sections
below. See a summary of these options.

Program Structure and Format

DO loops

The -onetrip option directs the compiler to compile DO loops at least once. By default
Fortran DO loops are not performed at all if the upper limit is smaller than the lower limit.
The option -1 has the same effect. This supports old programs from the Fortran –66
standard, when all DO loops executed at least once.

Fixed Format Source

The -FI option specifies that all the source code is in fixed format; this is the default except
for files ending with the extension.f, .for, .ftn.

-132 permits fixed form source lines to contain up to 132 characters. The -
extend_source, option has the same effect as -132.

Free Format Source

 -FR options Specifies that all the source code is in Fortran free format; this is the default for
files ending with the suffix .f90.

Character Definitions

The -pad_source option enforces the acknowledgment of blanks at the end of a line.

The -us option appends an underscore to external subroutine names. -nus disables
appending an underscore to an external subroutine name.

The -nus[file] option directs to not append an underscore to subroutine names listed in
file. Useful when linking with C routines.

The -nbs option directs the compiler to treat backslash (\) as a normal graphic character,
not an escape character. This may be necessary when transferring programs from non -
UNIX* environments, for example from VAX* VMS*. See Escape Characters.

Compatibility with Platforms and Compilers

This group discusses options that enable compatibility with other compilers.

Intel® Fortran Compiler User's Guide

111

Cross-platform

The -ansi_alias[-] enables (default) or disables assumption of the program’s ANSI
conformance. Provides cross-platform compatibility. This option is used to make
assumptions about out-of-bound array references and pointer references. For gcc
compatibility, the -ansi_alias option is accepted. The option is ON by default.

The option directs the compiler to assume the following:

! Arrays are not accessed out of arrays' bounds.

! Pointers are not cast to non-pointer types and vice-versa.

! References to objects of two different scalar types cannot alias. For example, an
object of type integer cannot alias with an object of type real or an object of type
real cannot alias with an object of type double precision.

If your program satisfies the above conditions, setting the -ansi_alias option will help
the compiler better optimize the program. However, if your program may not satisfy one of
the above conditions, the option must be disabled, as it can lead the compiler to generate
incorrect code.

DEC* VMS

The -dps, option enables (default) or disables DEC* parameter statement recognition.
Basically, the
-dps option determines how the compiler treats the alternate syntax for PARAMETER
statements, which is:

 PARAMETER par1=exp1 [, par2=exp2] ...

This form does not have parentheses around the assignment of the constant to the
parameter name. With this form, the type of the parameter is determined by the type of the
expression being assigned to it and not by any implicit typing.

By default, the compiler allows the alternate syntax for PARAMETER statements, -dps. To
disable this form, specify -nodps.

The -vms option enables support for extensions to Fortran that were introduced by Digital*
VMS Fortran compilers. The extensions are as follows:

! The compiler permits shortened, apostrophe-separated syntax for parameters in I/O
statements. For example, a statement of the form: WRITE(4'7) FOO is permitted
and is equivalent to WRITE(UNIT=4, REC= 7) FOO.

! The compiler assumes that the value specified for RECL in an OPEN statement is
given in words rather than bytes. This option also implies -dps, even though -dps is
on by default.

Intel® Fortran Compiler User's Guide

112

C Language

The -lowercase maps external routine names and symbol names (linker) to lowercase
alphabetic characters. This option is useful when mixing Fortran with C programs.

The -uppercase maps external names to uppercase alphabetic characters.

 Note
Do not use the -uppercase option in combination with -Vaxlib or -posixlib.

Escape Characters

For compatibility with C usage, the backslash (\) is normally used in Intel® Fortran
Compiler as an escape character. It denotes that the following character in the string has a
significance which is not normally associated with the character. The effect is to ignore the
backslash character, and either substitute an alternative value for the following character or
to interpret the character as a quoted value.

The escape characters recognized, and their effects, are described in the table below.
Thus, 'ISN\'T' is a valid string. The backslash (\) is not counted in the length of the
string.

Escape Characters and Their Effect

Line Terminators

This information is useful for recent Linux* users after working with Windows*. The line
terminators are different between Linux and Windows. On Windows, line terminators are
\r\n while on Linux they are just \n. Typically, a file transfer program will take care of this
issue for you if you transfer the file in text mode. If the file is transferred in binary mode (but
the file is really text file), the problem will not be resolved by FTP.

Escape
Character

Effect

\n new line
\t horizontal tab
\v vertical tab
\b backspace
\f form feed
\0 null
\' apostrophe (does not terminate

a string)
\" double quote (does not

terminate a string)
\\ \ (a single backslash)
\x x, where x is any other character

Intel® Fortran Compiler User's Guide

113

Setting Arguments and Variables
These options can be divided into two major groups discussed below. See a summary of
these options.

Automatic Allocation of Variables to Stacks

-auto

This option makes all local variables AUTOMATIC. Causes all variables to be allocated on
the stack, rather than in local static storage. Variables defined in a procedure are otherwise
allocated to the stack only if they appear in an AUTOMATIC statement, or if the procedure is
recursive and the variables do not have the SAVE or ALLOCATABLE attributes. The option
does not affect variables that appear in an EQUIVALENCE or SAVE statement, or those that
are in COMMON. May provide a performance gain for your program, but if your program
depends on variables having the same value as the last time the routine was invoked, your
program may not function properly.

-auto_scalar

This option causes scalar variables of rank 0, except for variables of the COMPLEX or
CHARACTER types, to be allocated on the stack, rather than in local static storage. Does not
affect variables that appear in an EQUIVALENCE or SAVE statement, or those that are in
COMMON. -auto_scalar may provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the routine was
invoked, your program may not function properly. Variables that need to retain their values
across subroutine calls should appear in a SAVE statement. This option is similar to -auto,
which causes all local variables to be allocated on the stack. The difference is that -
auto_scalar allocates only variables of rank 0 on the stack.

 -auto_scalar enables the compiler to make better choices about which variables should
be kept in registers during program execution. This option is on by default.

-save and -zero

Forces the allocation of all variables in static storage. If a routine is invoked more than
once, this option forces the local variables to retain their values from the last invocation
terminated. This may cause a performance degradation and may change the output of your
program for floating-point values as it forces operations to be carried out in memory rather
than in registers which in turn causes more frequent rounding of your results. Opposite of -
auto. To disable -save, set -auto. Setting -save turns off both -auto and -auto-
scalar.

The -zero option presets uninitialized variables to zero. It is most commonly used in
conjunction with
-save.

Intel® Fortran Compiler User's Guide

114

Alignment, Aliases, Implicit None

Alignment

The -align option is a front-end option that changes alignment of variables in a COMMON
block.

Example:

COMMON /BLOCK1/CH,DOUB,CH1,INT
INTEGER INT
CHARACTER(LEN=1) CH,CH1
DOUBLE PRECISION DOUB
END

The -align option enables padding inserted to assure alignment of DOUB and INT on
natural alignment boundaries. The -noalign option disables padding.

Aliases

The -common_args option assumes that the "by-reference" subprogram arguments may
have aliases of one another.

Implicit None

The -u and -implicitnone options set IMPLICIT NONE as the default.

 Preventing CRAY* Pointer Aliasing

Option -safe_cray_ptr specifies that the CRAY* pointers do not alias with other
variables. The default is OFF.

Consider the following example.

When -safe_cray_ptr is not specified (default), the compiler assumes that b and a are
aliased. To prevent such an assumption, specify this option, and the compiler will treat b
(i) and a(i) as independent of each other.

However, if the variables are intended to be aliased with CRAY pointers, using the -
safe_cray_ptr option produces incorrect result. For the code example below, -
safe_cray_ptr should not be used.

pointer (pb, b)
pb = getstorage()
do i = 1, n
b(i) = a(i) + 1
enddo

Intel® Fortran Compiler User's Guide

115

Allocating Common Blocks
The following two options are used for the common blocks:

Dynamic Common Option

The -Qdyncom option dynamically allocates COMMON blocks at runtime. This option on the
compiler command line designates a COMMON block to be dynamic, and the space for its
data is allocated at runtime, rather than compile time. On entry to each routine containing a
declaration of the dynamic COMMON block, a check is made of whether space for the
COMMON block has been allocated. If the dynamic COMMON block is not yet allocated, space
is allocated at the check time.

The following example of a command-line specifies the dynamic common option with the
names of the COMMON blocks to be allocated dynamically at runtime:

IA-32 applications:

prompt>ifc -Qdyncom"BLK1,BLK2,BLK3" test.f

Itanium®-based applications:

prompt>efc -Qdyncom"BLK1,BLK2,BLK3" test.f

where BLK1, BLK2, and BLK3 are the names of the COMMON blocks to be made dynamic.

Allocating Memory to Dynamic Common Blocks

The runtime library routine, f90_dyncom, performs memory allocation. The compiler calls
this routine at the beginning of each routine in a program that contains a dynamic COMMON
block. In turn, this library routine calls _FTN _ALLOC() to allocate memory. By default, the
compiler passes the size in bytes of the COMMON block as declared in each routine to
f90_dyncom, and then on to _FTN_ALLOC(). If you use the nonstandard extension having
the COMMON block of the same name declared with different sizes in different routines, you
may get a runtime error depending upon the order in which the routines containing the

pb = loc(a(2))
do i=1, n
b(i) = a(i) +1
enddo

-Qdyncom"blk1,blk2 ..." Dynamically allocates COMMON blocks
at runtime. See section Dynamic
Common Option that follows.

-Qloccom"blk1,blk2,
..."

Enables local allocation of given
COMMON blocks at run time. See
Allocating Memory to Dynamic COMMON
Blocks.

Intel® Fortran Compiler User's Guide

116

COMMON block declarations are invoked.

The runtime library contains a default version of _FTN_ALLOC(), which simply allocates
the requested number of bytes and returns.

Why Use a Dynamic Common

One of the primary reasons for using dynamic COMMON is to enable you to control the
COMMON block allocation by supplying your own allocation routine. To use your own
allocation routine, you should link it ahead of the runtime library routine. This routine must
be written in the C language to generate the correct routine name.

The routine prototype is as follows:

void _FTN_ALLOC(void **mem, int *size, char *name);

where

Rules of Using Dynamic Common Option

The following are some limitations that you should be aware of when using the dynamic
common option:

! If you use the technique of implementing your own allocation routine, then you should
specify only one dynamic COMMON block on the command line. Otherwise, you may
not know the name of the COMMON block for which you are allocating storage.

! An entity in a dynamic COMMON may not be initialized in a DATA statement.

! Only named COMMON blocks may be designated as dynamic COMMON.

mem is the location of the base pointer of the COMMON block
which must be set by the routine to point to the block
memory allocated.

size is the integer number of bytes of memory that the
compiler has determined are necessary to allocate for
the COMMON block as it was declared in the program.
You can ignore this value and use whatever value is
necessary for your purpose.

 Note
You must return the size in bytes of the space you
allocate. The library routine that calls _FTN _ALLOC()
ensures that all other occurrences of this common block
fit in the space you allocated. Return the size in bytes of
the space you allocate by modifying the size parameter.

name is the name of the common block being dynamically
allocated.

Intel® Fortran Compiler User's Guide

117

! An entity in a dynamic COMMON must not be used in an EQUIVALENCE expression with
an entity in a static COMMON or a DATA-initialized variable.

Intel® Fortran Compiler User's Guide

118

Compiler Optimizations
The variety of optimizations used by the Intel® Fortran Compiler enable you to enhance the
performance of your application. Each optimization is performed by a set of options, see
Compiler Options by Functional Groups Overview and Application Performance
Optimizations Options section.

In addition to optimizations invoked by the compiler command line options, the compiler
includes features which enhance your application performance such as directives,
intrinsics, runtime library routines and various utilities. These features are discussed in the
Optimization Support Features section.

Optimization Levels
Each of the command-line options: -O,-O1, -O2 and -O3 turn on several compiler
capabilities. See the summary of these options.

The following table provides a summary of the optimizations that the compiler applies when
you invoke
-O, -O1 and/or -O2, or -O3 optimizations.

Option Optimization Affected Aspect of
Program

-O1, -O2 global register allocation register use
-O1, -O2 instruction scheduling instruction reordering
-O1, -O2 register variable detection register use
-O1, -O2 common subexpression

elimination
constants and expression
evaluation

-O1, -O2 dead-code elimination instruction sequencing
-O1, -O2 variable renaming register use
-O1, -O2 copy propagation register use
-O1, -O2 constant propagation constants and expression

evaluation
-O1, -O2 strength reduction-

induction variable
simplification instruction,
selection-sequencing

-O1, -O2 tail recursion elimination calls, further optimization
-O, -O2 software pipelining for

Itanium-based application
calls, further optimization

-O2 loop unrolling; inlining of
intrinsics

calls, further optimization

-O3 prefetching, scalar
replacement,
loop transformations

memory access, instruction
parallelism, predication,
software pipelining

Intel® Fortran Compiler User's Guide

119

Setting Optimization Levels
For IA-32 and Itanium® architectures, these options behave in a different way. To specify
the optimizations for your program, use options depending on the target architecture as
explained in the tables that follow.

Itanium® Compiler

IA-32 Compiler

IA-32 and Itanium Compilers

For IA-32 and Itanium architectures, the options can behave in a different way. To specify
the optimizations for your program, use options depending on the target architecture as
follows.

Option Effect
-O1 Optimizes to favor code size. Enables the same optimizations

as -O except for loop unrolling and software pipelining. At -
O1 the global code scheduler is tuned to favor code size.

-O, -O2 Turn the software pipelining ON. Generally, -O or -O2 are
recommended over -O1.

Option Effect
-O,-O1,-O2 Optimize to favor code speed. Disable option -fp. The

-O2 option is ON by default. Inlines intrinsics.

Example: large database applications, code with many
branches and not dominated by loops

-O3 Enables -O2 option with more aggressive optimization.
Optimizes for maximum speed, but does not guarantee
higher performance unless loop and memory access
transformation take place. In conjunction with -axK and
-xK options, this option causes the compiler to perform
more aggressive data dependency analysis than for -
O2. This may result in longer compilation times.

Option Effect
-O2 ON by default. -O2 turns ON intrinsics inlining. Used

for best overall performance on typical integer
applications that do not make heavy use of floating
point math. Enables the following capabilities for
performance gain:

! constant propagation

Intel® Fortran Compiler User's Guide

120

Restricting Optimizations
The following options restrict or preclude the compiler's ability to optimize your program:

! copy propagation

! dead-code elimination

! global register allocation

! global instruction scheduling and control
speculation

! loop unrolling

! optimized code selection

! partial redundancy elimination

! strength reduction/induction variable
simplification

! variable renaming

! predication

! software pipelining

-O3 Enables -O2 option with more aggressive optimization.
Optimizes for maximum speed, but may not improve
performance for some programs. Used mostly for
applications that make heavy use of floating-point
calculations on large data sets.

-O0 Disables optimizations -O1, -O2, and-
or -O3. Enables -fp option.

-mp Restricts optimizations that cause
some minor loss or gain of precision in
floating-point arithmetic to maintain a
declared level of precision and to
ensure that floating-point arithmetic
more nearly conforms to the ANSI and
IEEE* standards. See -mp option for
more details.

-nolib_inline Disables inline expansion of intrinsic
functions.

Intel® Fortran Compiler User's Guide

121

For more information on ways to restrict optimization, see Interprocedural Optimizations
with -Qoption.

Floating-point Arithmetic Precision
The options described in this section all provide optimizations with varying degrees of
precision in floating-point (FP) arithmetic for IA-32 and Itanium® compiler. See the FP
arithmetic precision options summary.

The -mp and -mp1 options are used by both architectures. These options improve
floating-point precision, but also affect the application performance. See more details
about these options in Improving/Restricting FP Arithmetic Precision.

The FP options provide optimizations with varying degrees of precision in floating-point
arithmetic. The option that disables these optimizations is -O0.

-mp Option

Use -mp to limit floating-point optimizations and maintain declared precision. For example,
the Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. This change can alter the results of
floating point division computations slightly. The -mp switch may slightly reduce execution
speed. See Improving/Restricting FP Arithmetic Precision for more detail.

-mp1 Option

Use the -mp1 option to restrict floating-point precision to be closer to declared precision
 with less impact to performance than with the -mp option. The option will ensure the out-of-
range check of operands of transcendental functions and improve accuracy of floating -point
compares.

Floating-point Arithmetic Precision for IA-32 Systems
-prec_div Option

The Intel® Fortran Compiler can change floating-point division computations into
multiplication by the reciprocal of the denominator. Use -prec_div to disable floating point
division-to-multiplication optimization resulting in more accurate division results. May have
speed impact.

-pc{32|64|80} Option

Use the -pc{32|64|80} option to enable floating-point significand precision control.
Some floating-point algorithms, created for specific 32- and Itanium®-based systems, are
sensitive to the accuracy of the significand or fractional part of the floating -point value. Use
appropriate version of the option to round the significand to the number of bits as follows:

Intel® Fortran Compiler User's Guide

122

-pc32: 24 bits (single precision)

-pc64: 53 bits (double precision)

-pc80: 64 bits (extended precision)

The default version is -pc64 for full floating-point precision.

This option enables full optimization. Using this option does not have the negative
performance impact of using the -mp option because only the fractional part of the floating -
point value is affected. The range of the exponent is not affected.

Note

This option only has effect when the module being compiled contains the main
program.

 Caution

A change of the default precision control or rounding mode (for example, by using the
-pc32 option or by user intervention) may affect the results returned by some of the
mathematical functions.

Rounding Control, -rcd, -fp_port

The Intel Fortran Compiler uses the -rcd option to disable changing of rounding mode for
floating-point-to-integer conversions.

The system default floating-point rounding mode is round-to-nearest. This means that
values are rounded during floating-point calculations. However, the Fortran language
requires floating-point values to be truncated when a conversion to an integer is involved.
To do this, the compiler must change the rounding mode to truncation before each floating -
point conversion and change it back afterwards.

The -rcd option disables the change to truncation of the rounding mode for all floating -
point calculations, including floating-point-to-integer conversions. Turning on this option can
improve performance, but floating-point conversions to integer will not conform to Fortran
semantics.

You can also use the -fp_port option to round floating-point results at assignments and
casts. This option has some speed impact.

Floating-point Arithmetic Precision for Itanium®-based
Systems

Intel® Fortran Compiler User's Guide

123

The following Intel® Fortran Compiler options enable you to control the compiler
optimizations for floating-point computations on Itanium®-based systems.

Contraction of FP Multiply and Add/Subtract Operations

-IPF_fma[-] enables or disables the contraction of floating-point multiply and
add/subtract operations into a single operations. Unless -mp is specified, the compiler tries
to contract these operations whenever possible. The -mp option disables the contractions.

-IPF_fma and -IPF_fma- can be used to override the default compiler behavior. For
example, a combination of -mp and -IPF_fma enables the compiler to contract operations:

prompt>efc -mp -IPF_fma myprog.f

FP Speculation

-IPF_fp_speculationmode sets the compiler to speculate on floating-point operations
in one of the following modes:

fast: sets the compiler to speculate on floating-point operations; this is the default.

safe: enables the compiler to speculate on floating-point operations only when it is safe;

strict: enables the compiler's speculation on floating-point operations preserving floating-
point status in all situations. In the current version, this mode disables the speculation of
floating-point operations (same as off).

off: disables the speculation on floating-point operations.

FP Operations Evaluation

-IPF_flt_eval_method{0|2} option directs the compiler to evaluate the expressions
involving floating-point operands in the following way:

-IPF_flt_eval_method0 directs the compiler to evaluate the expressions involving
floating-point operands in the precision indicated by the variable types declared in the
program.

-IPF_flt_eval_method2 is not supported in the current version.

Controlling Accuracy of the FP Results

-IPF_fltacc[-] enables the compiler to apply optimizations that affect floating -point
accuracy. The default is -IPF_fltacc-.

The Itanium® compiler may reassociate floating-point expressions to improve application
performance. Use -IPF_fltacc or -mp to disable this behavior.

Intel® Fortran Compiler User's Guide

124

Improving/Restricting FP Arithmetic Precision
The -mp and -mp1 options maintain and restrict, respectively, floating-point precision, but
also affect the application performance. The -mp1 option causes less impact on
performance than the -mp option. -mp1 ensures the out-of-range check of operands of
transcendental functions and improve accuracy of floating-point compares.

The -mp option restricts some optimizations to maintain declared precision and to ensure
that floating-point arithmetic conforms more closely to the ANSI and IEEE* standards. This
option causes more frequent stores to memory, or disallow some data from being register
candidates altogether. The Intel architecture normally maintains floating point results in
registers. These registers are 80 bits long, and maintain greater precision than a double -
precision number. When the results have to be stored to memory, rounding occurs. This
can affect accuracy toward getting more of the "expected" result, but at a cost in speed.
The -pc{32|64|80} option (IA-32 only) can be used to control floating point accuracy and
rounding, along with setting various processor IEEE flags.

For most programs, specifying this option adversely affects performance. If you are not sure
whether your application needs this option, try compiling and running your program both
with and without it to evaluate the effects on performance versus precision.

Specifying this option has the following effects on program compilation:

! On IA-32 systems, floating-point user variables declared as floating-point types are
not assigned to registers.

! On Itanium®-based systems, floating-point user variables may be assigned to
registers. The expressions are evaluated using precision of source operands. The
compiler will not use Floating-point Multiply and Add (FMA) function to contract
multiply and add/subtract operations in a single operation. The contractions can be
enabled by using -IPF_fma option. The compiler will not speculate on floating-point
operations that may affect the floating-point state of the machine. See Floating-point
Arithmetic Precision for Itanium-based Systems.

! Floating-point arithmetic comparisons conform to IEEE 754.

! The exact operations specified in the code are performed. For example, division is
never changed to multiplication by the reciprocal.

! The compiler performs floating-point operations in the order specified without
reassociation.

! The compiler does not perform the constant folding on floating-point values. Constant
folding also eliminates any multiplication by 1, division by 1, and addition or
subtraction of 0. For example, code that adds 0.0 to a number is executed exactly as
written. Compile-time floating-point arithmetic is not performed to ensure that floating-
point exceptions are also maintained.

Intel® Fortran Compiler User's Guide

125

For IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits
(EXTENDED PRECISION), not 64 bits (DOUBLE PRECISION). Floating-point
operations conform to IEEE 754. When assignments to type REAL and DOUBLE
PRECISION are made, the precision is rounded from 80 bits (EXTENDED) down to 32
bits (REAL) or 64 bits (DOUBLE PRECISION). When you do not specify -O0, the extra
bits of precision are not always rounded away before the variable is reused.

! Even if vectorization is enabled by the -xK option, the compiler does not vectorize
reduction loops (loops computing the dot product) and loops with mixed precision
types. Similarly, the compiler does not enable certain loop transformations. For
example, the compiler does not transform reduction loops to perform partial
summation or loop interchange.

Targeting a Processor and Extensions
Support
This section describes targeting a processor and processor dispatch options, the feature for
IA-32 only. The options -tpp{5|6|7} optimizes for the IA-32 processors, and the options
-tpp1 and -tpp2 optimize for the Itanium® processor family. The options -x
{i|M|K|W} and -ax{i|M|K|W} provide support to generate code that is specific to
processor-instruction extensions. See the summary of options supporting Targeting a
Processor and Extensions Support.

For example, on Pentium® III processor, if you have mostly integer code and only a small
portion of floating-point code, you may want to compile with -axM rather than -axK
because MMX(TM) technology extensions perform the best with the integer data.

The -ax and -x options are backward compatible with the extensions supported. On Intel®

-tpp{1|2} -tpp1—Itanium® processor
-tpp2—Itanium® 2 processor

-tpp{5|6|7} -tpp5—Pentium® processor.
-tpp6—Pentium® Pro, Pentium® II, and
Pentium® III
 processors.
-tpp7—Pentium® 4 and Xeon(TM) processors.
Requires the RedHat* version 7.1 and support of
Streaming SIMD Extensions 2. Default

-x{i|M|K|W} Generates specialized code to run exclusively on
the processors supporting the extensions
indicated by the i, M, K, W codes.

-ax{i|M|K|W} Generates specialized code to run exclusively on
the processors supporting the extensions
indicated by the i, M, K, W codes while also
generating generic IA-32 code.

Intel® Fortran Compiler User's Guide

126

Pentium® 4 and Xeon processors, you can gear your code to any of the previous
processors specified by K, M, or i.

Targeting a Processor, -tpp{n}

The Intel® Fortran Compiler lets you choose whether to optimize the performance of your
application for specific processors or to ensure your application can execute on a range of
processors.

Optimizing for a Specific Processor Without Excluding Others

Use the -tpp{n} option to optimize your application's performance for specific processors.
Regardless of which -tpp{n} suboption you choose, your application is optimized to use
all the benefits of that processor with the resulting binary file still capable of running on any
of the processors listed.

For example, the following commands compile and optimize the source program prog.f
for the Pentium® 4 processor:

prompt>ifc prog.f

prompt>ifc -tpp7 prog.f

By default, the Itanium® compiler targets optimization to the Itanium 2 processor as
recommended for the best performance on Itanium ® processor systems. The generated
code is compatible with the Intel® Itanium® 2 processor.

prompt>efc prog.f

The above command targets optimization to the Itanium 2 processor. However if you intend
to target your application specifically to the Intel® Itanium® processor, use the -tpp1
option:

prompt>efc -tpp1 prog.f

To optimize for... Use...
Itanium® processor -tpp2 (Itanium-

based systems)
Itanium® 2 processor. -tpp2 (default for

Itanium-based
systems)

Pentium® processor and Pentium®
processor with MMX(TM) technology

-tpp5

Pentium® Pro, Pentium® II and Pentium®
III processors

-tpp6

Intel® Pentium® 4 and Xeon(TM)
processors

-tpp7 (default for IA-
32 systems)

Intel® Fortran Compiler User's Guide

127

Exclusive Specialized Code with -x{i|M|K|W}

The -x{i|M|K|W} option specifies the minimum set of processor extensions required to
exist on processors on which you execute your program as follows:

i Pentium® Pro, Pentium II processors
M Pentium® with MMX(TM) technology processor
K Pentium® III processor
W Pentium® 4 and Xeon(TM) processors.

The resulting code can contain unconditional use of the specified processor extensions.
When you use
-x{i|M|K|W}, the code generated by the compiler might not execute correctly on IA-32
processors that lack the specified extensions.

The following example compiles the program myprog.f, using the i extension. This
means the program will require Pentium Pro, Pentium II processors, and later architectures
to execute.

prompt>ifc -O2 -tpp6 -xi myprog.f

The resulting program, myprog, might not execute on a Pentium processor, but will execute
on Pentium® Pro, Pentium II, and Pentium III processors.

 Caution
If a program compiled with -x{i|M|K|W} is executed on a processor that lacks the
specified extensions, it can fail with an illegal instruction exception, or display other
unexpected behavior.

-x Summary

You can specify more than one code with the -x option. For example, if you specify -xMK,
the compiler will decide whether the resulting executable will benefit better from the MMX
technology (M) or the Streaming SIMD Extensions (K). It is the developer's responsibility to

To Optimize for... Use this option
Pentium Pro and Pentium II processors, which
use the CMOV and FCMOV, and FCOMI
instructions

-xi

Pentium processors with MMX(TM)
technology instructions

-xM

Pentium III processor with the Streaming
SIMD Extensions, implies i and M instructions

-xK

Pentium 4 and Xeon processors with the
Streaming SIMD Extensions 2, implies i, M,
and K instructions

-xW

Intel® Fortran Compiler User's Guide

128

use the option's version corresponding to the processor generation.

Specialized Code with -ax{i|M|K|W}
With -ax{i|M|K|W} you can instruct the compiler to compile your application so that
processor-specific extensions are included in the compilation but only used if the processor
supports them as follows:

i Pentium® Pro, Pentium® II processors
M Pentium® with MMX™ technology processor
K Pentium® III processor
W Pentium® 4 and Xeon processors

When the compiled application is run, it detects the extensions supported by the processor.

! If the processor supports the specialized extensions, the extensions are executed.

! If the processor does not support the specialized code, the extensions are not
executed and a more generic version of the code is executed instead.

Applications compiled with -ax{i|M|K|W} have increased code size, but the performance
of such code is better than standard optimized code, although slightly slower than if
compiled with the -x{i|M|K|W} due to the latter's smaller overhead of checking for which
processor the application is being run on.

 Note
Applications that you compile to optimize themselves for specific processors in this
way will execute on any Intel 32-bit processor. Such compilations are, however
subject to any exclusive specialized code restrictions you impose during compilation
with the -x option.

-ax Summary

To Optimize for... Use this
option

Pentium® Pro and Pentium II
processors, which use the CMOV and
FCMOV, and FCOMI instructions

-axi

Pentium processors with MMX(TM)
technology instructions

-axM

Pentium III processor with the
Streaming SIMD Extensions, implies i
and M instructions

-axK

Pentium 4 processor with the
Streaming SIMD Extensions 2, implies
i, M, and K instructions

-axW

Intel® Fortran Compiler User's Guide

129

Checking for Performance Gain

The -ax{i|M|K|W} option directs the compiler to find opportunities to generate special
versions of functions that use instructions supported on the specified processors. If the
compiler finds such an opportunity, it first estimates whether generating a processor -
specific version of a function results in a performance gain. If this is the case, the compiler
generates both a processor-specific version of a function and a generic version of this
function that will run on any IA-32 architecture processor.

You can specify more than one code with the -ax option. For example, if you specify -
axMK, the compiler will decide whether the resulting executable will benefit better from the
MMX technology (M) or the Streaming SIMD Extensions (K). At runtime, one of the two
versions is chosen to execute depending on the processor the program is currently running
on. In this way, the program can get large performance gains on more advanced
processors, while still working properly on older processors. It is the developer's
responsibility to use the option's version corresponding to the processor generation.

The disadvantages of using -ax{i|M|K|W} are:

! The size of the binary increases because it contains processor-specific and generic
versions of the code.

! The runtime checks to determine which code to run slightly affect performance.

Combining Processor Target and Dispatch Options
The following table shows how to combine processor target and dispatch options to compile
applications with different optimizations and exclusions.

Optimize
exclusively
for...

...while optimizing without exclusion for...
Pentium®
Processor

Pentium®
Processor
with MMX
(TM)
technology

Pentium®
Pro
Processor

Pentium®
II
Processor

Pentium®
III
Processor

Penti
4, Xeo
(TM)
Proce

Pentium
Processor

-tpp5 -tpp5 -tpp6 -tpp6 -tpp6 -tpp

Pentium
Processor
with MMX
technology

N-A -tpp5,
-xM

-tpp6 -tpp6,
-xM

-tpp6,
-xM

-tpp
-xM

Pentium
Pro
Processor

N-A N-A -tpp6,
-xi

-tpp6,
-xi

-tpp6,
-xi

-tpp
-xi

Pentium II
Processor

N-A N-A N-A -tpp6,
-xiM

-tpp6,
-xiM

-tpp
-xiM

Intel® Fortran Compiler User's Guide

130

Example of -x and -ax Combinations

If you wanted your application to

! always require the MMX technology extensions

! use Pentium Pro processor extensions when the processor it is run on offers it, and to
not use them when it does not

you could generate such an application with the following command line:

prompt>ifc -02 -tpp6 -xM -xi myprog.f

-xM above restricts the application to running on Pentium processors with MMX technology
or later processors. If you wanted to enable the application to run on earlier generations of
Intel® IA-32 processors as well, you would use the following command line:

prompt>ifc -02 -tpp6 -axM myprog.f

Interptocedural Optimizations
Use -ip and -ipo to enable interprocedural optimizations (IPO), which enable the
compiler to analyze your code to determine where you can benefit from the optimizations
listed in tables that follow. See IPO options summary.

IA-32 and Itanium®-based applications

 IA-32 applications only

Pentium III
Processor

N-A N-A N-A N-A -tpp6,
-xK

-tpp
-xK

Pentium 4,
Xeon
Processors

N-A N-A N-A N-A N-A -tpp
-xW

Optimization Affected Aspect of Program
inline function expansion calls, jumps, branches, and loops
interprocedural constant
propagation

arguments, global variables, and
return values

monitoring module-level
static variables

further optimizations, loop
invariant code

dead code elimination code size
propagation of function
characteristics

call deletion and call movement

multifile optimization affects the same aspects as -ip,
but across multiple files

Intel® Fortran Compiler User's Guide

131

Inline function expansion is one of the main optimizations performed by the interprocedural
optimizer. For function calls that the compiler believes are frequently executed, the compiler
might decide to replace the instructions of the call with code for the function itself.

With -ip, the compiler performs inline function expansion for calls to procedures defined
within the current source file. However, when you use -ipo to specify multifile IPO, the
compiler performs inline function expansion for calls to procedures defined in separate files.

To disable the IPO optimizations, use the -O0 option.

Multifile IPO
Multifile IPO obtains potential optimization information from individual program modules of a
multifile program. Using the information, the compiler performs optimizations across
modules.

Building a program is divided into two phases: compilation and linkage. Multifile IPO
performs different work depending on whether the compilation, linkage or both are
performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (IR) of
the source code in the object file, which includes summary information used for
optimization.

By default, the compiler produces "mock" object files during the compilation phase of
multifile IPO. Generating mock files instead of real object files reduces the time spent in the
multifile IPO compilation phase. Each mock object file contains the IR for its corresponding
source file, but no real code or data. These mock objects must be linked using the -ipo
option in ifc/efc or using the xild tool. (See Creating a Multifile IPO Executable with
xild.)

 Note
Failure to link "mock" objects with ifc/efc and -ipo or xild will result in linkage
errors. There are situations where mock object files cannot be used. See Compilation
with Real Object Files for more information.

Linkage Phase

Optimization Affected Aspect of Program
passing arguments in
registers

calls, register usage

loop-invariant code motion further optimizations, loop invariant
code

Intel® Fortran Compiler User's Guide

132

When you specify -ipo, the compiler is invoked a final time before the linker. The compiler
performs multifile IPO across all object files that have an IR.

 Note
The compiler does not support multifile IPO for static libraries (.a files). See
Compilation with Real Object Files for more information.

-ipo enables the driver and compiler to attempt detecting a whole program automatically.
If a whole program is detected, the interprocedural constant propagation, stack frame
alignment, data layout and padding of common blocks perform more efficiently, while more
dead functions get deleted. This option is safe.

Creating a Multifile IPO Executable with Command Line

Enable multifile IPO for compilations targeted for IA-32 architecture and for compilations
targeted for Itanium® architecture as follows in the example below.

Compile your source files with -ipo as follows:

Compile source files to produce object files:
prompt>ifc -ipo -c a.f b.f c.f

Produces a.o, b.o, and c.o object files containing Intel compiler intermediate
representation (IR) corresponding to the compiled source files a.f, b.f, and c.f. Using -
c to stop compilation after generating .o files is required. You can now optimize
interprocedurally.

Link object files to produce application executable:
prompt>ifc -oipo_file -ipo a.o b.o c.o

The ifc command performs IPO for objects containing IR and creates a new list of object
(s) to be linked. The ifc command calls GCC ld to link the specified object files and
produce ipo_file.exe specified by the -o option. Multifile IPO is applied only to the
source files that have an IR, otherwise the object file passes to link stage.

The -oname option stores the executable in ipo_file. Multifile IPO is applied only to the
source files that have an IR, otherwise the object file passes to link stage.

For efficiency, combine steps 1 and 2:

prompt>ifc -ipo -oipo_file a.f b.f c.f

For Itanium®-based applications, use the same steps with the efc command.

Instead of ifc or efc, you can use the xild tool.

For a description of how to use multifile IPO with profile information for further optimization,

Intel® Fortran Compiler User's Guide

133

see Example of Profile-Guided Optimization.

Creating a Multifile IPO Executable Using xild

Use the Intel® linker, xild, instead of step 2 in Creating a Multifile IPO Executable with
Command Line. The Intel linker xild performs the following steps:

1. Invokes the Intel compiler to perform multifile IPO if objects containing IR are found.

2. Invokes GCC ld to link the application.

The command-line syntax for xild is the same as that of the GCC linker:

prompt>xild [<options>] <LINK_commandline>

where:

! [<options>] (optional) may include any GCC linker options or options supported
only by xild.

! <LINK_commandline> is your linker command line containing a set of valid
arguments to the ld.

To place the multifile IPO executable in ipo_file, use the option -ofilename, for
example:

prompt>xild -oipo_file a.o b.o c.o

xild calls Intel compiler to perform IPO for objects containing IR and creates a new list of
object(s) to be linked. Then xild calls ld to link the object files that are specified in the
new list and produce ipo_file executable specified by the -ofilename option.

 Note

The -ipo option can reorder object files and linker arguments on the command line.
Therefore, if your program relies on a precise order of arguments on the command
line, -ipo can affect the behavior of your program.

Usage Rules

You must use the Intel linker xild to link your application if:

! Your source files were compiled with multifile IPO enabled. Multifile IPO is enabled by
specifying the -ipo command-line option

! You normally would invoke the GCC linker (ld) to link your application.

Intel® Fortran Compiler User's Guide

134

The xild Options

The additional options supported by xild may be used to examine the results of multifile
IPO. These options are described in the following table.

Compilation with Real Object Files

In certain situations you might need to generate real object files with -ipo. To force the
compiler to produce real object files instead of "mock" ones with IPO, you must specify -
ipo_obj in addition to -ipo.

Use of -ipo_obj is necessary under the following conditions:

! The objects produced by the compilation phase of -ipo will be placed in a static
library without the use of xiar. The compiler does not support multifile IPO for static
libraries, so all static libraries are passed to the linker. Linking with a static library that
contains "mock" object files will result in linkage errors because the objects do not
contain real code or data. Specifying
-ipo_obj causes the compiler to generate object files that can be used in static
libraries.

! Alternatively, if you create the static library using xiar, then the resulting static library
will work as a normal library.

! The objects produced by the compilation phase of -ipo might be linked without the -
ipo option and without the use of xiar.

! You want to generate an assembly listing for each source file (using -S) while
compiling with -ipo. If you use -ipo with -S, but without -ipo_obj, the compiler

-qipo_fa[file.s] Produces assembly listing for the multifile
IPO compilation. You may specify an
optional name for the listing file, or a
directory (with the backslash) in which to
place the file. The default listing name is
ipo_out.s.

-qipo_fo[file.o] Produces object file for the multifile IPO
compilation. You may specify an optional
name for the object file, or a directory (with
the backslash) in which to place the file.
The default object file name is ipo_out.o.

-ipo_fcode-asm Add code bytes to assembly listing
-ipo_fsource-asm Add high-level source code to assembly

listing
-ipo_fsource-asm,
-ipo_fnoverbose-asm

Enable and disable, respectively, inserting
comments containing version and options
used in the assembly listing for xild.

Intel® Fortran Compiler User's Guide

135

issues a warning and an empty assembly file is produced for each compiled source
file.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar. Given a list of objects,
the library manager will insert the objects into a named library to be used in subsequent link
steps.

prompt>xiar cru user.a a.obj b.obj

The above command creates a library named user.a that contains the a.o and b.o
objects.

If, however, the objects have been created using -ipo -c, then the objects will not contain
a valid object but only the intermediate representation (IR) for that object file. For example:

prompt>ifc -ipo -c a.f b.f

will produce a.o and b.o that only contains IR to be used in a link time compilation. The
library manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xild -ar. This program will invoke the
compiler on the IR saved in the object file and generate a valid object that can be inserted
in a library.

prompt>xild -lib cru user.a a.o b.o

See Creating a Multifile IPO Executable Using xild.

Analyzing the Effects of Multifile IPO, -ipo_c, -ipo_S

The -ipo_c and -ipo_S options are useful for analyzing the effects of multifile IPO, or
when experimenting with multifile IPO between modules that do not make up a complete
program.

Use the -ipo_c option to optimize across files and produce an object file. This option
performs optimizations as described for -ipo, but stops prior to the final link stage, leaving
an optimized object file. The default name for this file is ipo_out.o. You can use the -o
option to specify a different name. For example:

prompt>ifc -tpp6 -ipo_c -ofilename a.f b.f c.f

Use the -ipo_S option to optimize across files and produce an assembly file. This option
performs optimizations as described for -ipo, but stops prior to the final link stage, leaving
an optimized assembly file. The default name for this file is ipo_out.s. You can use the -
o option to specify a different name. For example:

Intel® Fortran Compiler User's Guide

136

prompt>ifc -tpp6 -ipo_S -ofilename a.f b.f c.f

For more information on inlining and the minimum inlining criteria, see Criteria for Inline
Function Expansion and Controlling Inline Expansion of User Functions.

Using -ip with -Qoption Specifiers

You can adjust the Intel® Fortran Compiler's optimization for a particular application by
experimenting with memory and interprocedural optimizations.

Enter the -Qoption option with the applicable keywords to select particular inline
expansions and loop optimizations. The option must be entered with a -ip or -ipo
specification, as follows:

-ip[-Qoption,tool,opts]
where tool is Fortran (f) and opts are -Qoption specifiers (see below). Also refer to
Criteria for Inline Function Expansion to see how these specifiers may affect the inlining
heuristics of the compiler.

See Passing Options to Other Tools (-Qoption,tool,opts) for details about -Qoption.

-Qoption Specifiers

If you specify -ip or -ipo without any -Qoption qualification, the compiler

! expands functions in line

! propagates constant arguments

! passes arguments in registers

! monitors module-level static variables.

You can refine interprocedural optimizations by using the following -Qoption specifiers.
To have an effect, the -Qoption option must be entered with either -ip or -ipo also
specified, as in this example:

-ip -Qoption,f,ip_specifier

where ip_specifier is one of the -Qoption specifiers described in
the table that follows.

Intel® Fortran Compiler User's Guide

137

The following command activates procedural and interprocedural optimizations on source.f
and sets the maximum increase in the number of intermediate language statements to five
for each function:

prompt>ifc -ip -Qoptionf,-ip_ninl_max_stats=5 source.f

Criteria for Inline Function Expansion

For a routine to be considered for inlining, it has to meet certain minimum criteria. There are
criteria to be met by the call-site, the caller, and the callee. The call-site is the site of the call
to the function that might be inlined. The caller is the function that contains the call-site. The
callee is the function being called that might be inlined.

-Qoption Specifiers
-ip_args_in_regs=0 Disables the passing of arguments in

registers. By default, external
functions can pass arguments in
registers when called locally. Normally,
only static functions can pass
arguments in registers, provided the
address of the function is not taken
and the function does not use a
variable number of arguments.

-ip_ninl_max_stats=n Sets the valid number of intermediate
language statements for a function
that is expanded in line. The number n
is a positive integer. The number of
intermediate language statements
usually exceeds the actual number of
source language statements. The
default value for n is 230.

-ip_ninl_min_stats=n Sets the valid min number of
intermediate language statements for
a function that is expanded in line. The
number n is a positive integer. The
default value for
ip_ninl_min_stats is:
IA-32 compiler:
ip_ninl_min_stats = 7
Itanium® compiler:
ip_ninl_min_stats = 15

-
ip_ninl_max_total_stats=n

Sets the maximum increase in size of
a function, measured in intermediate
language statements, due to inlining.
The number n is a positive integer.
The default value for n is 2000.

Intel® Fortran Compiler User's Guide

138

Minimum call-site criteria:

! The number of actual arguments must match the number of formal arguments of the
callee.

! The number of return values must match the number of return values of the callee.

! The data types of the actual and formal arguments must be compatible.

! No multilingual inlining is permitted. Caller and callee must be written in the same
source language.

Minimum criteria for the caller:

! At most 2000 intermediate statements will be inlined into the caller from all the call -
sites being inlined into the caller. You can change this value by specifying the option

-Qoptionf,-ip_inline_max_total_stats=new value

! The function must be called if it is declared as static. Otherwise, it will be deleted.

Minimum criteria for the callee:

! Does not have variable argument list.

! Is not considered infrequent due to the name. Routines which contain the following
substrings in their names are not inlined: abort, alloca, denied, err, exit, fail,
fatal, fault, halt, init, interrupt, invalid, quit, rare, stop, timeout,
trace, trap, and warn.

! Is not considered unsafe for other reasons.

Selecting Routines for Inlining

Once these criteria are met, the compiler picks the routines whose inline expansions will
provide the greatest benefit to program performance. This is done using the default
heuristics. The inlining heuristics used by the compiler differ based on whether you use
profile-guided optimizations (-prof_use) or not.

When you use profile-guided optimizations with -ip or -ipo, the compiler uses the
following heuristics:

! The default heuristic focuses on the most frequently executed call sites, based on the
profile information gathered for the program.

! By default, the compiler does not inline functions with more than 230 intermediate
statements. You can change this value by specifying the option -
Qoption,f,/ip_ninl_max_stats=new value.

Intel® Fortran Compiler User's Guide

139

! The default inline heuristic will stop inlining when direct recursion is detected.

! The default heuristic always inlines very small functions that meet the minimum inline
criteria.

Default for Itanium®-based applications: ip_ninl_min_stats = 15.

Default for IA-32 applications: ip_ninl_min_stats = 7.

These limits can be modified with the option -Qoption,f,/ip_ninl_min_stats=new
value. See
-Qoption Specifiers and Profile-Guided Optimization (PGO).

When you do not use profile-guided optimizations with -ip or -ipo, the compiler uses
less aggressive inlining heuristics: it inlines a function if the inline expansion does not
increase the size of the final program.

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the
options shown in the following summary.

Option Effect
-ip_no_inlining This option is only useful if -ip or -

ipo is also specified. In such case, -
ip_no_inlining disables inlining
that would result from the -ip
interprocedural optimizations, but has
no effect on other interprocedural
optimizations.

-inline_debug_info Preserve the source position of
inlined code instead of assigning the
call-site source position to inlined
code.

IA-32 only:
-ip_no_pinlining

Disables partial inlining; can be used
if -ip or -ipo is also specified.

-Ob{0|1|2} Controls the compiler's inline
expansion. The amount of inline
expansion performed varies as
follows:

-Ob0: disables inline expansion of
user-defined functions

-Ob1: disables inlining unless -ip or
-Ob2 is specified. Enables inlining of
functions.

Intel® Fortran Compiler User's Guide

140

Inline Expansion of Library Functions

By default, the compiler automatically expands (inlines) a number of standard and math
library functions at the point of the call to that function, which usually results in faster
computation.

However, the inlined library functions do not set the errno variable when being expanded
inline. In code that relies upon the setting of the errno variable, you should use the -
nolib_inline option. Also, if one of your functions has the same name as one of the
compiler-supplied library functions, then when this function is called, the compiler assumes
that the call is to the library function and replaces the call with an inlined version of the
library function.

So, if the program defines a function with the same name as one of the known library
routines, you must use the -nolib_inline option to ensure that the user-supplied
function is used.
-nolib_inline disables inlining of all intrinsics.

Your results can vary slightly using the preceding optimizations.

 Note
Automatic inline expansion of library functions is not related to the inline expansion
that the compiler does during interprocedural optimizations. For example, the
following command compiles the program sum.f without expanding the math library
functions:

IA-32 applications:

prompt>ifc -ip -nolib_inline sum.f

Itanium®-based applications:

prompt>efc -ip -nolib_inline sum.f

For information on the Intel-provided intrinsic functions, see Additional Intrinsic Functions in
the Reference section.

Profile-guided Optimizations

-Ob2: Enables inlining of any
function. However, the compiler
decides which functions are inlined.
This option enables interprocedural
optimizations and has the same
effect as specifying the -ip option.

Intel® Fortran Compiler User's Guide

141

Profile-guided optimizations (PGO) tell the compiler which areas of an application are most
frequently executed. By knowing these areas, the compiler is able to be more selective and
specific in optimizing the application. For example, the use of PGO often enables the
compiler to make better decisions about function inlining, thereby increasing the
effectiveness of interprocedural optimizations. See PGO Options summary.

Instrumented Program

Profile-guided Optimization creates an instrumented program from your source code and
special code from the compiler. Each time this instrumented code is executed, the
instrumented program generates a dynamic information file. When you compile a second
time, the dynamic information files are merged into a summary file. Using the profile
information in this file, the compiler attempts to optimize the execution of the most heavily
travelled paths in the program.

Unlike other optimizations such as those strictly for size or speed, the results of IPO and
PGO vary. This is due to each program having a different profile and different opportunities
for optimizations. The guidelines provided help you determine if you can benefit by using
IPO and PGO. You need to understanding the principles of the optimizations and the
unique aspects of your source code.

Added Performance with PGO

In this version of the Intel® Fortran Compiler, PGO is improved in the following ways:

! Register allocation uses the profile information to optimize the location of spill code.

! For indirect function calls, branch prediction is improved by identifying the most likely
targets. With the Pentium® 4 and Xeon(TM) processors' longer pipeline, improving
branch prediction translates into high performance gains.

! The compiler detects and does not vectorize loops that execute only a small number
of iterations, reducing the run time overhead that vectorization might otherwise add.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to
predict at compile time. An example is the code with intensive error-checking in which the
error conditions are false most of the time. The "cold" error -handling code can be placed
such that the branch is hardly ever mispredicted. Minimizing "cold" code interleaved into the
"hot" code improves instruction cache behavior.

PGO Phases

The PGO methodology requires three phases:

1. Instrumentation compilation and linking with -prof_gen

Intel® Fortran Compiler User's Guide

142

2. Instrumented execution by running the executable; as a result, the dynamic-information
files (.dyn) are produced.

3. Feedback compilation with -prof_use

The flowcharts below illustrate this process for IA-32 compilation and Itanium®-based
compilation. A key factor in deciding whether you want to use PGO lies in knowing which
sections of your code are the most heavily used. If the data set provided to your program is
very consistent and it elicits a similar behavior on every execution, then PGO can probably
help optimize your program execution. However, different data sets can elicit different
algorithms to be called. This can cause the behavior of your program to vary from one
execution to the next.

IA-32 Phases of Basic Profile-Guided Optimization

Phases of Basic Profile-Guided Optimization for Itanium®-based applications

Intel® Fortran Compiler User's Guide

143

Basic PGO Options
The options used for basic PGO optimizations are:

! -prof_gen[x] for generating instrumented code

! -prof_use for generating a profile-optimized executable

In cases where your code behavior differs greatly between executions, you have to ensure
that the benefit of the profile information is worth the effort required to maintain up-to-date
profiles. In the basic profile-guided optimization, the following options are used in the
phases of the PGO:

Generating Instrumented Code, -prof_gen[x]

The -prof_gen[x] option instruments the program for profiling to get the execution count
of each basic block It is used in phase 1 of the PGO to instruct the compiler to produce

Intel® Fortran Compiler User's Guide

144

of each basic block. It is used in phase 1 of the PGO to instruct the compiler to produce
instrumented code in your object files in preparation for instrumented execution. Parallel
make is automatically supported for -prof_genx compilations.

Generating a Profile-optimized Executable, -prof_use

The -prof_use option is used in phase 3 of the PGO to instruct the compiler to produce a
profile-optimized executable and merges available dynamic-information (.dyn) files into a
pgopti.dpi file.

 Note:

The dynamic-information files are produced in phase 2 when you run the
instrumented executable.

If you perform multiple executions of the instrumented program, -prof_use merges the
dynamic-information files again and overwrites the previous pgopti.dpi file.

Disabling Function Splitting, -fnsplit- (Itanium® Compiler only)

-fnsplit- disables function splitting. Function splitting is enabled by -prof_use in
phase 3 to improve code locality by splitting routines into different sections: one section to
contain the cold or very infrequently executed code and one section to contain the rest of
the code (hot code).

You can use -fnsplit- to disable function splitting for the following reasons:

! Most importantly, to get improved debugging capability. In the debug symbol table, it
is difficult to represent a split routine, that is, a routine with some of its code in the hot
 code section and some of its code in the cold code section.

The -fnsplit- option disables the splitting within a routine but enables function
grouping, an optimization in which entire routines are placed either in the cold code
section or the hot code section. Function grouping does not degrade debugging
capability.

! Another reason can arise when the profile data does not represent the actual program
behavior, that is, when the routine is actually used frequently rather than infrequently.

 Note
For Itanium®-based applications, if you intend to use the -prof_use option with
optimizations at the -O3 level, the -O3 option must be on. If you intend to use the -
prof_use option with optimizations at the -O2 level or lower, you can generate the
profile data with the default options.

See an example of using PGO.

Advanced PGO Options

Intel® Fortran Compiler User's Guide

145

Advanced PGO Options
The options controlling advanced PGO optimizations are:

! -prof_dirdirname

! -prof_filefilename.

Specifying the Directory for Dynamic Information Files

Use the -prof_dirdirname option to specify the directory in which you intend to place
the dynamic information (.dyn) files to be created. The default is the directory where the
program is compiled. The specified directory must already exist.

You should specify -prof_dirdirname option with the same directory name for both the
instrumentation and feedback compilations. If you move the .dyn files, you need to specify
the new path.

Specifying Profiling Summary File

The -prof_filefilename option specifies file name for profiling summary file.

Guidelines for Using Advanced PGO

When you use PGO, consider the following guidelines:

! Minimize the changes to your program after instrumented execution and before
feedback compilation. During feedback compilation, the compiler ignores dynamic
information for functions modified after that information was generated.

 Note
The compiler issues a warning that the dynamic information does not correspond to a
modified function.

! Repeat the instrumentation compilation if you make many changes to your source
files after execution and before feedback compilation.

! Specify the name of the profile summary file using the -prof_filefilename option

See PGO Environment Variables.

PGO Environment Variables
The environment variables determine the directory in which to store dynamic information
files or whether to overwrite pgopti.dpi. Refer to your operating system documentation
for instructions on how to specify environment variables and their values.

Intel® Fortran Compiler User's Guide

146

The PGO environment variables are described in the table below.

See also the documentation for your operating system for instructions on how to specify
environment variables.

Example of Profile-Guided Optimization
The following is an example of the basic PGO phases:

1. Instrumentation Compilation and Linking—Use -prof_gen to produce an
executable with instrumented information. Use also the -prof_dir option as
recommended for most programs, especially if the application includes the source files
located in multiple directories. -prof_dir ensures that the profile information is generated
in one consistent place. For example:

IA-32 applications:

prompt>ifc -prof_gen -prof_dir/usr/profdata -c a1.f a2.f a3.f

prompt>ifc a1.o a2.o a3.o

Itanium®-based applications:

prompt>efc -prof_gen -prof_dir/usr/profdata -c a1.f a2.f a3.f

prompt>efc a1.o a2.o a3.o

In place of the second command, you could use the linker (ld) directly to produce the
instrumented program. If you do this, make sure you link with the libirc.a library.

2. Instrumented Execution—Run your instrumented program with a representative set of
data to create a d namic information file

Variable Description
PROF_DIR Specifies the directory in which dynamic information

files are created. This variable applies to all three
phases of the profiling process.

PROF_DUMP_INTERVAL Initiates interval profile dumping in an instrumented
user application.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By
default, during the feedback compilation phase, the
compiler merges the data from all dynamic information
files and creates a new pgopti.dpi file, even if one
already exists. When this variable is set, the compiler
does not overwrite the existing pgopti.dpi file.
Instead, the compiler issues a warning and you must
remove the pgopti.dpi file if you want to use
additional dynamic information files.

Intel® Fortran Compiler User's Guide

147

data to create a dynamic information file.

prompt>a1

The resulting dynamic information file has a unique name and .dyn suffix every time you
run a1. The instrumented file helps predict how the program runs with a particular set of
data. You can run the program more than once with different input data.

3. Feedback Compilation—Compile and link the source files with -prof_use to use the
dynamic information to optimize your program according to its profile:

IA-32 applications:

prompt>ifc -prof_use -ipo a1.f a2.f a3.f

Itanium-based applications:

prompt>efc -prof_use -ipo a1.f a2.f a3.f

Besides the optimization, the compiler produces a pgopti.dpi file. You typically specify
the default optimizations (-O2) for phase 1, and specify more advanced optimizations (-ip
or -ipo) for phase 3. This example used -O2 in phase 1 and the -ipo in phase 3.

 Note
The compiler ignores the -ip or the -ipo options with -prof_gen.

See Basic PGO Options.

Merging the .dyn Files
To merge the .dyn files, use the profmerge utility.

The profmerge Utility

The compiler executes profmerge automatically during the feedback compilation phase
when you specify -prof_use.

The command-line usage for profmerge is as follows:

IA-32 applications:

prompt>profmerge [-nologo] [-prof_dirdirname]

Itanium®-based applications:

prompt>profmerge -em -p64 [-nologo] [-prof_dirdirname]

where -prof dirdirname is a profmerge utility option

Intel® Fortran Compiler User's Guide

148

where prof_dirdirname is a profmerge utility option.

This merges all .dyn files in the current directory or the directory specified by -prof_dir,
and produces the summary file pgopti.dpi.

The -prof_filefilename option enables you to specify the name of the .dpi file.

The command-line usage for profmerge with -prof_filefilename is as follows:

IA-32 applications:

prompt>profmerge [-nologo] [-prof_filefilename]

Itanium -based applications:

prompt>profmerge -em -p64 [-nologo] [-prof_filefilename]

where /prof_filefilename is a profmerge utility option.

Dumping Profile Data

This subsection provides an example of how to call the C PGO API routines from Fortran.
For complete description of the PGO API support routines, see PGO API: Profile
Information Generation Support.

As part of the instrumented execution phase of profile -guided optimization, the
instrumented program writes profile data to the dynamic information file (.dyn file). The file
is written after the instrumented program returns normally from main() or calls the
standard exit function. Programs that do not terminate normally, can use the
_PGOPTI_Prof_Dump function. During the instrumentation compilation
(-prof_gen) you can add a call to this function to your program. Here is an example:

 Note
You must remove the call or comment it out prior to the feedback compilation with -
prof_use.

Using profmerge to Relocate the Source Files

The compiler uses the full path to the source file for each routine to look up the profile
summary information associated with that routine. By default, this prevents you from:

INTERFACE
SUBROUTINE PGOPTI_PROF_DUMP()
!MS$ATTRIBUTES
C,ALIAS:'PGOPTI_Prof_Dump'::PGOPTI_PROF_DUMP
END SUBROUTINE
END INTERFACE
CALL PGOPTI_PROF_DUMP()

Intel® Fortran Compiler User's Guide

149

! Using the profile summary file (.dpi) if you move your application sources.

! Sharing the profile summary file with another user who is building identical application
sources that are located in a different directory.

Source Relocation

To enable the movement of application sources, as well as the sharing of profile summary
files, use the profmerge with -src_old and -src_new options. For example:

IA-32 Compiler:
prompt>profmerge -prof_dir c:/work -src_old c:/work/sources -
src_new d:/project/src

Itanium Compiler:
prompt>profmerge -em -p64 -prof_dir c:/work
-src_old c:/work/sources -src_new d:/project/src

The above command will read the c:/work/pgopti.dpi file. For each routine
represented in the pgopti.dpi file, whose source path begins with the
c:/work/sources prefix, profmerge replaces that prefix with d:/project/src. The
c:/work/pgopti.dpi file is updated with the new source path information.

 Notes

! You can execute profmerge more than once on a given pgopti.dpi file. You may need
to do this if the source files are located in multiple directories. For example:

profmerge -src_old "c:/program files" -src_new "e:/program
files"

profmerge -src_old c:/proj/application -src_new d:/app

! In the values specified for -src_old and -src_new, uppercase and lowercase
characters are treated as identical. Likewise, forward slash (/) and backward slash
(\) characters are treated as identical.

! Because the source relocation feature of profmerge modifies the pgopti.dpi file,
you may wish to make a backup copy of the file prior to performing the source
relocation.

PGO API Support
The Profile Information Generation Support (Profile IGS) enables you to control the
generation of profile information during the instrumented execution phase of profile-guided
optimizations.

Intel® Fortran Compiler User's Guide

150

Normally, profile information is generated by an instrumented application when it terminates
by calling the standard exit() function.

To ensure that profile information is generated, the functions described in this section may
be necessary or useful in the following situations:

! The instrumented application exits using a non-standard exit routine.

! The instrumented application is a non-terminating application: exit() is never called.

! The application requires control of when the profile information is generated.

A set of functions and an environment variable comprise the Profile IGS.

The Profile IGS Functions

The Profile IGS functions are available to your application by inserting a header file at the
top of any source file where the functions may be used.

#include "pgouser.h"

 Note

The Profile IGS functions are written in C language. Fortran applications need to call
C functions.

The rest of the topics in this section describe the Profile IGS functions.

 Note

Without instrumentation, the Profile IGS functions cannot provide PGO API support.

The Profile IGS Environment Variable

The environment variable for Profile IGS is PROF_DUMP_INTERVAL. This environment
variable may be used to initiate Interval Profile Dumping in an instrumented user
application. See the recommended usage of _PGOPTI_Set_Interval_Prof_Dump()
for more information.

Dumping Profile Information

The _PGOPTI_Prof_Dump() function dumps the profile information collected by the
instrumented application and has the following prototype:

void _PGOPTI_Prof_Dump(void);

The profile information is generated in a .dyn file (generated in phase 2 of the PGO).

Intel® Fortran Compiler User's Guide

151

Recommended usage

Insert a single call to this function in the body of the function which terminates the user
application. Normally, _PGOPTI_Prof_Dump() should be called just once.

It is also possible to use this function in conjunction with the _PGOPTI_Prof_Reset()
function to generate multiple .dyn files (presumably from multiple sets of input data).

Resetting the Dynamic Profile Counters

The _PGOPTI_Prof_Reset() function resets the dynamic profile counters and has the
following prototype:

void _PGOPTI_Prof_Reset(void);

Recommended usage

Use this function to clear the profile counters prior to collecting profile information on a
section of the instrumented application. See the example under _PGOPTI_Prof_Dump().

Dumping and Resetting Profile Information

The _PGOPTI_Prof_Dump_And_Reset() function dumps the profile information to a
new .dyn file and then resets the dynamic profile counters. Then the execution of the
instrumented application continues. The prototype of this function is:

void _PGOPTI_Prof_Dump_And_Reset(void);

This function is used in non-terminating applications and may be called more than once.

Recommended usage

Periodic calls to this function enables a non-terminating application to generate one or more
profile information files (.dyn files). These files are merged during the feedback phase
(phase 3) of profile-guided optimizations. The direct use of this function enables your

Example
/* selectively collect profile
information
for the portion of the application
involved in processing input data
*/
input_data = get_input_data();
while (input_data) {
_PGOPTI_Prof_Reset();
process_data(input_data);
_PGOPTI_Prof_Dump();
input_data = get_input_data();
}

Intel® Fortran Compiler User's Guide

152

(p) p g p y
application to control precisely when the profile information is generated.

Interval Profile Dumping

The _PGOPTI_Set_Interval_Prof_Dump() function activates Interval Profile Dumping
and sets the approximate frequency at which dumps occur. The prototype of the function
call is:

void _PGOPTI_Set_Interval_Prof_Dump(int interval);

This function is used in non-terminating applications.

The interval parameter specifies the time interval at which profile dumping occurs and is
measured in milliseconds. For example, if interval is set to 5000, then a profile dump and
reset will occur approximately every 5 seconds. The interval is approximate because the
time-check controlling the dump and reset is only performed upon entry to any instrumented
function in your application.

 Note

1. Setting interval to zero or a negative number will disable interval profile dumping.

2. Setting a very small value for interval may cause the instrumented application to
spend nearly all of its time dumping profile information. Be sure to set interval to a
large enough value so that the application can perform actual work and substantial
profile information is collected.

Recommended usage

This function may be called at the start of a non-terminating user application, to initiate
Interval Profile Dumping. Note that an alternative method of initiating Interval Profile
Dumping is by setting the environment variable, PROF_DUMP_INTERVAL, to the desired
interval value prior to starting the application.

The intention of Interval Profile Dumping is to allow a non-terminating application to be
profiled with minimal changes to the application source code.

High-level Language Optimizations (HLO)
High-level optimizations exploit the properties of source code constructs (for example, loops
and arrays) in the applications developed in high-level programming languages, such as
Fortran and C++. The high-level optimizations include loop interchange, loop fusion, loop
unrolling, loop distribution, unroll-and-jam, blocking, data prefetch, scalar replacement, data
layout optimizations and loop unrolling techniques.

The option that turns on the high-level optimizations is -O3. See high-level language
options summary. The scope of optimizations turned on by -O3 is different for IA-32 and

Intel® Fortran Compiler User's Guide

153

Itanium®-based applications. See Setting Optimization Levels.

Loop Transformations
All these transformations are supported by data dependence. These techniques also
include induction variable elimination, constant propagation, copy propagation, forward
substitution, and dead code elimination. The loop transformation techniques include:

! loop normalization

! loop reversal

! loop interchange and permutation

! loop skewing

! loop distribution

! loop fusion

! scalar replacement

These techniques also include induction variable elimination, constant propagation, copy
propagation, forward substitution, and dead code elimination. In addition to the loop
transformations listed for both IA-32 and Itanium® architectures above, the Itanium
architecture enables to implement collapsing techniques.

Scalar Replacement (IA-32 Only)
The goal of scalar replacement is to reduce memory references. This is done mainly by
replacing array references with register references.

While the compiler replaces some array references with register references when -O1 or -
O2 is specified more aggressive replacement is performed when -O3 (-s alar rep) is

IA-32 and Itanium®-based applications
-O3 Enable -O2 option plus more aggressive

optimizations, for example, loop transformation
and prefetching. -O3 optimizes for maximum
speed, but may not improve performance for
some programs.

IA-32 applications
-O3 In addition, in conjunction with the vectorization

options, -ax{M|K|W} and -x{M|K|W}, -O3
causes the compiler to perform more aggressive
data dependency analysis than for -O2. This
may result in longer compilation times.

Intel® Fortran Compiler User's Guide

154

O2 is specified, more aggressive replacement is performed when O3 (scalar_rep) is
specified. For example, with -O3 the compiler attempts replacement when there are loop-
carried dependences or when data-dependence analysis is required for memory
disambiguation.

Loop Unrolling with -unroll[n]
The -unroll[n] option is used in the following way:

! -unrolln specifies the maximum number of times you want to unroll a loop. The
following example unrolls a loop at most four times:

prompt>ifc -unroll4 a.f

To disable loop unrolling, specify n as 0. The following example disables loop unrolling:

prompt>ifc -unroll0 a.f

! -unroll (n omitted) lets the compiler decide whether to perform unrolling or not.

! -unroll0 (n = 0) disables unroller.

Itanium® compiler currently uses only n = 0; any other value is NOP.

Benefits and Limitations of Loop Unrolling

The benefits are:

! Unrolling eliminates branches and some of the code.

! Unrolling enables you to aggressively schedule (or pipeline) the loop to hide latencies
if you have enough free registers to keep variables live.

! The Pentium® 4 or Xeon(TM) processors can correctly predict the exit branch for an
inner loop that has 16 or fewer iterations, if that number of iterations is predictable
and there are no conditional branches in the loop. Therefore, if the loop body size is
not excessive, and the probable number of iterations is known, unroll inner loops for:
- Pentium 4 or Xeon processor, until they have a maximum of 16 iterations
- Pentium III or Pentium II processors, until they have a maximum of 4 iterations

The potential costs are:

-scalar_rep[-] Enables (default) or disables scalar replacement
performed during loop transformations (requires -
O3).

Intel® Fortran Compiler User's Guide

155

! Excessive unrolling, or unrolling of very large loops can lead to increased code size.

! If the number of iterations of the unrolled loop is 16 or less, the branch predictor
should be able to correctly predict branches in the loop body that alternate direction.

For more information on how to optimize with -unroll[n], refer to Intel® Pentium® 4 and
Intel® Xeon(TM) Processor Optimization Reference Manual.

Memory Dependency with IVDEP Directive
The -ivdep_parallel option discussed below is used for Itanium®-based applications
only.

The -ivdep_parallel option indicates there is absolutely no loop-carried memory
dependency in the loop where IVDEP directive is specified. This technique is useful for
some sparse matrix applications.

For example, the following loop requires -ivdep_parallel in addition to the directive
IVDEP to indicate there is no loop-carried dependencies.

The following example shows that using this option and the IVDEP directive ensures there
is no loop-carried dependency for the store into a().

See IVDEP directive for IA-32 applications.

Prefetching
The goal of -prefetch insertion is to reduce cache misses by providing hints to the
processor about when data should be loaded into the cache. The prefetching optimizations
implement the following options:

!DIR$IVDEP
do i=1,n
e(ix(2,i))=e(ix(2,i))+1.0
e(ix(3,i))=e(ix(3,i))+2.0
enddo

!DIR$IVDEP
do i=1,n
a(b(j)) = a(b(j))+1
enddo

-prefetch[-] Enable or disable (-prefetch-)
prefetch insertion. This option requires
that -O3 be specified. The default with -
O3 is -prefetch.

Intel® Fortran Compiler User's Guide

156

To facilitate compiler optimization:

! Minimize use of global variables and pointers.

! Minimize use of complex control flow.

! Use the const modifier, avoid register modifier.

! Choose data types carefully and avoid type casting.

 For more information on how to optimize with -prefetch[-], refer to Intel® Pentium® 4
and Intel® Xeon(TM) Processor Optimization Reference Manual.

Parallelization
For shared memory parallel programming, the Intel® Fortran Compiler supports both the
OpenMP* API and an automatic parallelization capability.

The compiler supports the OpenMP Fortran version 2.0 API specification and provides
symmetric multiprocessing (SMP), which relieves the user from having to deal with the low-
level details of iteration space partitioning, data sharing, and thread scheduling and
synchronization; it also provides the performance gain from shared memory, multiprocessor
systems.

The auto-parallelization feature of the Intel Fortran Compiler automatically translates serial
portions of the input program into equivalent multithreaded code. Automatic parallelization
determines the loops that are good worksharing candidates, performs the dataflow analysis
to verify correct parallel execution, and partitions the data for threaded code generation as
is needed in programming with OpenMP directives.

The following table lists the options that perform OpenMP and auto -parallelization support.

Option Description
-openmp Enables the parallelizer to generate

multithreaded code based on the OpenMP
directives. Default: OFF.

-openmp_report{0|1|2} Controls the OpenMP parallelizer's
diagnostic levels. Default: -
openmp_report1.

-openmp_stubs Enables compilation of OpenMP programs
in sequential mode. The OpenMP
directives are ignored and a stub OpenMP
library is linked. Default: OFF.

-parallel Enables the auto-parallelizer to generate
multithreaded code for loops that can be
safely executed in parallel. Default: OFF.

-par threshold{n} Sets a threshold for the auto-

Intel® Fortran Compiler User's Guide

157

 Note
When both -openmp and -parallel are specified on the command line, the -
parallel option is only honored in routines that do not contain OpenMP directives.
For routines that contain OpenMP directives, only the -openmp option is honored.

Important component of the parallelization programming is the Intel Fortran Compiler's
vectorizer. The vectorizer detects operations in the program that can be done in parallel,
and then converts the sequential program to process 2, 4, 8 or up to 16 elements in one
operation, depending on the data type. In some cases auto-parallelization and vectorization
can be combined for better performance results.

Parallelization with OpenMP*
The Intel® Fortran Compiler supports the OpenMP* Fortran version 2.0 API specification.
OpenMP provides symmetric multiprocessing (SMP) with the following major features:

! Relieves the user from having to deal with the low-level details of iteration space
partitioning, data sharing, and thread scheduling and synchronization.

! Provides the benefit of the performance available from shared memory,
multiprocessor systems.

The Intel Fortran Compiler performs transformations to generate multithreaded code based
on the user's placement of OpenMP directives in the source program making it easy to add
threading to existing software. The Intel compiler supports all of the current industry -
standard OpenMP directives, except workshare, and compiles parallel programs
annotated with OpenMP directives.

In addition, the Intel Fortran Compiler provides Intel-specific extensions to the OpenMP
Fortran version 2.0 specification including runtime library routines and environment
variables.

 Note

As with many advanced features of compilers, you must properly understand the
functionality of the OpenMP directives in order to use them effectively and avoid
unwanted program behavior.

See parallelization options summary for all options of the OpenMP feature in the Intel

p _ { } Sets a threshold for the auto
parallelization of loops based on the
probability of profitable execution of the
loop in parallel, n=0 to 100. n=0 implies
"always." Default: n=75.

-par_report{0|1|2|3} Controls the auto-parallelizer's diagnostic
levels.
Default: -par_report1.

Intel® Fortran Compiler User's Guide

158

Fortran Compiler. For complete information on the OpenMP standard, visit the
www.openmp.org web site. For complete Fortran language specifications, see the OpenMP
Fortran version 2.0 specifications.

Parallel Processing with OpenMP
To compile with OpenMP, you need to prepare your program by annotating the code with
OpenMP directives in the form of the Fortran program comments. The Intel Fortran
Compiler first processes the application and produces a multithreaded version of the code
which is then compiled. The output is a Fortran executable with the parallelism
implemented by threads that execute parallel regions or constructs. See Programming with
OpenMP.

Performance Analysis
For performance analysis of your program, you can use the VTune(TM) analyzer to show
performance information. You can obtain detailed information about which portions of the
code that require the largest amount of time to execute and where parallel performance
problems are located.

Programming with OpenMP
The Intel® Fortran Compiler accepts a Fortran program containing OpenMP directives as
input and produces a multithreaded version of the code. When the parallel program begins
execution, a single thread exists. This thread is called the master thread. The master thread
will continue to process serially until it encounters a parallel region.

Parallel Region and Constructs

A parallel region is a block of code that must be executed by a team of threads in parallel.
In the OpenMP Fortran API, a parallel construct is defined by placing OpenMP directives
parallel at the beginning and end parallel at the end of the code segment. Code
segments thus bounded can be executed in parallel.

A structured block of code is a collection of one or more executable statements with a
single point of entry at the top and a single point of exit at the bottom.

The Intel Fortran Compiler supports worksharing and synchronization constructs. Each of
these constructs consists of one or two specific OpenMP directives and sometimes the
enclosed or following structured block of code. For complete definitions of constructs, see
the OpenMP Fortran version 2.0 specifications.

At the end of the parallel region, threads wait until all team members have arrived. The
team is logically disbanded (but may be reused in the next parallel region), and the master
thread continues serial execution until it encounters the next parallel region.

Worksharing Construct

Intel® Fortran Compiler User's Guide

159

A worksharing construct divides the execution of the enclosed code region among the
members of the team created on entering the enclosing parallel region. When the master
thread enters a parallel region, a team of threads is formed. Starting from the beginning of
the parallel region, code is replicated (executed by all team members) until a
worksharing construct is encountered. A worksharing construct divides the execution of
the enclosed code among the members of the team that encounter it.

The OpenMP sections or do constructs are defined as worksharing constructs
because they distribute the enclosed work among the threads of the current team. A
worksharing construct is only distributed if it is encountered during dynamic execution of
a parallel region. If the worksharing construct occurs lexically inside of the parallel region,
then it is always executed by distributing the work among the team members. If the
worksharing construct is not lexically (explicitly) enclosed by a parallel region (that is, it is
orphaned), then the worksharing construct will be distributed among the team members
of the closest dynamically-enclosing parallel region, if one exists. Otherwise, it will be
executed serially.

When a thread reaches the end of a worksharing construct, it may wait until all team
members within that construct have completed their work. When all of the work defined by
the worksharing construct is finished, the team exits the worksharing construct and
continues executing the code that follows.

Parallel Processing Directive Groups

The parallel processing directives include the following groups:

Worksharing

! The do and end do directives specify parallel execution of loop iterations.

! The sections directive specifies parallel execution for arbitrary blocks of sequential
code. Each section is executed once by a thread in the team.

! The single directive defines a section of code where exactly one thread is allowed
to execute the code; threads not chosen to execute this section ignore the code.

Synchronization and master

Synchronization is the interthread communication that ensures the consistency of shared
data and coordinates parallel execution among threads. Shared data is consistent within a
team of threads when all threads obtain the identical value when the data is accessed. A
synchronization construct is used to insure this consistency of the shared data.

! The OpenMP synchronization directives are critical, ordered, atomic, flush,
and barrier.

! Within a parallel region or a worksharing construct only one thread at a time is

Intel® Fortran Compiler User's Guide

160

! Within a parallel region or a worksharing construct only one thread at a time is
allowed to execute the code within a critical construct.

! The ordered directive is used in conjunction with a do or sections construct to
impose a serial order on the execution of a section of code.

! The atomic directive is used to update a memory location in an uninterruptable
fashion.

! The flush directive is used to insure that all threads in a team have a consistent
view of memory.

! A barrier directive forces all team members to gather at a particular point in code.
Each team member that executes a barrier waits at the barrier until all of the
team members have arrived. A barrier cannot be used within worksharing or
other synchronization constructs due to the potential for deadlock.

! The master directive is used to force execution by the master thread.

See the list of OpenMP Directives and Clauses.

Data Sharing

Data sharing is specified at the start of a parallel region or worksharing construct by
using the shared and private clauses. All variables in the shared clause are shared
among the members of a team. It is the application ’s responsibility to:

! synchronize access to these variables. All variables in the private clause are private
to each team member. For the entire parallel region, assuming t team members,
there are t+1 copies of all the variables in the private clause: one global copy that
is active outside parallel regions and a private copy for each team member.

! initialize private variables at the start of a parallel region, unless the
firstprivate clause is specified. In this case, the private copy is initialized from
the global copy at the start of the construct at which the firstprivate clause is
specified.

! update the global copy of a private variable at the end of a parallel region.
However, the lastprivate clause of a DO directive enables updating the global
copy from the team member that executed serially the last iteration of the loop.

In addition to shared and private variables, individual variables and entire common
blocks can be privatized using the threadprivate directive.

Orphaned Directives

OpenMP contains a feature called orphaning which dramatically increases the
expressiveness of parallel directives. Orphaning is a situation when directives related to a
parallel region are not required to occur lexically within a single program unit Directives

Intel® Fortran Compiler User's Guide

161

parallel region are not required to occur lexically within a single program unit. Directives
such as critical, barrier, sections, single, master, and do, can occur by
themselves in a program unit, dynamically “binding” to the enclosing parallel region at run
time.

Orphaned directives enable parallelism to be inserted into existing code with a minimum of
code restructuring. Orphaning can also improve performance by enabling a single parallel
region to bind with multiple do directives located within called subroutines. Consider the
following code segment:

Orphaned Directives Usage Rules

! An orphaned worksharing construct (section, single, do) is executed by a
team consisting of one thread, that is, serially.

! Any collective operation (worksharing construct or barrier) executed inside of a
worksharing construct is illegal.

! It is illegal to execute a collective operation (worksharing construct or barrier)
from within a synchronization region (critical/ordered).

! The opening and closing directives of a directive pair (for example, do - end do)
must occur in a single block of the program.

! Private scoping of a variable can be specified at a worksharing construct. Shared
scoping must be specified at the parallel region. For complete details, see the
OpenMP Fortran version 2.0 specifications.

...
!$omp parallel
call phase1
call phase2
!$omp end parallel
...

subroutine phase1
!$omp do private(i) shared(n)
do i = 1, n
call some_work(i)
end do
!$omp end do
end

subroutine phase2
!$omp do private(j) shared(n)
do j = 1, n
call more_work(j)
end do
!$omp end do
end

Intel® Fortran Compiler User's Guide

162

Preparing Code for OpenMP Processing

The following are the major stages and steps of preparing your code for using OpenMP.
Typically, the first two stages can be done on uniprocessor or multiprocessor systems; later
stages are typically done only on multiprocessor systems.

Before Inserting OpenMP Directives

Before inserting any OpenMP parallel directives, verify that your code is safe for parallel
execution by doing the following:

! Place local variables on the stack. This is the default behavior of the Intel Fortran
Compiler when -openmp is used.

! Use -auto or similar (-auto_scalar) compiler option to make the locals automatic.
Avoid using compiler options that inhibit stack allocation of local variables. By default
(-auto_scalar) local scalar variables become shared across threads, so you may
need to add synchronization code to ensure proper access by threads.

Analyze

The analysis includes the following major actions:

! Profile the program to find out where it spends most of its time. This is the part of the
program that benefits most from parallelization efforts. This stage can be
accomplished using basic PGO options.

! Wherever the program contains nested loops, choose the outer-most loop, which has
very few cross-iteration dependencies.

Restructure

! To restructure your program for successful OpenMP implementation, you can perform
some or all of the following actions:

1. If a chosen loop is able to execute iterations in parallel, introduce a parallel do
construct around this loop.

2. Try to remove any cross-iteration dependencies by rewriting the algorithm.

3. Synchronize the remaining cross-iteration dependencies by placing critical
constructs around the uses and assignments to variables involved in the
dependencies.

4. List the variables that are present in the loop within appropriate shared, private,
lastprivate, firstprivate, or reduction clauses.

5. List the do index of the parallel loop as private. This step is optional.

Intel® Fortran Compiler User's Guide

163

6. common block elements must not be placed on the private list if their global scope
is to be preserved. The threadprivate directive can be used to privatize to each
thread the common block containing those variables with global scope.
threadprivate creates a copy of the common block for each of the threads in the
team.

7. Any I/O in the parallel region should be synchronized.

8. Identify more parallel loops and restructure them.

9. If possible, merge adjacent parallel do constructs into a single parallel region
containing multiple do directives to reduce execution overhead.

Tune

The tuning process should include minimizing the sequential code in critical sections and
load balancing by using the schedule clause or the omp_schedule environment variable.

 Note

This step is typically performed on a multiprocessor system.

Parallel Processing Thread Model
This topic explains the processing of the parallelized program and adds more definitions of
the terms used in the parallel programming.

The Execution Flow

As mentioned in previous topic, a program containing OpenMP Fortran API compiler
directives begins execution as a single process, called the master thread of execution. The
master thread executes sequentially until the first parallel construct is encountered.

In OpenMP Fortran API, the PARALLEL and END PARALLEL directives define the parallel
construct. When the master thread encounters a parallel construct, it creates a team of
threads, with the master thread becoming the master of the team. The program statements
enclosed by the parallel construct are executed in parallel by each thread in the team.
These statements include routines called from within the enclosed statements.

The statements enclosed lexically within a construct define the static extent of the
construct. The dynamic extent includes the static extent as well as the routines called from
within the construct. When the END PARALLEL directive is encountered, the threads in the
team synchronize at that point, the team is dissolved, and only the master thread continues
execution. The other threads in the team enter a wait state.

You can specify any number of parallel constructs in a single program. As a result, thread
teams can be created and dissolved many times during program execution.

Intel® Fortran Compiler User's Guide

164

Using Orphaned Directives

In routines called from within parallel constructs, you can also use directives. Directives that
are not in the lexical extent of the parallel construct, but are in the dynamic extent, are
called orphaned directives. Orphaned directives allow you to execute major portions of your
program in parallel with only minimal changes to the sequential version of the program.
Using this functionality, you can code parallel constructs at the top levels of your program
call tree and use directives to control execution in any of the called routines. For example:

The !$OMP DO is an orphaned directive because the parallel region it will execute in is not
lexically present in G.

Data Environment Directive

A data environment directive controls the data environment during the execution of parallel
constructs.

You can control the data environment within parallel and worksharing constructs. Using
directives and data environment clauses on directives, you can:

! Privatize named common blocks by using THREADPRIVATE directive

! Control data scope attributes by using the THREADPRIVATE directive's clauses.

The data scope attribute clauses are:

" COPYIN

" DEFAULT

" PRIVATE

" FIRSTPRIVATE

" LASTPRIVATE

" REDUCTION

subroutine F
...
!$OMP parallel...
...

call G
...
subroutine G
...
!$OMP DO...
...

Intel® Fortran Compiler User's Guide

165

" SHARED

You can use several directive clauses to control the data scope attributes of variables for
the duration of the construct in which you specify them. If you do not specify a data scope
attribute clause on a directive, the default is SHARED for those variables affected by the
directive.

For detailed descriptions of the clauses, see the OpenMP Fortran version 2.0
specifications.

Pseudo Code of the Parallel Processing Model

A sample program using some of the more common OpenMP directives is shown in the
code example that follows. This example also indicates the difference between serial
regions and parallel regions.

program main ! Begin Serial Execution

... ! Only the master thread executes
!$omp parallel ! Begin a Parallel Construct, form a

team
... ! This is Replicated Code where each

team ! member executes the same code
!$omp sections ! Begin a Worksharing Construct
!$omp section ! One unit of work
... !
!$omp section ! Another unit of work
... !
!$omp end
sections

! Wait until both units of work
complete

... ! More Replicated Code
!$omp do ! Begin a Worksharing Construct,

 do ! each iteration is a unit of work
 ... ! Work is distributed among the team

 end do !
!$omp end do
nowait

! End of Worksharing Construct,
nowait is
! specified

 ... ! More Replicated Code
!$omp end
parallel

! End of Parallel Construct, disband
team ! and continue with serial
execution

... ! Possibly more Parallel Constructs
end ! End serial execution

Intel® Fortran Compiler User's Guide

166

Compiling with OpenMP, Directive Format, and
Diagnostics
To run the Intel® Fortran Compiler in OpenMP mode, you need to invoke the Intel compiler
with the
-openmp option:

IA-32 applications:

ifc -openmp input_file(s)

Itanium®-based applications:

efc -openmp input_file(s)

Before you run the multithreaded code, you can set the number of desired threads to the
OpenMP environment variable, OMP_NUM_THREADS. See the OpenMP Environment
Variables section for further information. The Intel Extensjon Routines topic describes the
OpenMP extensions to the specification that have been added by Intel in the Intel ® Fortran
Compiler.

-openmp Option

The -openmp option enables the parallelizer to generate multithreaded code based on the
OpenMP directives. The code can be executed in parallel on both uniprocessor and
multiprocessor systems.

The -openmp option works with both -O0 (no optimization) and any optimization level of -
O1,
-O2 (default) and -O3. Specifying -O0 with -openmp helps to debug OpenMP applications.

When you use the -openmp option, the compiler sets the -auto option (causes all
variables to be allocated on the stack, rather than in local static storage.) for the compiler
unless you specified it on the command line.

OpenMP Directive Format and Syntax

The OpenMP directives use the following format:

<prefix> <directive> [<clause> [[,] <clause> . . .]]

where the brackets above mean:

! <xxx>: the prefix and directive are required

! [<xxx>]: if a directive uses one clause or more, the clause(s) is required

! [,]: commas between the < lause>s are optional.

Intel® Fortran Compiler User's Guide

167

! [,]: commas between the <clause>s are optional.

For fixed form source input, the prefix is !$omp or c$omp

For free form source input, the prefix is !$omp only.

The prefix is followed by the directive name; for example:

!$omp parallel

Since OpenMP directives begin with an exclamation point, the directives take the form of
comments if you omit the -openmp option.

Syntax for Parallel Regions in the Source Code

The OpenMP constructs defining a parallel region have one of the following syntax forms:

!$omp <directive>

<structured block of code>

!$omp end <directive>

or

!$omp <directive>

<structured block of code>

or

!$omp <directive>

where <directive> is the name of a particular OpenMP directive.

OpenMP Diagnostics

The -openmp_report{0|1|2} option controls the OpenMP parallelizer's diagnostic
levels 0, 1, or 2 as follows:

-openmp_report0 = no diagnostic information is displayed.

-openmp_report1 = display diagnostics indicating loops, regions, and sections
successfully parallelized.

-openmp_report2 = same as -openmp_report1 plus diagnostics indicating master
constructs, single constructs, critical constructs, ordered constructs, atomic
directives, etc. successfully handled.

Intel® Fortran Compiler User's Guide

168

The default is -openmp_report1.

OpenMP Directives and Clauses
This topic provides a summary of the OpenMP directives and clauses. For detailed
descriptions, see the OpenMP Fortran version 2.0 specifications.

OpenMP Directives

Directive Description
parallel
end parallel

Defines a parallel region.

do
end do

Identifies an iterative worksharing construct in which
 the iterations of the associated loop should be
executed in parallel.

sections
end sections

Identifies a non-iterative worksharing construct that
specifies a set of structured blocks that are to be
divided among threads in a team.

section Indicates that the associated structured block should
be executed in parallel as part of the enclosing
sections construct.

single
end single

Identifies a construct that specifies that the associated
structured block is executed by only one thread in the
team.

parallel do
end parallel do

A shortcut for a parallel region that contains a
single do directive.

 Note
The parallel do or do OpenMP directive must be
immediately followed by a do statement (do-stmt as
defined by R818 of the ANSI Fortran standard). If you
place another statement or an OpenMP directive
between the parallel do or do directive and the do
statement, the Intel Fortran Compiler issues a syntax
error.

parallel
sections
end parallel
sections

Provides a shortcut form for specifying a parallel region
containing a single sections construct.

master
end master

Identifies a construct that specifies a structured block
that is executed by only the master thread of the
team.

critical[lock]
end critical
[lock]

Identifies a construct that restricts execution of the
associated structured block to a single thread at a time.
Each thread waits at the beginning of the critical
construct until no other thread is executing a critical

Intel® Fortran Compiler User's Guide

169

OpenMP Clauses

construct until no other thread is executing a critical
construct with the same lock argument.

barrier Synchronizes all the threads in a team. Each thread
waits until all of the other threads in that team have
reached this point.

atomic Ensures that a specific memory location is updated
atomically, rather than exposing it to the possibility of
multiple, simultaneously writing threads.

flush [(list)] Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the
threads in a team have a consistent view of certain
objects in memory. The optional list argument
consists of a comma-separated list of variables to be
flushed.

ordered
end ordered

The structured block following an ordered directive is
executed in the order in which iterations would be
executed in a sequential loop.

threadprivate
(list)

Makes the named common blocks or variables private
to a thread. The list argument consists of a comma-
separated list of common blocks or variables.

Clause Description
private (list) Declares variables in list to be

private To each thread in a team.
firstprivate (list) Same as private, but the copy of

each variable in the list is
 initialized using the value of the
original variable existing before the
construct.

lastprivate (list) Same as private, but the original
variables in list are updated using
the values assigned to the
corresponding private variables in
the last iteration in the do construct
loop or the last section construct.

copyprivate (list) Uses private variables in list to
broadcast values, or pointers to
 shared objects, from one member of
a team to the other members at the
end of a single construct.

nowait Specifies that threads need not wait
at the end of worksharing
constructs until they have completed
execution. The threads may proceed
past the end of the worksharing

Intel® Fortran Compiler User's Guide

170

constructs as soon as there is no
more work available for them to
execute.

shared (list) Shares variables in list among all
the threads in a team.

default (mode) Determines the default data-scope
attributes of variables not explicitly
specified by another clause. Possible
values for mode are private,
shared, or none.

reduction
({operator|intrinsic}:list)

Performs a reduction on variables that
appear in list with the operator
operator or the intrinsic procedure
name intrinsic; operator is one
of the following: +, *, .and., .or.,
.eqv., .neqv.; intrinsic refers
to one of the following: max, min,
iand, ior, or ieor.

ordered
end ordered

Used in conjunction with a do or
sections construct to impose a
serial order on the execution of a
section of code. If ordered
constructs are contained in the
dynamic extent of the do construct,
the ordered clause must be present
on the do directive.

if
(scalar_logical_expression)

The enclosed parallel region is
executed in parallel only if the
scalar_logical_expression
evaluates to .true.; otherwise the
parallel region is serialized.

num_threads
(scalar_integer_expression)

Requests the number of threads
specified by
scalar_integer_expression for
the parallel region.

schedule (type[,chunk]) Specifies how iterations of the do
construct are divided among the
threads of the team. Possible values
for the type argument are static,
dynamic, guided, and runtime.
The optional chunk argument must
be a positive scalar integer
expression.

copyin (list) Specifies that the master thread's
data values be copied to the
threadprivate's copies of the
common blocks or variables specified
in list at the beginning of the

Intel® Fortran Compiler User's Guide

171

OpenMP Support Libraries
The Intel Fortran Compiler with OpenMP support provides a production support library,
libguide.lib. This library enables you to run an application under different execution
modes. It is used for normal or performance-critical runs on applications that have already
been tuned.

Execution modes

The compiler with OpenMP enables you to run an application under different execution
modes that can be specified at run time. The libraries support the serial, turnaround, and
throughput modes. These modes are selected by using the kmp_library environment
variable at run time.

Serial

The serial mode forces parallel applications to run on a single processor.

Turnaround

In a dedicated (batch or single user) parallel environment where all processors are
exclusively allocated to the program for its entire run, it is most important to effectively
utilize all of the processors all of the time. The turnaround mode is designed to keep active
all of the processors involved in the parallel computation in order to minimize the execution
time of a single job. In this mode, the worker threads actively wait for more parallel work,
without yielding to other threads.

Note

Avoid over-allocating system resources. This occurs if either too many threads have
been specified, or if too few processors are available at run time. If system resources
are over-allocated, this mode will cause poor performance. The throughput mode
should be used instead if this occurs.

Throughput

In a multi-user environment where the load on the parallel machine is not constant or where
the job stream is not predictable, it may be better to design and tune for throughput. This
minimizes the total time to run multiple jobs simultaneously. In this mode, the worker
threads will yield to other threads while waiting for more parallel work.

The throughput mode is designed to make the program aware of its environment (that is,
the system load) and to adjust its resource usage to produce efficient execution in a
dynamic environment. This mode is the default.

OpenMP Environment Variables

in list at the beginning of the
parallel region.

Intel® Fortran Compiler User's Guide

172

OpenMP Environment Variables
This topic describes the standard OpenMP environment variables (with the OMP_ prefix)
and Intel-specific environment variables (with the KMP_ prefix) that are Intel extensions to
the standard Fortran Compiler .

Standard Environment Variables

Intel Extension Environment Variables

OpenMP Runtime Library Routines

Variable Description Default
OMP_SCHEDULE Sets the run-time schedule type

and chunk size.
static,
no chunk
size
specified

OMP_NUM_THREADS Sets the number of threads to use
during execution.

Number of
processors

OMP_DYNAMIC Enables (.true.) or disables
(.false.) the dynamic
adjustment of the number of
threads.

.false.

OMP_NESTED Enables (.true.) or disables
(.false.)nested parallelism.

.false.

Environment
Variable

Description Default

KMP_LIBRARY Selects the OpenMP runtime library
throughput. The options for the
variable value are: serial,
turnaround, or throughput
indicating the execution mode. The
default value of throughput is
used if this variable is not specified.

throughput

(execution
mode)

KMP_STACKSIZE Sets the number of bytes to allocate
for each parallel thread to use as its
private stack. Use the optional suffix
b, k, m, g, or t, to specify bytes,
kilobytes, megabytes, gigabytes, or
terabytes.

IA-32: 2m

Itanium
compiler: 4m

Intel® Fortran Compiler User's Guide

173

OpenMP Runtime Library Routines
OpenMP provides several runtime library routines to assist you in managing your program
in parallel mode. Many of these runtime library routines have corresponding environment
variables that can be set as defaults. The runtime library routines enable you to dynamically
change these factors to assist in controlling your program. In all cases, a call to a runtime
library routine overrides any corresponding environment variable.

The following table specifies the interface to these routines. The names for the routines are
in user name space. The omp_lib.f, omp_lib.h and omp_lib.mod header files are
provided in the include directory of your compiler installation. The omp_lib.h header
file is provided in the include directory of your compiler installation for use with the
Fortran INCLUDE statement. The omp_lib.mod file is provided in the Include directory for
use with the Fortran USE statement.

There are definitions for two different locks, omp_lock_t and omp_nest_lock_t, which
are used by the functions in the table that follows.

This topic provides a summary of the OpenMP runtime library routines. For detailed
descriptions, see the OpenMP Fortran version 2.0 specifications.

Function Description
Execution Environment Routines

subroutine omp_set_num_threads
(num_threads)
integer num_threads

Sets the number of threads to use for
subsequent parallel regions.

integer function
omp_get_num_threads()

Returns the number of threads that
are being used in the current parallel
region.

integer function
omp_get_max_threads()

Returns the maximum number of
threads that are available for parallel
execution.

integer function
omp_get_thread_num()

Determines the unique thread
number of the thread currently
executing this section of code.

integer function omp_get_num_procs
()

Determines the number of
processors available to the program.

logical function omp_in_parallel() Returns .true. if called within the
dynamic extent of a parallel region
executing in parallel; otherwise
returns .false..

subroutine omp_set_dynamic
(dynamic_threads) logical
dynamic_threads

Enables or disables dynamic
adjustment of the number of threads
used to execute a parallel region. If
dynamic_threads is .true.,
dynamic threads are enabled. If
dynamic_threads is .false.,
d i th d di bl d

Intel® Fortran Compiler User's Guide

174

dynamic threads are disabled.
Dynamics threads are disabled by
default.

logicl function omp_get_dynamic() Returns .true. if dynamic thread
adjustment is enabled, otherwise
returns .false..

subroutine omp_set_nested(nested)
integer nested

Enables or disables nested
parallelism. If nested is .true.,
nested parallelism is enabled. If
nested is .false., nested
parallelism is disabled. Nested
parallelism is disabled by default.

logical function omp_get_nested() Returns .true. if nested parallelism
is enabled, otherwise
returns .false..

Lock Routines
subroutine omp_init_lock(lock)
integer (kind=omp_lock_kind)::lock

Initializes the lock associated with
lock for use in subsequent calls.

subroutine omp_destroy_lock(lock)
integer (kind=omp_lock_kind)::lock

Causes the lock associated with
lock to become undefined.

subroutine omp_set_lock(lock)
integer (kind=omp_lock_kind)::lock

Forces the executing thread to wait
until the lock associated with lock is
available. The thread is granted
ownership of the lock when it
becomes available.

subroutine omp_unset_lock(lock)
integer (kind=omp_lock_kind)::lock

Releases the executing thread from
ownership of the lock associated with
lock. The behavior is undefined if
the executing thread does not own
the lock associated with lock.

logical omp_test_lock(lock)
integer (kind=omp_lock_kind)::lock

Attempts to set the lock associated
with lock. If successful,
returns .true., otherwise
returns .false..

subroutine omp_init_nest_lock
(lock)
integer
(kind=omp_nest_lock_kind)::lock

 Initializes the nested lock associated
with lock for use in the subsequent
calls.

subroutine omp_destroy_nest_lock
(lock)
integer
(kind=omp_nest_lock_kind)::lock

Causes the nested lock associated
with lock to become undefined.

subroutine omp_set_nest_lock(lock)
integer
(kind=omp_nest_lock_kind)::lock

Forces the executing thread to wait
until the nested lock associated with
lock is available. The thread is
granted ownership of the nested lock
when it becomes available.

Intel® Fortran Compiler User's Guide

175

Intel Extension Routines
The Intel® Fortran Compiler implements the following group of routines as an extension to
the OpenMP runtime library: getting and setting stack size for parallel threads and memory
allocation.

The Intel extension routines described in this section can be used for low-level debugging
to verify that the library code and application are functioning as intended. It is
recommended to use these routines with caution because using them requires the use of
the -openmp_stubs command-line option to execute the program sequentially. These
routines are also generally not recognized by other vendor's OpenMP-compliant compilers,
which may cause the link stage to fail for these other compilers.

Stack Size

In most cases, directives can be used in place of the extension library routines. For
example, the stack size of the parallel threads may be set using the KMP_STACKSIZE
environment variable rather than the kmp_set_stacksize() library routine.

 Note

when it becomes available.
subroutine omp_unset_nest_lock
(lock)
integer
(kind=omp_nest_lock_kind)::lock

Releases the executing thread from
ownership of the nested lock
associated with lock if the nesting
count is zero. Behavior is undefined
if the executing thread does not own
the nested lock associated with
lock.

integer omp_test_nest_lock(lock)
integer
(kind=omp_nest_lock_kind)::lock

Attempts to set the nested lock
associated with lock. If successful,
returns the nesting count, otherwise
returns zero.

Timing Routines
double-precision function
omp_get_wtime()

Returns a double-precision value
equal to the elapsed wallclock time
(in seconds) relative to an arbitrary
reference time. The reference time
 does not change during program
execution.

double-precision function
omp_get_wtick()

Returns a double-precision value
equal to the number of seconds
between successive clock ticks.

Intel® Fortran Compiler User's Guide

176

A runtime call to an Intel extension routine takes precedence over the corresponding
environment variable setting.

See the definitions of stack size routines in the table that follows.

Memory Allocation

The Intel® Fortran Compiler implements a group of memory allocation routines as an
extension to the OpenMP* runtime library to enable threads to allocate memory from a
heap local to each thread. These routines are: kmp_malloc, kmp_calloc, and
kmp_realloc.

The memory allocated by these routines must also be freed by the kmp_free routine.
While it is legal for the memory to be allocated by one thread and kmp_free'd by a
different thread, this mode of operation has a slight performance penalty.

See the definitions of these routines in the table that follows.

Function/Routine Description
Stack Size

function kmp_get_stacksize_s
()
integer
(kind=kmp_size_t_kind)
kmp_get_stacksize_s

Returns the number of bytes that will be
allocated for each parallel thread to use as its
private stack. This value can be changed via the
kmp_get_stacksize_s routine, prior to the
first parallel region or via the KMP_STACKSIZE
environment variable.

function kmp_get_stacksize()
integer kmp_get_stacksize

This routine is provided for backwards
compatibility only; use kmp_get_stacksize_s
 routine for compatibility across different families
of Intel processors.

subroutine
kmp_set_stacksize_s(size)
integer
(kind=kmp_size_t_kind) size

Sets to size the number of bytes that will be
allocated for each parallel thread to use as its
private stack. This value can also be set via the
KMP_STACKSIZE environment variable. In order
for kmp_set_stacksize_s to have an effect, it
must be called before the beginning of the first
(dynamically executed) parallel region in the
program.

subroutine kmp_set_stacksize
(size)
integer size

This routine is provided for backward
compatibility only; use kmp_set_stacksize_s
(size) for compatibility across different families
of Intel processors.

Memory Allocation
function kmp_malloc(size)
integer
(kind=kmp_pointer_kind)
kmp_malloc
integer

Allocate memory block of size bytes from
thread-local heap.

Intel® Fortran Compiler User's Guide

177

Examples of OpenMP Usage
The following examples show how to use the OpenMP feature. See more examples in the
OpenMP Fortran version 2.0 specifications.

do: A Simple Difference Operator

This example shows a simple parallel loop where each iteration contains a different number
of instructions. To get good load balancing, dynamic scheduling is used. The end do has a
nowait because there is an implicit barrier at the end of the parallel region.

integer
(kind=kmp_size_t_kind)size
function kmp_calloc
(nelem,elsize)
integer
(kind=kmp_pointer_kind)
kmp_calloc
integer
(kind=kmp_size_t_kind)nelem
integer
(kind=kmp_size_t_kind)elsize

Allocate array of nelem elements of size
elsize from thread-local heap.

function kmp_realloc(ptr,
size)
integer
(kind=kmp_pointer_kind)
kmp_realloc
integer
(kind=kmp_pointer_kind)ptr
integer
(kind=kmp_size_t_kind)size

Reallocate memory block at address ptr and
size bytes from thread-local heap.

subroutine kmp_free(ptr)
integer
(kind=kmp_pointer_kind) ptr

Free memory block at address ptr from thread-
local heap. Memory must have been previously
allocated with
kmp_malloc, kmp_calloc, or kmp_realloc.

subroutine do_1 (a,b,n)
real a(n,n), b(n,n)
c$omp parallel
c$omp& shared(a,b,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
do i = 2, n
do j = 1, i
b(j,i) = (a(j,i) + a(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp end parallel
end

Intel® Fortran Compiler User's Guide

178

do: Two Difference Operators

This example shows two parallel regions fused to reduce fork/join overhead. The first
end do has a nowait because all the data used in the second loop is different than all the
data used in the first loop.

sections: Two Difference Operators

This example demonstrates the use of the sections directive. The logic is identical to the
preceding do example, but uses sections instead of do. Here the speedup is limited to 2
because there are only two units of

work whereas in do: Two Difference Operators above there are n-1 + m-1 units of work.

subroutine do_2 (a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m), d(m,m)
c$omp parallel
c$omp& shared(a,b,c,d,m,n)
c$omp& private(i,j)
c$omp do schedule(dynamic,1)
do i = 2, n
do j = 1, i
b(j,i) = (a(j,i) + a(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp do schedule(dynamic,1)
do i = 2, m
do j = 1, i
d(j,i) = (c(j,i) + c(j,i-1)) / 2
enddo
enddo
c$omp end do nowait
c$omp end parallel
end

subroutine sections_1
(a,b,c,d,m,n)
real a(n,n), b(n,n), c(m,m), d
(m,m)
!$omp parallel
!$omp& shared(a,b,c,d,m,n)
!$omp& private(i,j)
!$omp sections
!$omp section
do i = 2, n
do j = 1, i
b(j,i)=(a(j,i) + a(j,i-1)) / 2
enddo
dd

Intel® Fortran Compiler User's Guide

179

single: Updating a Shared Scalar

This example demonstrates how to use a single construct to update an element of the
shared array a. The optional nowait after the first loop is omitted because it is necessary
to wait at the end of the loop before proceeding into the single construct.

Auto-parallelization
The auto-parallelization feature of the Intel® Fortran Compiler automatically translates
serial portions of the input program into equivalent multithreaded code. The auto -
parallelizer analyzes the dataflow of the program’s loops and generates multithreaded code
for those loops which can be safely and efficiently executed in parallel. This enables the
potential exploitation of the parallel architecture found in symmetric multiprocessor (SMP)
systems.

Automatic parallelization relieves the user from:

enddo

!$omp section
do i = 2, m
do j = 1, i
d(j,i)=(c(j,i) + c(j,i-1)) / 2
enddo
enddo
!$omp end sections nowait
!$omp end parallel
end

subroutine sp_1a
(a,b,n)
real a(n), b(n)
!$omp parallel
!$omp& shared(a,b,n)
!$omp& private(i)
!$omp do
do i = 1, n
a(i) = 1.0 / a(i)
enddo
!$omp single
a(1) = min(a(1), 1.0)
!$omp end single
!$omp do
do i = 1, n
b(i) = b(i) / a(i)
enddo
!$omp end do nowait
!$omp end parallel
end

Intel® Fortran Compiler User's Guide

180

! having to deal with the details of finding loops that are good worksharing candidates

! performing the dataflow analysis to verify correct parallel execution

! partitioning the data for threaded code generation as is needed in programming with
OpenMP* directives.

The parallel runtime support provides the same runtime features as found in OpenMP, such
as handling the details of loop iteration modification, thread scheduling, and
synchronization.

While OpenMP directives enable serial applications to transform into parallel applications
quickly, the programmer must explicitly identify specific portions of the application code that
contain parallelism and add the appropriate compiler directives. Auto-parallelization
triggered by the -parallel option automatically identifies those loop structures, which
contain parallelism. During compilation, the compiler automatically attempts to decompose
the code sequences into separate threads for parallel processing. No other effort by the
programmer is needed.

The following example illustrates how a loop’s iteration space can be divided so that it can
be executed concurrently on two threads:

Original Serial Code

Transformed Parallel Code

Programming with Auto-parallelization
Auto-parallelization feature implements some concepts of OpenMP, such as worksharing
construct (with the PARALLEL DO directive). See Programming with OpenMP for
worksharing construct. This section provides specifics of auto-parallelization.

Guidelines for Effective Auto-parallelization Usage

do i=1,100
a(i) = a(i) + b(i) * c(i)

enddo

Thread 1
do i=1,50
a(i) = a(i) + b(i) * c(i)
enddo

Thread 2
do i=50,100
a(i) = a(i) + b(i) * c(i)
enddo

Intel® Fortran Compiler User's Guide

181

A loop is parallelizable if:

! The loop is countable at compile time: this means that an expression representing
how many times the loop will execute (also called "the loop trip count") can be
generated just before entering the loop.

! There are no FLOW (READ after WRITE), OUTPUT (WRITE after READ) or ANTI (WRITE
after READ) loop-carried data dependences. A loop-carried data dependence occurs
when the same memory location is referenced in different iterations of the loop. At the
compiler's discretion, a loop may be parallelized if any assumed inhibiting loop-carried
dependencies can be resolved by runtime dependency testing.

The compiler may generate a runtime test for the profitability of executing in parallel for loop
with loop parameters that are not compile-time constants.

Coding Guidelines

Enhance the power and effectiveness of the auto-parallelizer by following these coding
guidelines:

! Expose the trip count of loops whenever possible; specifically use constants where the
trip count is known and save loop parameters in local variables.

! Avoid placing structures inside loop bodies that the compiler may assume to carry
dependent data, for example, procedure calls, ambiguous indirect references or global
references.

! Insert the !DIR$ PARALLEL directive to disambiguate assumed data dependencies.

! Insert the !DIR$ NOPARALLEL directive before loops known to have insufficient work
to justify the overhead of sharing among threads.

Auto-parallelization Data Flow

For auto-parallelization processing, the compiler performs the following steps:

Data flow analysis ---> Loop classification ---> Dependence analysis ---> High-level
parallelization --> Data partitioning ---> Multi-threaded code generation.

These steps include:

! Data flow analysis: compute the flow of data through the program

! Loop classification: determine loop candidates for parallelization based on correctness
and efficiency as shown by threshold analysis

! Dependence analysis: compute the dependence analysis for references in each loop

Intel® Fortran Compiler User's Guide

182

p y p p y p
nest

! High-level parallelization:

- analyze dependence graph to determine loops which can execute in parallel.

- compute runtime dependency

! Data partitioning: examine data reference and partition based on the following types of
access: SHARED, PRIVATE, and FIRSTPRIVATE

! Multi-threaded code generation:

- modify loop parameters

- generate entry/exit per threaded task

- generate calls to parallel runtime routines for thread creation and synchronization

Programming Enabling, Options, Directives, and
Environment Variables
To enable the auto-parallelizer, use the -parallel option. The -parallel option detects
parallel loops capable of being executed safely in parallel and automatically generates
multithreaded code for these loops. An example of the command using auto -parallelization
is as follows:

IA-32 compilations:

prompt>ifc -c -parallel myprog.f

Itanium®-based compilations:

prompt>efc -c -parallel myprog.f

Auto-parallelization Options

The -parallel option enables the auto-parallelizer if the -O2 (or -O3) optimization option
is also on (the default is -O2). The -parallel option detects parallel loops capable of
being executed safely in parallel and automatically generates multithreaded code for these
loops.

-parallel Enables the auto-parallelizer
-parallel_threshold{1-100} Controls the work threshold

needed for auto-parallelization,
see later subsection.

-par_report{1|2|3} Controls the diagnostic messages
from the auto-parallelizer see

Intel® Fortran Compiler User's Guide

183

Auto-parallelization Directives

Auto-parallelization uses two specific directives,
!DIR$ PARALLEL and !DIR$ NOPARALLEL.

Auto-parallelization Directives Format and Syntax

The format of Intel Fortran auto-parallelization compiler directive is:

<prefix> <directive>

where the brackets above mean:

! <xxx>: the prefix and directive are required

For fixed form source input, the prefix is !DIR$ or CDIR$

For free form source input, the prefix is !DIR$ only.

The prefix is followed by the directive name; for example:

!DIR$ PARALLEL

Since auto-parallelization directives begin with an exclamation point, the directives take the
form of comments if you omit the -parallel option.

Examples

The !DIR$ PARALLEL directive instructs the compiler to ignore dependencies which it
assumes may exist and which would prevent correct parallelization in the immediately
following loop. However, if dependencies are proven, they are not ignored.

The !DIR$ NOPARALLEL directive disables auto-parallelization for the immediately
following loop.

from the auto-parallelizer, see
later subsection.

program main
parameter (n=100)
integer x(n),a(n)

!DIR$ NOPARALLEL
do i=1,n
x(i) = i
enddo

!DIR$ PARALLEL
do i=1 n

Intel® Fortran Compiler User's Guide

184

Auto-parallelization Environment Variables

Auto-parallelization Threashold Control and Diagnostics
Threshold Control

The -par_threshold{n} option sets a threshold for the auto-parallelization of loops
based on the probability of profitable execution of the loop in parallel. The value of n can be
from 0 to 100. The default value is 75. This option is used for loops whose computation
work volume cannot be determined at compile-time. The threshold is usually relevant when
the loop trip count is unknown at compile-time.

The -par_threshold{n} option has the following versions and functionality:

! Default: -par_threshold is not specified in the command line, which is the same as
when -par_threshold0 is specified. The loops get auto-parallelized regardless of
computation work volume, that is, parallelize always.

! -par_threshold100 - loops get auto-parallelized only if profitable parallel execution
is almost certain.

! The intermediate 1 to 99 values represent the percentage probability for profitable
speed-up. For example, n=50 would mean: parallelize only if there is a 50%
probability of the code speeding up if executed in parallel.

! The default value of n is n=75 (or -par_threshold75). When
-par_threshold is used on the command line without a number, the default value
passed is 75.

The compiler applies a heuristic that tries to balance the overhead of creating multiple
threads versus the amount of work available to be shared amongst the threads.

Diagnostics

do i=1,n
a(x(i)) = i
enddo
end

Option Description Default
OMP_NUM_THREADS Controls the number of

threads used.
Number of processors
currently installed in the
system while generating
the executable

OMP_SCHEDULE Specifies the type of runtime
scheduling.

static

Intel® Fortran Compiler User's Guide

185

The -par_report{0|1|2|3} option controls the auto-parallelizer's diagnostic levels 0, 1,
2, or 3 as follows:

-par_report0 = no diagnostic information is displayed.

-par_report1 = indicates loops successfully auto-parallelized (default). Issues a "LOOP
AUTO-PARALLELIZED" message for parallel loops.

-par_report2 = indicates successfully auto-parallelized loops as well as unsuccessful
loops.

-par_report3 = same as 2 plus additional information about any proven or assumed
dependences inhibiting auto-parallelization (reasons for not parallelizing).

Example of Parallelization Diagnostics Report

Example below shows an output generated by -par_report3 as a result from the
command:

prompt>ifl -c /Qparallel /Qpar_report3 myprog.f90

where the program myprog.f90 is as follows:

Troubleshooting Tips

program myprog
integer a(10000), q

C Assumed side effects
do i=1,10000

a(i) = foo(i)
enddo

C Actual dependence
do i=1,10000

a(i) = a(i-1) + i
enddo
end

Example of -par_report Output
program myprog
procedure: myprog
serial loop: line 5: not a parallel candidate

due to statement at line 6
serial loop: line 9

flow data dependence from line 10 to line
10, due to "a"

12 Lines Compiled

Intel® Fortran Compiler User's Guide

186

! Use -par_threshold0 to see if the compiler assumed there was not enough
computational work

! Use -par_report3 to view diagnostics

! Use !DIR$ PARALLEL directive to eliminate assumed data dependencies

! Use -ipo to eliminate assumed side-effects done to function calls.

Debugging Multithreaded Programs
The debugging of multithreaded program discussed in this section applies to both the
OpenMP Fortran API and the Intel Fortran parallel compiler directives. When a program
uses parallel decomposition directives, you must take into consideration that the bug might
be caused either by an incorrect program statement or it might be caused by an incorrect
parallel decomposition directive. In either case, the program to be debugged can be
executed by multiple threads simultaneously.

To debug the multithreaded programs, you can use:

! Intel Debugger for IA-32 and Intel Debugger for Itanium-based applications (idb)

! Intel Fortran Compiler debugging options and methods; in particular, Compiling Source
Lines with Debugging Statements.

! Intel parallelization extension routines for low-level debugging.

! VTune(TM) Performance Analyzer to define the problematic areas.

Other best known debugging methods and tips include:

! Correct the program in single-threaded, uni-processor environment

! Statically analyze locks

! Use trace statement (such as print statement)

! Think in parallel, make very few assumptions

! Step through your code

! Make sense of threads and callstack information

! Identify the primary thread

! Know what thread you are debugging

Intel® Fortran Compiler User's Guide

187

! Single stepping in one thread does not mean single stepping in others

! Watch out for context switch

Debugger Limitations for Multithread Programs
Debuggers such as Intel Debugger for IA-32 and Intel Debugger for Itanium-based
applications support the debugging of programs that are executed by multiple threads.
However, the currently available versions of such debuggers do not directly support the
debugging of parallel decomposition directives, and therefore, there are limitations on the
debugging features.

Some of the new features used in OpenMP are not yet fully supported by the debuggers, so
it is important to understand how these features work to know how to debug them. The two
problem areas are:

! Multiple entry points

! Shared variables

You can use routine names (for example, padd) and entry names (for example, _PADD,
___PADD_6__par_loop0). FORTRAN Compiler, by default, first mangles lower/mixed
case routine names to upper case. For example, pAdD() becomes PADD(), and this
becomes entry name by adding one underscore. The secondary entry name mangling
happens after that. That's why "__par_loop" part of the entry name stays as lower case.
Debugger for some reason didn't take the upper case routine name "PADD" to set the
breakpoint. Instead, it accepted the lower case routine name "padd".

Debugging Parallel Regions
The compiler implements a parallel region by enabling the code in the region and putting it
into a separate, compiler-created entry point. Although this is different from outlining – the
technique employed by other compilers, that is, creating a subroutine, – the same
debugging technique can be applied.

Constructing an Entry-point Name

The compiler-generated parallel region entry point name is constructed with a
concatenation of the following strings:

! "__" character

! entry point name for the original routine (for example, _parallel)

! "_" character

! line number of the parallel region

Intel® Fortran Compiler User's Guide

188

! __par_region for OpenMP parallel regions (!$OMP PARALLEL)

__par_loop for OpenMP parallel loops (!$OMP PARALLEL DO),

__par_section for OpenMP parallel sections (!$OMP PARALLEL SECTIONS)

! sequence number of the parallel region (for each source file, sequence number starts
from zero.)

Debugging Code with Parallel Region

Example 1 illustrates the debugging of the code with parallel region. Example 1 is produced
by this command:

ifc -openmp -g -O0 -S file.f90

Let us consider the code of subroutine parallelin Example 1.

The parallel region is at line 3. The compiler created two entry points: parallel_ and
___parallel_3__par_region0. The first entry point corresponds to the subroutine
parallel(), while the second entry point corresponds to the OpenMP parallel region at
line 3.

Example 1 Debuging Code with Parallel Region

Subroutine PARALLEL() source listing
1 subroutine parallel
2 integer id,OMP_GET_THREAD_NUM
3 !$OMP PARALLEL PRIVATE(id)
4 id = OMP_GET_THREAD_NUM()
5 !$OMP END PARALLEL
6 end

Machine Code Listing of the Subroutine parallel()
 .globl parallel_
parallel_:
..B1.1: # Preds ..B1.0
..LN1:
pushl %ebp #1.0
movl %esp, %ebp #1.0
subl $44, %esp #1.0
pushl %edi #1.0
movl $.2.1_2_kmpc_loc_struct_pack.0, (%esp) #1.0
call __kmpc_global_thread_num #1.0

LOE eax
..B1.21: # Preds ..B1.1
addl $4, %esp #1.0
movl %eax, -44(%ebp) #1.0

LOE

Intel® Fortran Compiler User's Guide

189

LOE
..B1.2: # Preds ..B1.21
movl -44(%ebp), %eax #1.0
movl %eax, -24(%ebp) #1.0

..LN2:
pushl %edi #3.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #3.0
call __kmpc_ok_to_fork #3.0

LOE eax
..B1.22: # Preds ..B1.2
addl $4, %esp #3.0
movl %eax, -40(%ebp) #3.0

LOE
..B1.3: # Preds ..B1.22
movl -40(%ebp), %eax #3.0
testl %eax, %eax #3.0
jne ..B1.7 # Prob 50% #3.0

LOE
..B1.4: # Preds ..B1.3
addl $-8, %esp #3.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #3.0
movl -24(%ebp), %eax #3.0
movl %eax, 4(%esp) #3.0
call __kmpc_serialized_parallel #3.0

LOE
..B1.23: # Preds ..B1.4
addl $8, %esp #3.0

LOE
..B1.5: # Preds ..B1.23
addl $-8, %esp #3.0
lea -24(%ebp), %eax #3.0
movl %eax, (%esp) #3.0
movl $___kmpv_zeroparallel__0, 4(%esp) #3.0
call _parallel__3__par_region0 #3.0

LOE
..B1.24: # Preds ..B1.5
addl $8, %esp #3.0

LOE
..B1.6: # Preds ..B1.24
addl $-8, %esp #3.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #3.0
movl -24(%ebp), %eax #3.0
movl %eax, 4(%esp) #3.0
call __kmpc_end_serialized_parallel #3.0

LOE
..B1.25: # Preds ..B1.6
addl $8, %esp #3.0
jmp ..B1.8 # Prob 100% #3.0

LOE
..B1.7: # Preds ..B1.3
addl $-12, %esp #3.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #3.0
movl $0, 4(%esp) #3.0
movl $ parallel 3 par region0 8(%esp) #3 0

Intel® Fortran Compiler User's Guide

190

movl $_parallel__3__par_region0, 8(%esp) #3.0
call __kmpc_fork_call #3.0

LOE
..B1.26: # Preds ..B1.7
addl $12, %esp #3.0

LOE
..B1.8: # Preds ..B1.26 ..B1.25
..LN3:
pushl %edi #6.0
movl $.2.1_2_kmpc_loc_struct_pack.2, (%esp) #6.0
call __kmpc_ok_to_fork #6.0

LOE eax
..B1.27: # Preds ..B1.8
addl $4, %esp #6.0
movl %eax, -36(%ebp) #6.0

LOE
..B1.9: # Preds ..B1.27
movl -36(%ebp), %eax #6.0
testl %eax, %eax #6.0
jne ..B1.13 # Prob 50% #6.0

LOE
..B1.10: # Preds ..B1.9
addl $-8, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.2, (%esp) #6.0
movl -24(%ebp), %eax #6.0
movl %eax, 4(%esp) #6.0
call __kmpc_serialized_parallel #6.0

LOE
..B1.28: # Preds ..B1.10
addl $8, %esp #6.0

LOE
..B1.11: # Preds ..B1.28
addl $-8, %esp #6.0
lea -24(%ebp), %eax #6.0
movl %eax, (%esp) #6.0
movl $___kmpv_zeroparallel__1, 4(%esp) #6.0
call _parallel__6__par_region1 #6.0

LOE
..B1.29: # Preds ..B1.11
addl $8, %esp #6.0

LOE
..B1.12: # Preds ..B1.29
addl $-8, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.2, (%esp) #6.0
movl -24(%ebp), %eax #6.0
movl %eax, 4(%esp) #6.0
call __kmpc_end_serialized_parallel #6.0

LOE
..B1.30: # Preds ..B1.12
addl $8, %esp #6.0
jmp ..B1.14 # Prob 100% #6.0

LOE
..B1.13: # Preds ..B1.9
addl $-12 %esp #6 0

Intel® Fortran Compiler User's Guide

191

addl $ 12, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.2, (%esp) #6.0
movl $0, 4(%esp) #6.0
movl $_parallel__6__par_region1, 8(%esp) #6.0
call __kmpc_fork_call #6.0

LOE
..B1.31: # Preds ..B1.13
addl $12, %esp #6.0

LOE
..B1.14: # Preds ..B1.31 ..B1.30
..LN4:
leave #9.0
ret #9.0

LOE
.type parallel_,@function
.size parallel_,.-parallel_
.globl _parallel__3__par_region0
_parallel__3__par_region0:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
..B1.15: # Preds ..B1.0
pushl %ebp #9.0
movl %esp, %ebp #9.0
subl $44, %esp #9.0

..LN5:
call omp_get_thread_num_ #4.0

LOE eax
..B1.32: # Preds ..B1.15
movl %eax, -32(%ebp) #4.0

LOE
..B1.16: # Preds ..B1.32
movl -32(%ebp), %eax #4.0
movl %eax, -20(%ebp) #4.0

..LN6:
leave #9.0
ret #9.0

LOE
.type _parallel__3__par_region0,@function
.size
_parallel__3__par_region0,._parallel__3__par_region0
.globl _parallel__6__par_region1
_parallel__6__par_region1:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
..B1.17: # Preds ..B1.0
pushl %ebp #9.0
movl %esp, %ebp #9.0
subl $44, %esp #9.0

..LN7:
call omp_get_thread_num_ #7.0

LOE eax
..B1.33: # Preds ..B1.17
movl %eax, -28(%ebp) #7.0

LOE

Intel® Fortran Compiler User's Guide

192

Debugging the program at this level is just like debugging a program that uses POSIX
threads directly. Breakpoints can be set in the threaded code just like any other routine.
With GNU debugger, breakpoints can be set to source-level routine names (such as
parallel). Breakpoints can also be set to entry point names (such as parallel_ and
_parallel__3__par_region0). Note that Intel Fortran Compiler for Linux converted the upper
case Fortran subroutine name to the lower case one.

Debugging Multiple Threads
When in a debugger, you can switch from one thread to another. Each thread has its own
program counter so each thread can be in a different place in the code. Example 2 shows a
Fortran subroutine PADD(). A breakpoint can be set at the entry point of OpenMP parallel
region.

The Call Stack Dumps

The first call stack below is obtained by breaking at the entry to subroutine PADD using
GNU debugger. At this point, the program has not executed any OpenMP regions, and
therefore has only one thread. The call stack shows a system runtime
__libc_start_main function calling the Fortran main program parallel(), and
parallel() calls subroutine padd(). When the program is executed by more than one
thread, you can switch from one thread to another. The second and the third call stacks are
obtained by breaking at the entry to the parallel region. The call stack of master contains
the complete call sequence. At the top of the call stack is _padd__6__par_loop0().
Invocation of a threaded entry point involves a layer of Intel OpenMP library function calls
(that is, functions with __kmp prefix). The call stack of the worker thread contains a partial
call sequence that begins with a layer of Intel OpenMP library function calls

LOE
..B1.18: # Preds ..B1.33
movl -28(%ebp), %eax #7.0
movl %eax, -16(%ebp) #7.0

..LN8:
leave #9.0
ret #9.0
.align 4,0x90

mark_end;

Source listing of the Subroutine PADD()
12. SUBROUTINE PADD(A, B, C, N)
13. INTEGER N
14. INTEGER A(N), B(N), C(N)
15. INTEGER I, ID, OMP_GET_THREAD_NUM
16. !$OMP PARALLEL DO SHARED (A, B, C, N) PRIVATE(ID)
17. DO I = 1, N
18. ID = OMP_GET_THREAD_NUM()
19. C(I) = A(I) + B(I) + ID
20. ENDDO
21. !$OMP END PARALLEL DO
22. END

Intel® Fortran Compiler User's Guide

193

call sequence that begins with a layer of Intel OpenMP library function calls.

ERRATA: GNU debugger sometimes fails to properly unwind the call stack of the
immediate caller of Intel OpenMP library function __kmpc_fork_call().

Call Stack Dump of Master Thread upon Entry to Subroutine PADD

Switching from One Thread to Another

Call Stack Dump of Master Thread upon Entry to Parallel Region

Call Stack Dump of Worker Thread upon Entry to Parallel Region

Example 2 Debugging Code Using Multiple Threads with Shared Variables

Subroutine PADD() Machine Code Listing
.globl padd_

padd_:
parameter 1: 8 + %ebp

Intel® Fortran Compiler User's Guide

194

p p
parameter 2: 12 + %ebp
parameter 3: 16 + %ebp
parameter 4(n): 20 + %ebp
..B1.1: # Preds ..B1.0
..LN1:
pushl %ebp #1.0
movl %esp, %ebp #1.0
subl $208, %esp #1.0
movl %ebx, -4(%ebp) #1.0
pushl %edi #1.0
movl $.2.1_2_kmpc_loc_struct_pack.0, (%esp) #1.0
call __kmpc_global_thread_num #1.0

LOE eax
..B1.34: # Preds ..B1.1
addl $4, %esp #1.0
movl %eax, -28(%ebp) #1.0

LOE
..B1.2: # Preds ..B1.34
movl -28(%ebp), %eax #1.0
movl %eax, -208(%ebp) #1.0
movl $4, %eax #1.0
movl %eax, -184(%ebp) #1.0
movl %eax, -188(%ebp) #1.0
movl 20(%ebp), %eax #1.0
movl (%eax), %eax #1.0
movl %eax, -24(%ebp) #1.0
testl %eax, %eax #1.0
jg ..B1.5 # Prob 50% #1.0

LOE
..B1.3: # Preds ..B1.2

movl $0, -24(%ebp) #1.0
LOE

..B1.5: # Preds ..B1.2 ..B1.3
movl -24(%ebp), %eax #1.0
movl %eax, -164(%ebp) #1.0
movl $1, %eax #1.0
movl %eax, -176(%ebp) #1.0
movl %eax, -168(%ebp) #1.0
movl 20(%ebp), %edx #1.0
movl (%edx), %edx #1.0
movl %edx, -172(%ebp) #1.0
movl -164(%ebp), %edx #1.0
movl %edx, -192(%ebp) #1.0
movl 8(%ebp), %edx #1.0
movl %edx, -196(%ebp) #1.0
movl $4, -204(%ebp) #1.0
movl -204(%ebp), %edx #1.0
negl %edx #1.0
addl -196(%ebp), %edx #1.0
movl %edx, -200(%ebp) #1.0
movl %eax, -180(%ebp) #1.0
movl -192(%ebp), %eax #1.0
testl %eax %eax #1 0

Intel® Fortran Compiler User's Guide

195

testl %eax, %eax #1.0
jg ..B1.8 # Prob 50% #1.0

LOE
..B1.6: # Preds ..B1.5
movl -172(%ebp), %eax #1.0
testl %eax, %eax #1.0
jg ..B1.8 # Prob 50% #1.0

LOE
..B1.7: # Preds ..B1.6
movl $0, -172(%ebp) #1.0

LOE
..B1.8: # Preds ..B1.6 ..B1.7 ..B1.5
movl $4, %eax #1.0
movl %eax, -140(%ebp) #1.0
movl %eax, -144(%ebp) #1.0
movl $1, %edx #1.0
movl %edx, -132(%ebp) #1.0
movl %edx, -124(%ebp) #1.0
movl 20(%ebp), %ecx #1.0
movl (%ecx), %ecx #1.0
movl %ecx, -128(%ebp) #1.0
movl -164(%ebp), %ecx #1.0
movl %ecx, -148(%ebp) #1.0
movl 12(%ebp), %ecx #1.0
movl %ecx, -152(%ebp) #1.0
movl %eax, -160(%ebp) #1.0
movl -160(%ebp), %eax #1.0
negl %eax #1.0
addl -152(%ebp), %eax #1.0
movl %eax, -156(%ebp) #1.0
movl %edx, -136(%ebp) #1.0
movl -148(%ebp), %eax #1.0
testl %eax, %eax #1.0
jg ..B1.11 # Prob 50% #1.0

LOE
..B1.9: # Preds ..B1.8
movl -128(%ebp), %eax #1.0
testl %eax, %eax #1.0
jg ..B1.11 # Prob 50% #1.0

LOE
..B1.10: # Preds ..B1.9
movl $0, -128(%ebp) #1.0

LOE
..B1.11: # Preds ..B1.9 ..B1.10 ..B1.8
movl $4, %eax #1.0
movl %eax, -100(%ebp) #1.0
movl %eax, -104(%ebp) #1.0
movl $1, %edx #1.0
movl %edx, -92(%ebp) #1.0
movl %edx, -84(%ebp) #1.0
movl 20(%ebp), %ecx #1.0
movl (%ecx), %ecx #1.0
movl %ecx, -88(%ebp) #1.0
movl -164(%ebp) %e x #1 0

Intel® Fortran Compiler User's Guide

196

movl 164(%ebp), %ecx #1.0
movl %ecx, -108(%ebp) #1.0
movl 16(%ebp), %ecx #1.0
movl %ecx, -112(%ebp) #1.0
movl %eax, -120(%ebp) #1.0
movl -120(%ebp), %eax #1.0
negl %eax #1.0
addl -112(%ebp), %eax #1.0
movl %eax, -116(%ebp) #1.0
movl %edx, -96(%ebp) #1.0
movl -108(%ebp), %eax #1.0
testl %eax, %eax #1.0
jg ..B1.14 # Prob 50% #1.0

LOE
..B1.12: # Preds ..B1.11
movl -88(%ebp), %eax #1.0
testl %eax, %eax #1.0
jg ..B1.14 # Prob 50% #1.0

LOE
..B1.13: # Preds ..B1.12
movl $0, -88(%ebp) #1.0

LOE
..B1.14: # Preds ..B1.12 ..B1.13 ..B1.11
..LN2:
pushl %edi #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
call __kmpc_ok_to_fork #6.0

LOE eax
..B1.35: # Preds ..B1.14
addl $4, %esp #6.0
movl %eax, -20(%ebp) #6.0

LOE
..B1.15: # Preds ..B1.35
movl -20(%ebp), %eax #6.0
testl %eax, %eax #6.0
jne ..B1.19 # Prob 50% #6.0

LOE
..B1.16: # Preds ..B1.15
addl $-8, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl -208(%ebp), %eax #6.0
movl %eax, 4(%esp) #6.0
call __kmpc_serialized_parallel #6.0

LOE
..B1.36: # Preds ..B1.16
addl $8, %esp #6.0

LOE
..B1.17: # Preds ..B1.36
addl $-24, %esp #6.0
lea -208(%ebp), %eax #6.0
movl %eax, (%esp) #6.0
movl $___kmpv_zeropadd__0, 4(%esp) #6.0
movl -196(%ebp), %eax #6.0
movl %eax 8(%esp) #6 0

Intel® Fortran Compiler User's Guide

197

movl %eax, 8(%esp) #6.0
movl -152(%ebp), %eax #6.0
movl %eax, 12(%esp) #6.0
movl -112(%ebp), %eax #6.0
movl %eax, 16(%esp) #6.0
lea 20(%ebp), %eax #6.0
movl %eax, 20(%esp) #6.0
call _padd__6__par_loop0 #6.0

LOE
..B1.37: # Preds ..B1.17
addl $24, %esp #6.0

LOE
..B1.18: # Preds ..B1.37
addl $-8, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl -208(%ebp), %eax #6.0
movl %eax, 4(%esp) #6.0
call __kmpc_end_serialized_parallel #6.0

LOE
..B1.38: # Preds ..B1.18
addl $8, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0

LOE
..B1.19: # Preds ..B1.15
addl $-28, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl $4, 4(%esp) #6.0
movl $_padd__6__par_loop0, 8(%esp) #6.0
movl -196(%ebp), %eax #6.0
movl %eax, 12(%esp) #6.0
movl -152(%ebp), %eax #6.0
movl %eax, 16(%esp) #6.0
movl -112(%ebp), %eax #6.0
movl %eax, 20(%esp) #6.0
lea 20(%ebp), %eax #6.0
movl %eax, 24(%esp) #6.0
call __kmpc_fork_call #6.0

LOE
..B1.39: # Preds ..B1.19
addl $28, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0

LOE
..B1.20: # Preds ..B1.30
movl $1, %eax #6.0
movl %eax, -72(%ebp) #6.0
..LN3:
movl -80(%ebp), %edx #10.0
..LN4:
movl %edx, -68(%ebp) #6.0
..LN5:
movl -80(%ebp), %edx #10.0
..LN6:
movl %edx, -64(%ebp) #6.0
movl $0 -60(%ebp) #6 0

Intel® Fortran Compiler User's Guide

198

movl $0, 60(%ebp) #6.0
movl %eax, -56(%ebp) #6.0
addl $-36, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl -8(%ebp), %edx #6.0
movl %edx, 4(%esp) #6.0
movl $34, 8(%esp) #6.0
lea -60(%ebp), %edx #6.0
movl %edx, 12(%esp) #6.0
lea -72(%ebp), %edx #6.0
movl %edx, 16(%esp) #6.0
lea -68(%ebp), %edx #6.0
movl %edx, 20(%esp) #6.0
lea -56(%ebp), %edx #6.0
movl %edx, 24(%esp) #6.0
movl %eax, 28(%esp) #6.0
movl %eax, 32(%esp) #6.0
call __kmpc_for_static_init_4 #6.0

LOE
..B1.40: # Preds ..B1.20
addl $36, %esp #6.0

LOE
..B1.21: # Preds ..B1.40
movl -72(%ebp), %eax #6.0
movl -64(%ebp), %edx #6.0
cmpl %edx, %eax #6.0
jg ..B1.26 # Prob 50% #6.0

LOE
..B1.22: # Preds ..B1.21
movl -68(%ebp), %eax #6.0
movl -64(%ebp), %edx #6.0
cmpl %edx, %eax #6.0
jg ..B1.24 # Prob 50% #6.0

LOE
..B1.23: # Preds ..B1.22
movl -68(%ebp), %eax #6.0
movl %eax, -16(%ebp) #6.0
jmp ..B1.25 # Prob 100% #6.0

LOE
..B1.24: # Preds ..B1.22
movl -64(%ebp), %eax #6.0
movl %eax, -16(%ebp) #6.0

LOE
..B1.25: # Preds ..B1.24 ..B1.23
movl -16(%ebp), %eax #6.0
movl %eax, -68(%ebp) #6.0
movl -72(%ebp), %eax #6.0
movl %eax, -76(%ebp) #6.0
jmp ..B1.27 # Prob 100% #6.0

LOE
..B1.26: # Preds ..B1.28 ..B1.21
addl $-8, %esp #6.0
movl $.2.1_2_kmpc_loc_struct_pack.1, (%esp) #6.0
movl -8(%ebp) %eax #6 0

Intel® Fortran Compiler User's Guide

199

movl 8(%ebp), %eax #6.0
movl %eax, 4(%esp) #6.0
call __kmpc_for_static_fini #6.0

LOE
..B1.41: # Preds ..B1.26
addl $8, %esp #6.0
jmp ..B1.31 # Prob 100% #6.0

LOE
..B1.27: # Preds ..B1.28 ..B1.25
..LN7:
call omp_get_thread_num_ #8.0

LOE eax
..B1.42: # Preds ..B1.27
movl %eax, -12(%ebp) #8.0

LOE
..B1.28: # Preds ..B1.42
movl -12(%ebp), %eax #8.0
movl %eax, -52(%ebp) #8.0
..LN8:
movl -76(%ebp), %eax #9.0
..LN9:
movl 16(%ebp), %edx #6.0
..LN10:
movl -76(%ebp), %ecx #9.0
..LN11:
movl 20(%ebp), %ebx #6.0
..LN12:
movl -4(%ebx,%ecx,4), %ecx #9.0
addl -4(%edx,%eax,4), %ecx #9.0
addl -52(%ebp), %ecx #9.0
movl -76(%ebp), %eax #9.0
..LN13:
movl 24(%ebp), %edx #6.0
..LN14:
movl %ecx, -4(%edx,%eax,4) #9.0
..LN15:
incl -76(%ebp) #10.0
movl -76(%ebp), %eax #10.0
movl -68(%ebp), %edx #10.0
cmpl %edx, %eax #10.0
jle ..B1.27 # Prob 50% #10.0
jmp ..B1.26 # Prob 100% #10.0

LOE
.type padd_,@function
.size padd_,.-padd_
.globl _padd__6__par_loop0
_padd__6__par_loop0:
parameter 1: 8 + %ebp
parameter 2: 12 + %ebp
parameter 3: 16 + %ebp
parameter 4: 20 + %ebp
parameter 5: 24 + %ebp
parameter 6: 28 + %ebp
B1 30: # Preds B1 0

Intel® Fortran Compiler User's Guide

200

Debugging Shared Variables
When a variable appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION
clause on some block, the variable is made private to the parallel region by redeclaring it in
the block. SHARED data, however, is not declared in the threaded code. Instead, it gets its
declaration at the routine level. At the machine code level, these shared variables become
incoming subroutine call arguments to the threaded entry points (such as
___PADD_6__par_loop0).

In Example 2, the entry point ___PADD_6_par_loop0 has six incoming parameters. The
corresponding OpenMP parallel region has four shared variables. First two parameters
(parameters 1 and 2) are reserved for the compiler's use, and each of the remaining four
parameters corresponds to one shared variable. These four parameters exactly match the
last four parameters to __kmpc_fork_call() in the machine code of PADD.

 Note
The FIRSTPRIVATE, LASTPRIVATE, and REDUCTION variables also require shared
variables to get the values into or out of the parallel region.

Due to the lack of support in debuggers, the correspondence between the shared variables
(in their original names) and their contents cannot be seen in the debugger at the threaded
entry point level. However, you can still move to the call stack of one of the subroutines and

..B1.30: # Preds ..B1.0

..LN16:
pushl %ebp #13.0
movl %esp, %ebp #13.0
subl $208, %esp #13.0
movl %ebx, -4(%ebp) #13.0
..LN17:
movl 8(%ebp), %eax #6.0
movl (%eax), %eax #6.0
movl %eax, -8(%ebp) #6.0
movl 28(%ebp), %eax #6.0
..LN18:
movl (%eax), %eax #7.0
movl (%eax), %eax #7.0
movl %eax, -80(%ebp) #7.0
movl $1, -76(%ebp) #7.0
movl -80(%ebp), %eax #7.0
testl %eax, %eax #7.0
jg ..B1.20 # Prob 50% #7.0

LOE
..B1.31: #
Preds ..B1.41 ..B1.39 ..B1.38 ..B1.30
..LN19:
movl -4(%ebp), %ebx #13.0
leave #13.0
ret #13.0
.align 4,0x90
mark_end;

Intel® Fortran Compiler User's Guide

201

y p , y
examine the contents of the variables at that level. This technique can be used to examine
the contents of shared variables. In Example 2, contents of the shared variables A, B, C,
and N can be examined if you move to the call stack of PARALLEL().

Vectorization
The vectorizer is a component of the Intel® Fortran Compiler that automatically uses SIMD
instructions in the MMX(TM), SSE, and SSE2 instruction sets. The vectorizer detects
operations in the program that can be done in parallel, and then converts the sequential
operations like one SIMD instruction that processes 2, 4, 8 or up to 16 elements in parallel,
depending on the data type.

This section provides options description, guidelines, and examples for Intel® Fortran
Compiler vectorization implemented by IA-32 compiler only. For additional information, see
Publications on Compiler Optimizations.

The following list summarizes this section contents.

! Descriptions of compiler options to control vectorization

! Vectorization Key Programming Guidelines

! Discussion and general guidelines on vectorization levels:

—automatic vectorization

—vectorization with user intervention

! Examples demonstrating typical vectorization issues and resolutions

The Intel compiler supports a variety of directives that can help the compiler to generate
effective vector instructions. See compiler directives supporting vectorization.

Vectorizer Options
Vectorization is an IA-32-specific feature and can be summarized by the command line
options described in the following tables. Vectorization depends upon the compiler's ability
to disambiguate memory references. Certain options may enable the compiler to do better
vectorization. These options can enable other optimizations in addition to vectorization.
When a -x{M|K|W} or -ax{M|K|W} is used and -O2 (which is ON by default) is also in
effect, the vectorizer is enabled. The -Qx{M|K|W} or -Qax{M|K|W} options enable
vectorizer with -O1 and -O3 options also.

-x{M|K|W} Generate specialized code to run
exclusively on the processors supporting
the extensions indicated by {M|K|W} See

Intel® Fortran Compiler User's Guide

202

Vectorization Reports
The -vec_report{0|1|2|3|4|5} options directs the compiler to generate the
vectorization reports with different level of information as follows:

-vec_report0: no diagnostic information is displayed

-vec_report1: display diagnostics indicating loops successfully vectorized (default)

-vec_report2: same as -vec_report1, plus diagnostics indicating loops not
successfully vectorized

-vec_report3: same as -vec_report2, plus additional information about any proven or
assumed dependences
-vec_report4: indicate non-vectorized loops
-vec_report5: indicate non-vectorized loops and the reason why they were not
vectorized.

Usage with Other Options

The vectorization reports are generated in the final compilation phase when executable is
generated. Therefore if you use the -c option and a -vec_report{n} option in the
command line, no report will be generated.

If you use -c, -ipo and -x{M|K|W} or -ax{M|K|W} and -vec_report{n}, the compiler
i i d t i t d

the extensions indicated by {M|K|W}. See
Exclusive Specialized Code with -x
{i|M|K|W} for details.

 Note
-xi is not a vectorizer option.

-ax{M|K|W} Generates, in a single binary, code
specialized to the extensions specified by
{M|K|W} and also generic IA-32 code. The
generic code is usually slower. See
Specialized Code with -ax{i|M|K|W} for
details.

 Note
-axi is not a vectorizer option.

-vec_report
{0|1|2|3|4|5}
Default:
-vec_report1

Controls the diagnostic messages from the
vectorizer, see subsection that follows the
table.

Intel® Fortran Compiler User's Guide

203

issues a warning and no report is generated.

To produce a report when using the above mentioned options, you need to add the -
ipo_obj option. The combination of -c and -ipo_obj produces a single file compilation,
and hence does generate object code, and eventually a report is generated.

The following commands generate vectorization report:

prompt>ifc -x{M|K|W} -vec_report3 file.f

prompt>ifc -x{M|K|W} -ipo -ipo_obj -vec_report3 file.f

prompt>ifc -c -x{M|K|W} -ipo -ipo_obj -vec_report3 file.f

Loop Parallelization and Vectorization
Combining the -parallel and -x{M|K|W} options instructs the compiler to attempt both
automatic loop parallelization and automatic loop vectorization in the same compilation. In
most cases, the compiler will consider outermost loops for parallelization and innermost
loops for vectorization. If deemed profitable, however, the compiler may even apply loop
parallelization and vectorization to the same loop. See Guidelines for Effective Auto-
parallelization Usage and Vectorization Key Programming Guidelines.

Note that in some rare cases successful loop parallelization (either automatically or by
means of OpenMP* directives) may affect the messages reported by the compiler for a
non-vectorizable loop in a non-intuitive way.

Vectorization Key Programming Guidelines
The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD)
processing automatically. Users can help however by supplying the compiler with additional
information; for example, directives. Review these guidelines and restrictions, see code
examples in further topics, and check them against your code to eliminate ambiguities that
prevent the compiler from achieving optimal vectorization.

Guidelines

You will often need to make some changes to your loops.

For loop bodies -

Use:

! Straight-line code (a single basic block)

! Vector data only; that is arrays and invariant expressions on the right hand side of

Intel® Fortran Compiler User's Guide

204

! Vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments.

! Only assignment statements

Avoid:

! Function calls

! Unvectorizable operations (other than mathematical)

! Mixing vectorizable types in the same loop

! Data-dependent loop exit conditions

! Loop unrolling (compiler does it)

! Decomposing one loop with several statements in the body into several single-
statement loops.

Restrictions

Vectorization depends on the two major factors:

! Hardware. The compiler is limited by restrictions imposed by the underlying
hardware. In the case of Streaming SIMD Extensions, the vector memory operations
are limited to stride-1 accesses with a preference to 16-byte-aligned memory
references. This means that if the compiler abstractly recognizes a loop as
vectorizable, it still might not vectorize it for a distinct target architecture.

! Style. The style in which you write source code can inhibit optimization. For example,
a common problem with global pointers is that they often prevent the compiler from
being able to prove that two memory references refer to distinct locations.
Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop
structures. The ambiguity arises from the complexity of the keywords, operators, data
references, and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic
messages, you can modify your program to overcome the known limitations and enable
effective vectorization. The following sections summarize the capabilities and restrictions of
the vectorizer with respect to loop structures.

Data Dependence
Data dependence relations represent the required ordering constraints on the operations in
serial loops. Because vectorization rearranges the order in which operations are executed,
any auto-vectorizer must have at its disposal some form of data dependence analysis.

Intel® Fortran Compiler User's Guide

205

any auto vectorizer must have at its disposal some form of data dependence analysis.

An example where data dependencies prohibit vectorization is shown below. In this
example, the value of each element of an array is dependent on the value of its neighbor
that was computed in the previous iteration.

The loop in the above example is not vectorizable because the WRITE to the current
element DATA(I) is dependent on the use of the preceding element DATA(I-1), which
has already been written to and changed in the previous iteration. To see this, look at the
access patterns of the array for the first two iterations as shown below.

In the normal sequential version of this loop, the value of DATA(1) read from during the
second iteration was written to in the first iteration. For vectorization, it must be possible to
do the iterations in parallel, without changing the semantics of the original loop.

Data Dependence Analysis

Data dependence analysis involves finding the conditions under which two memory
accesses may overlap. Given two references in a program, the conditions are defined by:

! whether the referenced variables may be aliases for the same (or overlapping)
regions in memory, and, for array references

! the relationship between the subscripts

For IA-32, data dependence analyzer for array references is organized as a series of tests,
which progressively increase in power as well as in time and space costs. First, a number of
simple tests are performed in a dimension-by-dimension manner, since independence in
any dimension will exclude any dependence relationship. Multidimensional arrays
references that may cross their declared dimension boundaries can be converted to their
li i d f b f th t t li d S f th i l t t th t b d

Data-dependent Loop
REAL DATA(0:N)
INTEGER I
DO I=1, N-1
DATA(I) =DATA(I-1)*0.25+DATA(I)*0.5+DATA(I+1)*0.25
END DO

Data Dependence Vectorization
Patterns
I=1: READ DATA (0)
READ DATA (1)
READ DATA (2)
WRITE DATA (1)
I=2: READ DATA(1)
READ DATA (2)
READ DATA (3)
WRITE DATA (2)

Intel® Fortran Compiler User's Guide

206

linearized form before the tests are applied. Some of the simple tests that can be used are
the fast greatest common divisor (GCD) test and the extended bounds test. The GCD test
proves independence if the GCD of the coefficients of loop indices cannot evenly divide the
constant term. The extended bounds test checks for potential overlap of the extreme values
in subscript expressions. If all simple tests fail to prove independence, we eventually resort
to a powerful hierarchical dependence solver that uses Fourier-Motzkin elimination to solve
the data dependence problem in all dimensions. For more details of data dependence
theory and data dependence analysis, refer to the Publications on Compiler Optimizations.

Loop Constructs
Loops can be formed with the usual DO-ENDDO and DO WHILE, or by using a GOTO and a
label. However, the loops must have a single entry and a single exit to be vectorized.
Following are the examples of correct and incorrect usages of loop constructs.

Correct Usage
SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100), C
(100)
INTEGER I
I = 1
DO WHILE (I .LE. 100)
A(I) = B(I) * C(I)
IF (A(I) .LT. 0.0) A(I) =
0.0
I = I + 1
ENDDO
RETURN
END

Incorrect Usage
SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100), C
(100)
INTEGER I
I = 1
DO WHILE (I .LE. 100)
A(I) = B(I) * C(I)
C The next statement allows
early
C exit from the loop and
prevents
C vectorization of the loop.
IF (A(I) .LT. 0.0) GOTO 10
I I + 1

Intel® Fortran Compiler User's Guide

207

Loop Exit Conditions
Loop exit conditions determine the number of iterations that a loop executes. For example,
fixed indexes for loops determine the iterations. The loop iterations must be countable; that
is, the number of iterations must be expressed as one of the following:

! a constant

! a loop invariant term

! a linear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show
countable and non-countable loop constructs.

I = I + 1
ENDDO
10 CONTINUE
RETURN
END

Correct Usage for Countable Loop, Example 1
SUBROUTINE FOO (A, B, C, N, LB)
DIMENSION A(N),B(N),C(N)
INTEGER N, LB, I, COUNT
! Number of iterations is "N - LB +
1"
COUNT = N
DO WHILE (COUNT .GE. LB)
A(I) = B(I) * C(I)
COUNT = COUNT - 1
I = I + 1
ENDDO ! LB is not defined within
loop
RETURN
END

Correct Usage for Countable Loop, Example 2
! Number of iterations is (N-M+2) /2
SUBROUTINE FOO (A, B, C, M, N, LB)
DIMENSION A(N),B(N),C(N)
INTEGER I, L, M, N
I = 1;
DO L = M,N,2
A(I) = B(I) * C(I)
I = I + 1
ENDDO
RETURN
END

Incorrect Usage for Non-countable Loop

Intel® Fortran Compiler User's Guide

208

Types of Loop Vectorized
For integer loops, the 64-bit MMX(TM) technology and 128-bit Streaming SIMD Extensions
(SSE) provide SIMD instructions for most arithmetic and logical operators on 32-bit, 16-bit,
and 8-bit integer data types. Vectorization may proceed if the final precision of integer wrap -
around arithmetic will be preserved. A 32-bit shift-right operator, for instance, is not
vectorized in 16-bit mode if the final stored value is a 16-bit integer. Because the MMX(TM)
and SSE instruction sets are not fully orthogonal (shifts on byte operands, for instance, are
not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point
numbers, SSE provides SIMD instructions for the arithmetic operators '+', ' -', '*', and '/'. In
addition, SSE provides SIMD instructions for the binary MIN and MAX and unary SQRT
operators. SIMD versions of several other mathematical operators (like the trigonometric
functions SIN, COS, TAN) are supported in software in a vector mathematical runtime library
that is provided with the Intel® Fortran Compiler, of which the compiler takes advantage.

Stripmining and Cleanup
The compiler automatically strip-mines your loop and generates a cleanup loop.

! Number of iterations is dependent
on A(I)
SUBROUTINE FOO (A, B, C)
DIMENSION A(100),B(100),C(100)
INTEGER I
I = 1
DO WHILE (A(I) .GT. 0.0)
A(I) = B(I) * C(I)
I = I + 1
ENDDO
RETURN
END

Stripmining and Cleanup Loops
Before Vectorization

i = 1
do while (i<=n)
a(i) = b(i) + c(i) ! Original loop code
i = i + 1
end do

After Vectorization

!The vectorizer generates the following
two loops
i = 1
do while (i < (n - mod(n,4)))
! Ve tor strip mined loop

Intel® Fortran Compiler User's Guide

209

Statements in the Loop Body
The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations

The statements within the loop body may be REAL operations (typically on arrays).
Arithmetic operations supported are addition, subtraction, multiplication, division, negation,
square root, MAX, MIN, and mathematical functions such as SIN and COS. Note that
conversion to/from some types of floats is not valid. Operation on DOUBLE PRECISION
types is not valid, unless optimizing for a
Pentium® 4 and Xeon(TM) processors system, using the -xW or -axW compiler option.

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations (again, typically
for arrays). Arithmetic operations are limited to such operations as addition, subtraction,
ABS, MIN, and MAX. Logical operations include bitwise AND, OR and XOR operators. You can
mix data types only if the conversion can be done without a loss of precision. Some
example operators where you can mix data types are multiplication, shift, or unary
operators.

Other Operations

No statements other than the preceding floating-point and integer operations are permitted.
The loop body cannot contain any function calls other than the ones described above.

Vectorization Examples
This section contains simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because the
compiler cannot prove that DEST(A(I)) and DEST(B(I)) are distinct.

! Vector strip-mined loop.
a(i:i+3) = b(i:i+3) + c(i:i+3)
i = i + 4
end do
do while (i <= n)
a(i) = b(i) + c(i) !Scalar clean-up
loop
i = i + 1
end do

Unvectorizable Copy Due to Unproven
Distinction

Intel® Fortran Compiler User's Guide

210

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each
structure or array element is aligned in a way that its base address is a multiple of 16.

The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a data cache
unit (DCU) split due to misaligned data. The code loads the misaligned data across a 16-
byte boundary, which results in an additional memory access causing a six- to twelve-cycle
stall. You can avoid the stalls if you know that the data is aligned and you specify to
assume alignment

After vectorization, the loop is executed as shown in figure below.

Both the vector iterations A(1:4) = B(1:4); and A(5:8) = B(5:8); can be
implemented with aligned moves if both the elements A(1) and B(1) are 16-byte aligned.

 Caution
If you specify the vectorizer with incorrect alignment options, the compiler will
generate code with unexpected behavior. Specifically, using aligned moves on
unaligned data, will result in an illegal instruction exception!

Alignment Strategy

SUBROUTINE VEC_COPY
(DEST,A,B,LEN)
DIMENSION DEST(*)
INTEGER A(*), B(*)
INTEGER LEN, I
DO I=1,LEN
DEST(A(I)) = DEST(B(I))
END DO
RETURN
END

Misaligned Data Crossing 16-Byte
Boundary

Vector and Scalar Clean-up Iterations

Intel® Fortran Compiler User's Guide

211

g gy

The compiler has at its disposal several alignment strategies in case the alignment of data
structures is not known at compile-time. A simple example is shown below (several other
strategies are supported as well). If in the loop shown below the alignment of A is unknown,
the compiler will generate a prelude loop that iterates until the array reference, that occurs
the most, hits an aligned address. This makes the alignment properties of A known, and the
vector loop is optimized accordingly. In this case, the vectorizer applies dynamic loop
peeling, a specific Intel® Fortran feature.

Loop Interchange and Subscripts: Matrix Multiply
Matrix multiplication is commonly written as shown in the following example.

Data Alignment Example
Original loop:

SUBROUTINE DOIT(A)
REAL A(100) ! alignment of argument A
is unknown
DO I = 1, 100
A(I) = A(I) + 1.0
ENDDO
END SUBROUTINE

Aligning Data

! The vectorizer will apply dynamic loop
peeling as follows:
SUBROUTINE DOIT(A)
REAL A(100)
! let P be (A%16)where A is address of A(1)
IF (P .NE. 0) THEN
P = (16 - P) /4 ! determine runtime
peeling factor
DO I = 1, P
A(I) = A(I) + 1.0
ENDDO
ENDIF
! Now this loop starts at a 16-byte boundary,

! and will be vectorized accordingly
DO I = P + 1, 100
A(I) = A(I) + 1.0
ENDDO
END SUBROUTINE

DO I=1, N
DO J=1, N
DO K=1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

Intel® Fortran Compiler User's Guide

212

The use of B(K,J), is not a stride-1 reference and therefore will not normally be
vectorizable. If the loops are interchanged, however, all the references will become
stride-1 as in the Matrix Multiplication with Stride-1 example that follows.

 Note
Interchanging is not always possible because of dependencies, which can lead to
different results.

For additional information, see Publications on Compiler Optimizations.

END DO
END DO
END DO

Matrix Multiplication with Stride-1
DO J=1,N
DO K=1,N
DO I=1,N
C(I,J) = C(I,J) + A(I,K)*B
(K,J)
ENDDO
ENDDO
ENDDO

Intel® Fortran Compiler User's Guide

213

Optimization Support Features
This section describes the Intel® Fortran features such as directives, intrinsics, runtime
library routines and various utilities which enhance your application performance in support
of compiler optimizations. These features are Intel Fortran language extensions that enable
you optimize your source code directly. This section includes examples of optimizations
supported by Intel extended directives and intrinsics or library routines that enhance and/or
help analyze performance.

For complete detail of the Intel® Fortran Compiler directives and examples of their use, see
Appendix A in the Intel® Fortran Programmer's Reference. For intrinsic procedures, see
Chapter 1, "Intrinsic Procedures," in the Intel® Fortran Libraries Reference.

A special topic describes options that enable you to generate optimization reports for major
compiler phases and major optimizations. The optimization report capability is used for
Itanium®-based applications only.

Compiler Directives
This section discusses the Intel® Fortran language extended directives that enhance
optimizations of application code, such as software pipelining, loop unrolling, prefetching
and vectorization. For complete list, descriptions and code examples of the Intel ® Fortran
Compiler directives, see Appendix A in the Intel® Fortran Programmer's Reference.

Pipelining for Itanium®-based Applications

The SWP | NOSWP directives indicate preference for a loop to get software-pipelined or
not. The SWP directive does not help data dependence, but overrides heuristics based on
profile counts or lop-sided control flow.

The syntax for this directive is:

CDIR$ SWP or !DIR$ SWP

CDIR$ NOSWP or !DIR$ NOSWP

The software pipelining optimization triggered by the SWP directive applies instruction
scheduling to certain innermost loops, allowing instructions within a loop to be split into
different stages, allowing increased instruction level parallelism. This can reduce the impact
of long-latency operations, resulting in faster loop execution. Loops chosen for software
pipelining are always innermost loops that do not contain procedure calls that are not
inlined. Because the optimizer no longer considers fully unrolled loops as innermost loops,
fully unrolling loops can allow an additional loop to become the innermost loop (see -
unroll[n]]). You can request and view the optimization report to see whether software
pipelining was applied (see Optimizer Report Generation).

Intel® Fortran Compiler User's Guide

214

LOOP COUNT (N) Directive

The LOOP COUNT (n) directive indicates the loop count is likely to be n.

The syntax for this directive is:

CDIR$ LOOP COUNT(n) or !DIR$ LOOP COUNT(n)

where n is an integer constant.

The value of loop count affects heuristics used in software pipelining, vectorization and
loop-transformations.

Loop Distribution Directive

The DISTRIBUTE POINT directive indicates to compiler a preference of performing loop
distribution.

The syntax for this directive is:

CDIR$ DISTRIBUTE POINT or !DIR$ DISTRIBUTE POINT

Loop distribution may cause large loops be distributed into smaller ones. This may enable
more loops to get software-pipelined. If the directive is placed inside a loop, the distribution
is performed after the directive and any loop-carried dependency is ignored. If the directive
is placed before a loop, the compiler will determine where to distribute and data
dependency is observed. Currently only one distribute directive is supported if it is placed
inside the loop.

SWP
CDIR$ SWP
do i = 1, m
if (a(i) .eq. 0) then
b(i) = a(i) + 1
else
b(i) = a(i)/c(i)
endif
enddo

LOOP COUNT (N)
CDIR$ LOOP COUNT (10000)
do i =1,m
b(i) = a(i) +1 ! This is likely to enable

! the loop to get software-
! pipelined

enddo

Intel® Fortran Compiler User's Guide

215

Loop Unrolling Support

The UNROLL directive tells the compiler how many times to unroll a counted loop.

The syntax for this directive is:

CDIR$ UNROLL or !DIR$ UNROLL

CDIR$ UNROLL [n] or !DIR$ UNROLL [n]

CDIR$ NOUNROLL or !DIR$ NOUNROLL

where n is an integer constant. The range of n is 0 through 255.

The UNROLL directive must precede the do statement for each do loop it affects.

If n is specified, the optimizer unrolls the loop n times. If n is omitted or if it is outside the
allowed range, the optimizer assigns the number of times to unroll the loop.

The UNROLL directive overrides any setting of loop unrolling from the command line.

Currently, the directive can be applied only for the innermost loop nest. If applied to the
outer loop nests, it is ignored. The compiler generates correct code by comparing n and the
loop count.

DISTRIBUTE POINT
CDIR$ DISTRIBUTE POINT
do i =1, m
b(i) = a(i) +1
....
c(i) = a(i) + b(i) ! Compiler will decide where

! to distribute.
! Data dependency is observed

....
d(i) = c(i) + 1
enddo

do i =1, m
b(i) = a(i) +1
....
CDIR$ DISTRIBUTE POINT
call sub(a, n) ! Distribution will start
here,

! ignoring all loop-carried
! dependency

c(i) = a(i) + b(i)
....
d(i) = c(i) + 1
enddo

Intel® Fortran Compiler User's Guide

216

Prefetching Support

The PREFETCH and NOPREFTCH directives assert that the data prefetches be generated or
not generated for some memory references. This affects the heuristics used in the
compiler.

The syntax for this directive is:

CDIR$ PREFETCH or !DIR$ PREFETCH

CDIR$ NOPRFETCH or !DIR$ NOPREFETCH

CDIR$ PREFETCH a,b or !DIR$ PREFETCH a,b

If loop includes expression a(j), placing PREFETCH a in front of the loop, instructs the
compiler to insert prefetches for a(j + d) within the loop. d is determined by the compiler.
This directive is supported when option -O3 is on.

Vectorization Support (IA-32)

The directives discussed in this topic support vectorization and used for IA-32 applications
only.

IVDEP Directive

The compiler supports IVDEP directive which instructs the compiler to ignore assumed
vector dependences. Use this directive when you know that the assumed loop
dependences are safe to ignore.

For example, if the expression j >= 0 is always true in the code fragment bellow, the
IVDEP directive can communicate this information to the compiler. This directive informs
the compiler that the conservatively assumed loop-carried flow dependences for values j <
0 can be safely ignored:

UNROLL
CDIR$ UNROLL(4)
do i = 1, m
b(i) = a(i) + 1
d(i) = c(i) + 1
enddo

PREFETCH
CDIR$ NOPREFETCH c
CDIR$ PREFETCH a
do i = 1, m
b(i) = a(c(i)) + 1
enddo

Intel® Fortran Compiler User's Guide

217

!DIR$ IVDEP
do i = 1, 100
a(i) = a(i+j)
enddo

 Note

The proven dependeces that prevent vectorization are not ignored, only assumed
dependeces are ignored.

 The syntax for the directive is:

CDIR$IVDEP
!DIR$IVDEP

The usage of the directive differs depending on the loop form, see examples below.

For loops of the form 1, use old values of a, and assume that there is no loop-carried flow
dependencies from DEF to USE.

For loops of the form 2, use new values of a, and assume that there is no loop-carried anti-
dependencies from USE to DEF.

In both cases, it is valid to distribute the loop, and there is no loop-carried output
dependency.

Loop 1
Do i
= a(*) + 1
a(*) =
enddo

Loop 2
Do i
a(*) =
= a(*) + 1
enddo

Example 1
CDIR$IVDEP
do j=1,n
a(j) = a(j+m) + 1
enddo

Example 2
CDIR$IVDEP
do j=1,n
a(j) = b(j) +1
b(j) = a(j+m) + 1
enddo

Intel® Fortran Compiler User's Guide

218

Example 1 ignores the possible backward dependencies and enables the loop to get
software pipelined.

Example 2 shows possible forward and backward dependencies involving array a in this
loop and creating a dependency cycle. With IVDEP, the backward dependencies are
ignored.

IVDEP has options: IVDEP:LOOP and IVDEP:BACK. The IVDEP:LOOP option implies no
loop-carried dependencies. The IVDEP:BACK option implies no backward dependencies.

The IVDEP directive is also used for Itanium®-based applications.

For more details on the IVDEP directive, see Appendix A in the Intel® Fortran
Programmer's Reference.

Overriding Vectorizer's Efficiency Heuristics

In addition to IVDEP directive, there are three directives that can be used to override the
efficiency heuristics of the vectorizer:

!DIR$VECTOR ALWAYS
!DIR$NOVECTOR
!DIR$VECTOR ALIGNED
!DIR$VECTOR UNALIGNED

The VECTOR ALWAYS directive overrides the efficiency heuristics of the vectorizer, but it
only works if the loop can actually be vectorized, that is: use IVDEP to ignore assumed
dependences.

The VECTOR ALWAYS and NOVECTOR Directives

The VECTOR ALWAYS directive can be used to override the default behavior of the compiler
in the following situation. Vectorization of non-unit stride references usually does not exhibit
any speedup, so the compiler defaults to not vectorizing loops that have a large number of
non-unit stride references (compared to the number of unit stride references). The following
loop has two references with stride 2. Vectorization would be disabled by default, but the
directive overrides this behavior.

If, on the other hand, avoiding vectorization of a loop is desirable (if vectorization results in
a performance regression rather than improvement), the NOVECTOR directive can be used
in the source text to disable vectorization of a loop. For instance, the Intel® Compiler
vectorizes the following example loop by default. If this behavior is not appropriate, the
NOVECTOR directive can be used, as shown below.

Vector Aligned
!DIR$ VECTOR ALWAYS
do i = 1, 100, 2
a(i) = b(i)
enddo

Intel® Fortran Compiler User's Guide

219

The VECTOR ALIGNED and UNALIGNED Directives

Like VECTOR ALWAYS, these directives also override the efficiency heuristics. The
difference is that the qualifiers UNALIGNED and ALIGNED instruct the compiler to use,
respectively, unaligned and aligned data movement instructions for all array references.
This disables all the advanced alignment optimizations of the compiler, such as determining
alignment properties from the program context or using dynamic loop peeling to make
references aligned.

 Note

The directives VECTOR [ALWAYS, UNALIGNED, ALIGNED] should be used with care.
Overriding the efficiency heuristics of the compiler should only be done if the
programmer is absolutely sure the vectorization will improve performance.
Furthermore, instructing the compiler to implement all array references with aligned
data movement instructions will cause a runtime exception in case some of the
access patterns are actually unaligned.

Compiler Intrinsics
Intel® Fortran supports all standard Fortran intrinsic procedures and in addition, provides
 Intel-specific intrinsic procedures to extend the functionality of the language. Intel Fortran
intrinsic procedures are provided in the library libintrins.lib. See Chapter 1, "Intrinsic
Procedures," in the Intel® Fortran Libraries Reference.

This topic provides examples of the Intel-extended intrinsics that are helpful in developing
efficient applications.

Cache Size Intrinsic (Itanium® Compiler)

Intrinsic cashesize(n) is used only with Intel® Itanium® Compiler. cashesize(n)
returns the size in kilobytes of the cache at level n; 1 represents the first level cache. Zero
is returned for a nonexistent cache level.

This intrinsic can be used in many scenarios where application programmer would like to
tailor their algorithms for target processor's cache hierarchy. For example, an application
may query the cache size and use it to select block sizes in algorithms that operate on
matrices.

NOVECTOR
!DIR$ NOVECTOR
do i = 1, 100
a(i) = b(i) + c(i)
enddo

Intel® Fortran Compiler User's Guide

220

Timing Your Application
One of the performance indicators is your application timing. Use the time command to
provide information about program performance. The following considerations apply to
timing your application:

! Run program timings when other users are not active. Your timing results can be
affected by one or more CPU-intensive processes also running while doing your
timings.

! Try to run the program under the same conditions each time to provide the most
accurate results, especially when comparing execution times of a previous version of
the same program. Use the same CPU system (model, amount of memory, version of
the operating system, and so on) if possible.

! If you do need to change systems, you should measure the time using the same
version of the program on both systems, so you know each system's effect on your
timings.

! For programs that run for less than a few seconds, run several timings to ensure that
the results are not misleading. Overhead functions like loading shared libraries might
influence short timings considerably.

Using the form of the time command that specifies the name of the executable program
provides the following:

! The elapsed, real, or "wall clock" time, which will be greater than the total charged
actual CPU time.

! Charged actual CPU time, shown for both system and user execution. The total actual
CPU time is the sum of the actual user CPU time and actual system CPU time.

Example

In the following example timings, the sample program being timed displays the following
line:

Average of all the numbers is: 4368488960.000000

subroutine foo (level)
integer level
if (cachesize(level) >
threshold)
call big_bar()
else
call small_bar()
end if
end subroutine

Intel® Fortran Compiler User's Guide

221

Using the Bourne shell, the following program timing reports that the program uses 1.19
seconds of total actual CPU time (0.61 seconds in actual CPU time for user program use
and 0.58 seconds of actual CPU time for system use) and 2.46 seconds of elapsed time:

Using the C shell, the following program timing reports 1.19 seconds of total actual CPU
time (0.61 seconds in actual CPU time for user program use and 0.58 seconds of actual
CPU time for system use), about 4 seconds (0:04) of elapsed time, the use of 28% of
available CPU time, and other information:

Using the bash shell, the following program timing reports that the program uses 1.19
seconds of total actual CPU time (0.61 seconds in actual CPU time for user program use
and 0.58 seconds of actual CPU time for system use) and 2.46 seconds of elapsed time:

Timings that show a large amount of system time may indicate a lot of time spent doing I/O,
which might be worth investigating.

If your program displays a lot of text, you can redirect the output from the program on the
time command line. Redirecting output from the program will change the times reported
because of reduced screen I/O.

$ time a.out

Average of all the numbers is:
4368488960.000000

real 0m2.46s

user 0m0.61s

sys 0m0.58s

% time a.out

Average of all the numbers is:
4368488960.000000

0.61u 0.58s 0:04 28% 78+424k 9+5io 0pf+0w

[user@system user]$ time ./a.out

Average of all the numbers is:
4368488960.000000

elapsed 0m2.46s

user 0m0.61s

sys 0m0.58s

Intel® Fortran Compiler User's Guide

222

For more information, see time(1).

In addition to the time command, you might consider modifying the program to call
routines within the program to measure execution time. For example, use the Intel Fortran
intrinsic procedures, such as SECNDS, DCLOCK, CPU_TIME, SYSTEM_CLOCK, and
DATE_AND_TIME. See "Intrinsic Procedures" in the Intel® Fortran Libraries Reference.

Optimizer Report Generation (Itanium® Compiler)
The Intel® Fortran Itanium® Compiler for Itanium®-based Applications provides options to
generate and manage optimization reports.

! -opt_report generates optimizations report and places it in a file specified in
-opt_report_filefilename. If -opt_report_file is not specified, -
opt_report directs the report to stderr. The default is OFF: no reports are
generated.

! -opt_report_filefilename generates optimizations report and directs it to a file
specified in filename.

! -opt_report_level{min|med|max} specifies the detail level of the optimizations
report. The min argument provides the minimal summary and the max the full report.
The default is
-opt_report_levelmin.

! -opt_report_routineroutine_substring generates reports from all routines
with names containing the substring as part of their name. If not specified, reports
from all routines are generated. The default is to generate reports for all routines
being compiled.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase argument of
the
-opt_report_phasephase option.

The option can be used multiple times on the same command line to generate reports for
multiple optimizers.

Currently, the following optimizer reports are supported:

Optimizer Logical
Name

Optimizer Full Name

ipo Interprocedural Optimizer
hlo High Level Optimizer

Intel® Fortran Compiler User's Guide

223

When one of the above logical names for optimizers are specified all reports from that
optimizer will be generated. For example, -opt_report_phaseipo and -
opt_report_phaseecg generate reports from the interprocedural optimizer and the code
generator.

Each of the optimizers can potentially have specific optimizations within them. Each of
these optimizations are prefixed with one of the optimizer logical names. For example:

Command Syntax Example

The following command generates a report for the Itanium Compiler Code Generator (ecg):

prompt>efc -c -opt_report -opt_report_phase ecg myfile.f

where:

! -c tells the compiler to stop at generating the object code, not linking

! -opt_report invokes the report generator

! -opt_report_phaseecg indicates the phase (ecg) for which to generate the report;
the space between the option and the phase is optional.

The entire name for a particular optimization within an optimizer need not be specified in
full, just a few characters is sufficient. All optimization reports that have a matching prefix

ilo Intermediate Language Scalar
Optimizer

ecg Itanium Compiler Code
Generator

omp OpenMP*
all All optimizers

Optimizer_optimization Full Name
ipo_inline Interprocedural Optimizer,

inline expansion of functions
ipo_constant_propagation Interprocedural Optimizer,

constant propagation
ipo_function_reoder Interprocedural Optimizer,

function reorder
ilo_constant_propagation Intermediate Language Scalar

Optimizer, constant
propagation

ilo_copy_propagation Intermediate Language Scalar
Optimizer, copy propagation

ecg_software_pipelining Itanium Compiler Code
Generator, software pipelining

Intel® Fortran Compiler User's Guide

224

with the specified optimizer are generated. For example, if -opt_report_phase ilo_co
is specified, a report from both the constant propagation and the copy propagation are
generated.

The Availability of Report Generation

The -opt_report_help option lists the logical names of optimizers that are currently
available for report generation.

Intel® Fortran Compiler User's Guide

225

Libraries
You can determine the libraries for your applications by controlling the linker or by using the
options described in this section. See library options summary.

The LD_LIBRARY_PATH environment variable contains a colon-separated list of directories
that the linker will search for library (.a) files. If you want the linker to search additional
libraries, you can add their names to the command line, to a response file, or to the
configuration (.cfg) file. In each case, the names of these libraries are passed to the linker
before these libraries:

! the libraries provided with the Intel® Fortran Compiler (libCEPCF90.a,
libIEPCF90.a, libintrins.a, libF90.a, and the math library: libimf.a for
both IA-32 compiler and libm.a for Itanium® compiler; libm.a is the math library
provided with the gcc*)

! the default libraries that the compiler command always specifies are:

libimf.a *
libm.a
libirc.a *
libcxa.a *
libcprts.a *
libunwind.a *
libc.a

The ones marked with an "*" are provided by Intel.

For more information on response and configuration files, see Response Files and
Configuration Files.

The linker uses the LD_LIBRARY_PATH variable to search for libraries. If you are compiling
with a linker option that forces static libraries, it will look for those at compile time.
Otherwise, it will look for shared libraries at runtime.

To specify a library name on the command line, you must first add the library's path to the
LD_LIBRARY_PATH environment variable. Then, to compile file.f and link it with the
library libmine.a, for example, enter the following command:

IA-32 applications:

prompt>ifc file.f -lmine

Itanium®-based applications:

prompt>efc file.f -lmine

Intel® Fortran Compiler User's Guide

226

The example above implies that the library resides in your path.

The Order of Passing the Files to Linker

The compiler passes files to the linker in the following order:

1. Object files and libraries are passed to the linker in the order specified on the command
line.

2. Object files and libraries in the .cfg file will be processed before those on the command
line. This means that putting library names in the .cfg file does not make much sense
because the libraries will be processed before most object files are seen.

3. The libimf.a, libF90.a, libintrins.a, and libIEPCF90.a libraries.

4. The libm.a library is linked in just before libc.a, then libc.a libraries.

See the list of libraries that are installed with the Intel® Fortran Compiler for IA-32
applications and for Itanium®-based applications.

Using the POSIX* and Portability Libraries
Use the -posixlib option with the compiler to invoke the POSIX* bindings library
libposf90.a. For a complete list of these functions see Chapter 3, "POSIX Functions" in
the Intel® Fortran Libraries Reference Manual.

Use the -Vaxlib option with the compiler to invoke the VAX* compatibility functions
libpepcf90.a. This also brings in the Intel's compatibility functions for Sun* and
Microsoft*. For a complete list of these functions see Chapter 2, "Portability Functions" in
the Intel® Fortran Libraries Reference Manual.

Intel® Shared Libraries
The Intel® Fortran Compiler (both IA-32 and Itanium® compilers) links the libraries statically
at link time and dynamically at the run time, the latter as dynamically shared objects (DSO).

By default, the libraries are linked as follows:

! Fortran, math and libcprts.a libraries are linked at link time, that is, statically.

! libcxa.so is linked dynamically to conform to C++ application binary interface (ABI).

! GNU and Linux* system libraries are linked dynamically.

Advantages of This Approach

Intel® Fortran Compiler User's Guide

227

This approach—

! Enables to maintain the same model for both IA -32 and Itanium compilers.

! Provides a model consistent with the Linux model where system libraries are dynamic
and application libraries are static.

! The users have the option of using dynamic versions of our libraries to reduce the size of
their binaries if desired.

! The users are licensed to distribute Intel-provided libraries.

The libraries libcprts.a and libcxa.so are C++ language support libraries used by
Fortran when Fortran includes code written in C++.

Shared Library Options

The main options used with shared libraries are -i_dynamic and -shared.

The -i_dynamic compiler option directs the linker to use the shared object versions of the
Intel-provided libraries dynamically. The comparison of the following commands illustrates
the effects of this option.

1. prompt>ifc myprog.f

This command produces the following results (default):

! Fortran, math, libirc.a, and libcprts.a libraries are linked statically (at link
time).

! Dynamic version of libcxa.so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to
be installed on the systems where the application runs.

2. prompt>ifc -i_dynamic myprog.f

This command links all of the above libraries dynamically. This has the advantage of
reducing the size of the application binary, but it requires all the dynamic versions installed
on the systems where the application runs.

The -shared option instructs the compiler to build a dynamically shared object (DSO)
instead of an executable. For more details, refer to the ld man page documentation.

Math Libraries

Intel® Fortran Compiler User's Guide

228

The libimf.a is the math library provided by Intel and libm.a is the math library
provided with gcc*. Both of these libraries are linked in by default on IA-32 and Itanium®
compilers. Both libraries are linked in because there are math functions supported by the
GNU math library that are not in the Intel math library. This linking arrangement allows for
all functions GNU users have available to them to be available when using ifc (or efc),
with Intel optimized versions available when supported. libimf.a is linked in before
libm.a. If you link in libm.a first, it will change the versions of the math functions that are
used.

It is recommended that you place libimf.a and libm.a in the first directory specified in
the LD_LIBRARY_PATH variable. The libimf.a and libm.a libraries are always linked
with Fortran programs.

For example, if you place a library in directory /perform/, set the LD_LIBRARY_PATH
variable to specify a list of directories, containing all other libraries, separated by
semicolons.

For IA-32 Compiler, libm.a contains both generic math routines and versions of the math
routines optimized for special use with the Intel® Pentium® 4 and Xeon(TM) processors.
For Itanium® Compiler, libm.a is optimized for the use with Itanium architecture.

IA-32 Compiler

For IA-32 Compiler, libm.lib contains both generic math routines and versions of the
math routines optimized for special use with the Intel® Pentium® 4 and Xeon(TM)
processors.

Itanium® Compiler

For Itanium Compiler, libm.lib is optimized for the use with Itanium® architecture. The
Itanium compiler provides inlined version of the following math library primitives by using
the following intrinsics: ALOG, DLOG, ALOG10, DLOG10, lEXP, DEXP, CEILING, and FLOOR.
The compiler inlines these intrinsics and schedules the generated code with surrounding
instructions. This can improve performance of typical floating-point applications.

Using Math Libraries with IA-32 Systems

Most of the routines in libm.a for IA-32 have been optimized for special use with the
Intel® Pentium® 4 and Xeon(TM) processors. Generic versions are used when running on
an IA-32 processor generation prior to Pentium 4 processor family.

To use your own version of the standard math functions without unresolved external errors,
you must disable the automatic inline expansion by compiling your program with the
-nolib_inline option, as described in Inline Expansion of Library Functions.

 Caution

Intel® Fortran Compiler User's Guide

229

A change of the default precision control or rounding mode (for example, by using the
-pc32 flag or by user intervention) may affect the results returned by some of the
mathematical functions.

Optimized Math Library Primitives

The optimized math libraries contain a package of functions, called primitives. The Intel
Fortran Compiler calls these functions to implement numerous floating-point intrinsics and
exponentiation. About half of the functions in the library from Intel are written in assembly
language and optimized for program execution speed on an IA-32 architecture processor.

 Note
The library primitives are not Fortran intrinsics. They are standard library calls used by
the compiler to implement Intel Fortran language features.

Following is a list of math library primitives that have been optimized.

The math library also provides the following non-optimized primitives.

Programming with Math Library Primitives

Primitives adhere to standard calling conventions, thus you can call them with other high-
level languages as well as with assembly language. For Intel Fortran Compiler programs,
specify the appropriate Fortran intrinsic name for arguments of type REAL and DOUBLE
PRECISION. The compiler calls the appropriate single- or double-precision primitive based
on the type of the argument you specify.

To use these functions, you have to write an INTERFACE block that specifies the ALIAS
name of the function. The routine names in the math library are lower case.

IEEE* Floating-point Exceptions

The compiler recognizes a set of floating-point exceptions required for compatibility with the
IEEE numeric floating-point standard. The following floating-point exceptions are supported

acos cos log10 sinh
asin cosh pow sqrt
atan exp powf tan
atan2 log sin tanh

acosh copysign fmod gamma

asinh erf fmodf remainder

atanh fabs hypot rint

cbrt fabsf j0 y0

ceil floor j1 y1

ceilf floorf jn y2

Intel® Fortran Compiler User's Guide

230

during numeric processing:

Denormal

The denormal exception occurs if one or more of the operands is a denormal number. This
exception is never regarded as an error.

Divide-by-Zero Exception

A divide-by-zero exception occurs for a floating-point division operation if the divisor is zero
and the dividend is finite and non-zero. It also occurs for other operations in which the
operands are finite and the correct answer is infinite.

When the divide by zero exception is masked, the result is +/ -infinity. The following specific
cases cause a zero-divide exception:

! LOG(0.0)

! LOG10(0.0)

! O.O**x, where x is a negative number

For the value of the flags, refer to the ieee_flags () function in your library manual and
Pentium® Processor Family Developer's Manual, Volumes 1, 2, and 3.

Overflow Exception

An overflow exception occurs if the rounded result of a floating-point operation contains an
exponent larger than the numeric processing unit can represent. A calculation with an

Denormal One of the floating-point operands has an
absolute value that is too small to represent
with full precision in the significand.

Zero Divide The dividend is finite and the divisor is zero,
but the correct answer has infinite
magnitude.

Overflow The resulting floating-point number is too
large to represent.

Underflow The resulting floating-point number (which is
very close to zero) has an absolute value
that is too small to represent even if a loss of
precision is permitted in the significand
(gradual underflow).

Inexact
(Precision)

The resulting number is not represented
exactly due to rounding or gradual underflow.

Invalid
operation

Covers cases not covered by other
exceptions. An invalid operation produces a
quiet NaN (Not-a-Number).

Intel® Fortran Compiler User's Guide

231

infinite input number is not sufficient to cause an exception.

When the overflow exception is masked, the calculated result is +/ -infinity or the +/-largest
representable normal number depending on rounding mode. When the exception is not
masked, a result with an accurate significand and a wrapped exponent is available to an
exception handler.

Underflow Exception

The underflow exception occurs if the rounded result has an exponent that is too small to
be represented using the floating-point format of the result.

If the underflow exception is masked, the result is represented by the smallest normal
number, a denormal number, or zero. When the exception is not masked, a result with an
accurate significand and a wrapped exponent is available to an exception handler

Inexact Exception

The inexact exception occurs if the rounded result of an operation is not equal to the
unrounded result.

It is important that the inexact exception remain masked at all times because many of the
numeric library procedures return with an undefined precision exception flag. If the
precision exception is masked, no special action is performed. When this exception is not
masked, the rounded result is available to an exception handler.

Invalid Operation Exception

An invalid operation indicates that an exceptional condition not covered by one of the other
exceptions has occurred. An invalid operation can be caused by any of the following
situations:

! One or more of the operands is a signaling NaN or is in an unsupported format.

! One of the following invalid operations has been requested:

(+--)0.0-(+--)0.0, (+--)0.0*(+--)?, or (+--)?-(+--)?.

! The function INT, NINT, or IRINT is applied to an operand that is too large to fit into
the requested INTEGER*2 or INTEGER*4 data types.

! A comparison of .LT., .LE., .GT., or .GE. is applied to two operands that are
unordered.

The invalid-operation exception can occur in any of the following functions:

! SQRT(x), LOG(x), or LOG10(x), where x is less than zero.

! ASIN(x), or ACOS(x) where |x|>1.

Intel® Fortran Compiler User's Guide

232

For any of the invalid-operation exceptions, the exception handler is invoked before the top
of the stack changes, so the operands are available to the exception handler.

When invalid-operation exceptions are masked, the result of an invalid operation is a quiet
NaN. Program execution proceeds normally using the quiet NaN result.

Intel® Fortran Compiler provides a method to control the rounding mode, exception
handling and other IEEE-related functions of the IA-32 processors using IEEE_FLGS and
IEEE_HANDLER library routines from the portability library. For details, see Chapter 2 in the
Intel® Fortran Libraries Reference Manual.

Floating-point
Result

The appearance of a quiet NaN as an operand
results in a quiet NaN. Execution continues without
an error. If both operands are quiet NaNs, the quiet
NaN with the larger significand is used as the result.
Thus, each quiet NaN is propagated through later
floating-point calculations until it is ultimately ignored
or referenced by an operation that delivers non-
floating-point results.

Formatted
Output

On formatted output using a real edit descriptor, the
field is filled with the "?" symbols to indicate the
undefined (NaN) result. The A, Z, or B edit descriptor
results in the ASCII, hexadecimal, or binary
interpretation, respectively, of the internal
representation of the NaN. No error is signaled for
output of a NaN.

Logical Result By definition, a NaN has no ordinal rank with respect
to any other operand, even itself. Tests for equality
(.EQ.) and inequality (.NE.) are the only Fortran
relational operations for which results are defined for
unordered operands. In these cases, program
execution continues without error. Any other logical
operation yields an undefined result when applied to
NaNs, causing an invalid-operation error. The
masked result is unpredictable.

Integer Result Since no internal NaN representation exists for the
INTEGER data type, an invalid-operation error is
normally signaled. The masked result is the largest-
magnitude negative integer for INTEGER*4 or
INTEGER*2. An INTEGER*1 result is the value of an
INTEGER*2 intermediate result modulo 256.

Intel® Fortran Compiler User's Guide

233

Compiler Diagnostics
This section describes the diagnostic messages that the Intel® Fortran Compiler produces.
These messages include various diagnostic messages for remarks, warnings, or errors.
The compiler always displays any error message, along with the erroneous source line, on
the standard error device. The messages also include the runtime diagnostics run for IA -32
compiler only.

The options that provide checks and diagnostic information must be specified when the
program is compiled, but they perform checks or produce information when the program is
run. See diagnostic options summary.

Runtime Diagnostics
For IA-32 applications, the Intel® Fortran Compiler provides runtime diagnostic checks to
aid debugging. The compiler provides a set of options that identify certain conditions
commonly attributed to runtime failures.

You must specify the options when the program is compiled. However, they perform checks
or produce information when the program is run. Postmortem reports provide additional
diagnostics according to the detail you specify.

Runtime diagnostics are handled by IA-32 options only. The use of -O0 option turns any of
them off. See the runtime check options summary.

Optional Runtime Checks

Runtime checks on the use of pointers, allocatable arrays and assumed -shape arrays are
made with the runtime checks specified by the Intel® Fortran Compiler command line
runtime diagnostic options listed below. The use of any of these options disables
optimization.

The optional runtime check options are as follows:

-C Equivalent to: (-CA, -CB, -CS, -CU, -CV)

 Note
The -C option and its equivalents are available for IA-
32 systems only.

-CA Should be used in conjunction with -d{n}. Generates
runtime code, which checks pointers and allocatable
array references for nil.

 Note
The run-time checks on the use of pointers, allocatable
arrays and assumed-shape arrays are made if

Intel® Fortran Compiler User's Guide

234

Pointers, -CA

The selection of the -CA compile-time option has the following effect on the runtime
checking of pointers:

! The association status of a pointer is checked whenever it is referenced. Error 460 as
described in Runtime Errors will be reported at runtime if the pointer is disassociated:
that is, if the pointer is nullified, de-allocated, or it is a pointer assigned to a
disassociated pointer.

! The compile-time option combination of -CA and -CU also generates code to test
whether a pointer is in the initially undefined state, that is, if it has never been
associated or disassociated or allocated. If a pointer is initially undefined, then Error
461 as described in Runtime Errors will be reported at runtime if an attempt is made
to use it. No test is made for dangling pointers (that is, pointers referencing memory
locations which are no longer valid).

! The association status of pointers is not tested when the Fortran standard does not
require the pointer to be associated, that is, in the following circumstances:

 - in a pointer assignment

 - as an argument to the associated intrinsic

 - as an argument to the present intrinsic

 - in the nullify statement

 - as an actual argument associated with a formal argument which has the pointer
attribute

Allocatable Arrays

compile-time option -CA is selected.
-CB Should be used in conjunction with -d{n}. Generates

runtime code to check that array subscript and
substring references are within declared bounds.

-CS Should be used in conjunction with -d{n}. Generates
runtime code that checks for consistent shape of
intrinsic procedure.

-CU Should be used in conjunction with -d{n}. Generates
runtime code that causes a runtime error if variables
are used without being initialized.

-CV Should be used in conjunction with -d{n}. On entry to
a subprogram, tests the correspondence between the
actual arguments passed and the dummy arguments
expected. Both calling and called code must be
compiled with -CV for the checks to be effective.

Intel® Fortran Compiler User's Guide

235

The selection of the -CA compile-time option causes code to be generated to test the
allocation status of an allocatable array whenever it is referenced, except when it is an
argument to the allocated intrinsic function. Error 459 as described in Runtime Errors
will be reported at runtime if an error is detected.

 Assumed-Shape Arrays

The -CA option causes a validation check to be made, on entry to a procedure, on the
definition status of an assumed-shape array. Error 462 as described in Runtime Errors will
be reported at runtime if the array is disassociated or not allocated.

The compile-time option combination of -CA and -CU will additionally generate code to test
whether, on entry to a procedure, the array is in the initially undefined state. If so, Error 463
as described in Runtime Errors.

Array Subscripts, Character Substrings, -CB

Specifying the compile-time option -CB causes a check at runtime that array subscript
values, subscript values of elements selected from an array section, and character
substring references are within bounds. Selection of the option causes code to be
generated for each array or character substring reference in the program.

At runtime the code checks that the address computed for a referenced array element is
within the address range delimited by the first element of the array and the last element of
the array. Note that this check does not ensure that each subscript in a reference to an
element of a multidimensional array or section is within bounds, only that the address of the
element is within the address range of the array.

For assumed-size arrays, only the address of the first element of the array is used in the
check; the address of the last element is unknown.

When -CB is selected, a check is also made that any character substring references are
within the bounds of the character entity referenced.

Unassigned Variables, -CU

Specifying the compile-time option -CU causes unassigned variable checking to be
enabled: that is, before an expression is evaluated at runtime, a check is normally made
that any variables in the expression have previously been assigned values. If any has not, a
runtime error results.

Some variables are not unassigned-checked, even when -CU has been selected:

! Variables of type character

! byte, integer(1) and logical(1) variables

Intel® Fortran Compiler User's Guide

236

! Variables of derived type, when the complete variable (not individual fields) is used in
the expression

! Arguments passed to some elemental and transformational intrinsic procedures

Notes on Variables

! Variables that specify storage with allocate, except those of types noted in the
previous section, will be unassigned-checked when -CU is selected.

! If the variables in a named COMMON block are to be unassigned-checked, -CU must be
selected, and:

 - The COMMON block must be specified in one and only one BLOCK DATA program
unit. Variables in the COMMON block that are not explicitly initialized will be subject to
the unassigned check.

 - No variable of the COMMON block may be initialized outside the BLOCK DATA
program unit.

! Variables in blank COMMON will be subject to the unassigned check if -CU is selected
and the blank COMMON appears in the main program unit. In this case, although the
Intel® Fortran Compiler permits blank COMMON to have different sizes in different
program units, only the variables within the extent of blank COMMON indicated in the
main program unit will be subject to the unassigned check.

Actual to Dummy Argument Correspondence, -CV

Specifying the compile-time option -CV causes checks to be carried out at runtime that
actual arguments to subprograms correspond with the dummy arguments expected. Note
the following:

! Both caller and called Fortran code must be compiled with -CV (or -C). No argument
checking will be performed unless this condition is satisfied.

! The amount of checking performed depends upon whether the procedure call was
made via an implicit interface or an explicit interface. Irrespective of the type of
interface used, however, the following checks verify that:

- the correct number of arguments are passed.

- the type and type kinds of the actual and dummy arguments correspond.

- subroutines have been called as subroutines and that functions have been declared
with the correct type and type kind.

- dummy arrays are associated with either an array or an element of an array and not
a scalar variable or constant.

Intel® Fortran Compiler User's Guide

237

- the declared length of a dummy character argument is not greater than the declared
length of associated actual argument.

- the declared length of a character scalar function result is the same length as that
declared by the caller.

- the actual and dummy arguments of derived type correspond to the number and
types of the derived type components.

- actual arguments were not passed using the intrinsic procedures %REF and %VAL.

! If an implicit interface call was made, then yet another check is made whether an
interface block should have been used.

! If an explicit interface block was used, then further checks are made in addition to
those described (in the second bullet) above, to validate the interface block. These
checks verify that:

 - the OPTIONAL attribute of each dummy argument has been correctly specified by
the caller.

 - the POINTER attribute of each dummy argument has been correctly specified by the
caller.

- the declared length of a dummy pointer of type character is the same as the declared
length of the associated actual pointer of type character.

- the rank of an assumed-shape array or dummy pointer matches the rank of the
associated actual argument.

- the rank of an array-valued function or pointer-valued function has been correctly
specified by the caller.

- the declared length of a character array-valued function or a character pointer-valued
function is the same length as that declared by the caller.

Diagnostic Report, -d{n}
The command option -d{n} generates the additional information required for a list of the
current values of variables to be output when certain runtime errors occur. Diagnostic
reports are generated by the following:

! input/output errors
! an invalid reference to a pointer or an allocatable array (if -CA option selected)
! subscripts out of bounds (if -CB option selected)
! an invalid array argument to an intrinsic procedure (if -CS option selected)
! use of unassigned variables (if -CU option selected)
! argument mismatch (if -CV option selected)

Intel® Fortran Compiler User's Guide

238

! invalid assigned labels
! a call to the abort routine
! certain mathematical errors reported by intrinsic procedures
! hardware detected errors

The Level of Output

The level of output is progressively controlled by n, as follows:

The appropriate error message will be output on stderr, and (if selected) a postmortem
report will be produced.

Selecting a Postmortem Report

Each scalar or array will be displayed on a separate line in a form appropriate to the type of
the variable. Thus, for example, variables of type integer will be output as integer values,
and variables of type complex will be output as complex values.

The postmortem report will not include those program units which are currently active, but
which have not been compiled with the -d{n} option. If no active program unit has been
compiled with the -d{n} option then no postmortem report will be produced.

 Note
Using the -d{n} option for postmortem reports disables optimization.

Invoking a Postmortem Report

A postmortem report may be invoked by any of the following:

! an error detected as a consequence of using the -CA, -CB, -CS, -CU, -CV or -C
options

! a call on abort

! an allocation error

! an invalid assigned label

n=0 (or n
omitted)

Displays only the procedure name and the
number of the line at which the failure occurred.
This is the default value.

n=1 Reports scalar variables local to program active
units.

n=2 Reports local and COMMON scalars.
n>2 Reports the first n elements of local and COMMON

arrays and all scalars.

Intel® Fortran Compiler User's Guide

239

! an input-output error

! an error reported by a mathematical procedure

! a signal generated by a program error such as illegal instruction

! an error reported by an intrinsic procedure

Postmortem Report Conventions

The following conventions are used in postmortem output:

! A variable var declared in a module mod appears as mod.var.

! A module procedure proc in module mod appears as mod$proc.

! The fields of a variable var of derived data type are preceded by a line of the form
var%.

Example

In this example, the command line

prompt>ifc -CB -CU -d4 sample.f

is used to compile the program that follows. When the program is executed, the
postmortem report (follows the program) is output, since the subscript m to array num is out
of bounds.

The Program

1 module arith
2 integer count
3 data count /0/
4
5 contains
6
7 subroutine add(k,p,m)
8 integer num(3),p
9
10 count = count+1
11 m = k+p
12 j = num(m)
13 return
14 end subroutine
15
16 end module arith
17
18 program dosums

Intel® Fortran Compiler User's Guide

240

The Postmortem Report

Compiler Information Messages
These messages are generated by the following Intel® Fortran Compiler options:

19 use arith
20 type set
21 integer sum, product
22 end type set
23
24 type(set) ans
25
26 call add(9,6,ans%sum)
27
28 end program dosums

Run-Time Error 406: Array bounds
exceeded
In Procedure: arith$add
Diagnostics Entered From Subroutine
arith$add Line 12
j = Not Assigned
k = 9
m = 15
num = Not Assigned, Not
Assigned, Not Assigned
p = 6
Module arith
arith.count = 1
Entered From MAIN PROGRAM Line 26
ans%
sum = 15
product = Not Assigned
arith.count = 1

Disabling the sign-on message
-nologo Disables the display of the compiler version (or sign-on)

message.

When you sign-on, the compiler displays the following
information:

ID: the unique identification number for this compiler.
x.y.z: the version of the compiler.
years: the years for which the software is copyrighted.

Printing the list and brief description of the compiler driver options

Intel® Fortran Compiler User's Guide

241

Diagnostic Messages
Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information can include, for example, syntax errors and use of non-ANSI Fortran.
Semantic information includes, for example, unreachable code.

Diagnostic messages can be any of the following: command-line diagnostics, warning
messages, error messages, or catastrophic error messages.

Command-line Diagnostics

These messages report improper command-line options or arguments. If the command line
contains an unrecognized option, the compiler passes the option to the linker. If the linker
still does not recognize the option, the linker produces the diagnostic message.

Command-line error messages appear on the standard error device in the form:

driver-name: message

where

Command-line warning messages appear as follows:

driver-name: warning: message

Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source

-help You can print a list and brief description of the most
useful compiler driver options by specifying the -help
option to the compiler. To print this list, use this
command:

IA-32 compiler:
prompt>ifc -help or prompt>ifc -?

Itanium® compiler:
prompt>efc -help or prompt>efc -?

Showing compiler version and driver tool commands
-V Displays compiler version information.
-v Shows driver tool commands and executes tools.
-dryrun Shows driver tool commands, but does not execute

tools.

driver-name The name of the compiler driver.
message Describes the error.

Intel® Fortran Compiler User's Guide

242

file. These diagnostics have the following format:

filename(linenum): type nn: message

The following is an example of a warning message:

tantst.f(3): warning 328:"local variable": Local variable
"increment" never used.

The compiler can also display internal error messages on the standard error device. If your
compilation produces any internal errors, contact your Intel representative. Internal error
messages are in the form:

FATAL COMPILER ERROR: message

Warning Messages
These messages report valid but questionable use of the language being compiled. The
compiler displays warnings by default. You can suppress warning messages by using the -
W0 option. Warnings do not stop translation or linking. Warnings do not interfere with any
output files. Some representative warning messages are:

constant truncated - precision too great

non-blank characters beyond column 72 ignored

Hollerith size exceeds that required by the context

Suppressing or Enabling Warning Messages

The warning messages report possible errors and use of non-standard features in the
source file.

The following options suppress or enable warning messages.

filename Indicates the name of the source file
currently being processed. An extension to
the filename indicates the type of the
source file, as follows: .f, f90, .for
indicate a Fortran file.

linenum Indicates the source line where the
compiler detects the condition.

type Indicates the severity of the diagnostic
message: warning, error, or Fatal error.

nn The number assigned to the error (or
warning) message.

message Describes the diagnostic.

Intel® Fortran Compiler User's Guide

243

For example, the following command compiles newprog.f and displays compiler errors,
but not warnings:

IA-32 compiler:

prompt>ifc -W0 newprog.f

Itanium® compiler:

prompt>efc -W0 newprog.f

Comment Messages
These messages indicate valid but unadvisable use of the language being compiled. The
compiler displays comments by default. You can suppress comment messages with:

Comment messages do not terminate translation or linking, they do not interfere with any
output files either. Some examples of the comment messages are:

Null CASE construct

The use of a non-integer DO loop variable or expression

Terminating a DO loop with a statement other than CONTINUE or ENDDO

-cerrs[-] Causes error and warning messages to be
generated in a terse format:
"file", line no : error message

-cerrs- disables -cerrs.
-w Suppresses all warning messages.
-w90, -w95 Suppresses warning messages about Fortran

features which are deprecated or obsoleted in
Fortran 95.

-W{n} Suppresses or displays all warning messages
generated by preprocessing and compilation.
n=0: suppresses all warnings
n=1: displays warning messages. -W1 is the
default.

-WB On a bound check violation, issues a warning
instead of an error. (This is to accommodate
old FORTRAN code, in which array bounds of
dummy arguments were frequently declared
as 1.)

-cm Suppresses all comment messages.

Intel® Fortran Compiler User's Guide

244

Error Messages
These messages report syntactic or semantic misuse of Fortran. The compiler always
displays error messages. Errors suppress object code for the error containing the error and
prevent linking, but they make it possible for the parsing to continue to scan for any other
errors. Some representative error messages are:

line exceeds 132 characters

unbalanced parenthesis

incomplete string

Suppressing or Enabling Error Messages

The error conditions are reported in the various stages of the compilation and at different
levels of detail as explained below. For various groups of error messages, see Lists of Error
Messages.

-e90, -e95 Enables issuing of errors rather than warnings for
features that are non-standard Fortran.

-q Suppresses compiler output to standard error,
stderr. When -q is specified in conjunction with -
bd, then only fatal error messages are output to
stderr by the binder tool provided with the Intel®
Fortran Compiler.

-d{n} Generates extra information needed to produce a
list of current variables in a diagnostic report. For
more details on -d{n}, see Selecting a
Postmortem Report, -d{n}.

Diagnostic reports are generated by the following:

! input-output errors

! an invalid reference to a pointer or an
allocatable array (if
-CA option selected)

! subscripts out of bounds (if -CB option
selected)

! an invalid array argument to an intrinsic
procedure (if -CS option selected)

! use of unassigned variables (if -CU option
selected)

Intel® Fortran Compiler User's Guide

245

Fatal Errors

These messages indicate environmental problems. Fatal error conditions stop translation,
assembly, and linking. If a fatal error ends compilation, the compiler displays a termination
message on standard error output. Some representative fatal error messages are:

Disk is full, no space to write object file

Incorrect number of intrinsic arguments

Too many segments, object format cannot support this many segments

! argument mismatch (if -CV option selected)

! invalid assigned labels

! a call to the abort routine

! certain mathematical errors reported by
intrinsic procedures

! hardware detected errors:

Intel® Fortran Compiler User's Guide

246

Mixing C and Fortran
This section discusses implementation-specific ways to call C procedures from a Fortran
program.

Naming Conventions
By default, the Fortran compiler converts function and subprogram names to lower case,
and adds a trailing underscore. The C compiler never performs case conversion. A C
procedure called from a Fortran program must, therefore, be named using the appropriate
case. For example, consider the following calls:

In the first call, any value returned by procname is ignored. In the second call to a function,
fnname must return a value.

Passing Arguments between Fortran and C Procedures
By default, Fortran subprograms pass arguments by reference; that is, they pass a pointer
to each actual argument rather than the value of the argument. C programs, however, pass
arguments by value. Consider the following:

! When a Fortran program calls a C function, the C function's formal arguments must
be declared as pointers to the appropriate data type.

! When a C program calls a Fortran subprogram, each actual argument must be
specified explicitly as a pointer.

Using Fortran Common Blocks from C
When C code needs to use a common block declared in Fortran, an underscore (_) must
be appended to its name, see below.

CALL
PROCNAME()

The C procedure must be named
procname_.

x=fnname() The C procedure must be named
fnname_.

Fortran code
common /cblock/ a(100)
real a

Intel® Fortran Compiler User's Guide

247

Example

This example demonstrates defining a COMMON block in Fortran for Linux, and accessing
the values from C.

C code
struct acstruct {
float a[100];
};
extern struct acstruct
cblock_;

Fortran code

COMMON /MYCOM/ A, B(100),I,C(10)
REAL(4) A
REAL(8) B
INTEGER(4) I
COMPLEX(4) C
A = 1.0
B = 2.0D0
I = 4
C = (1.0,2.0)
CALL GETVAL()
END

C code

typedef struct compl complex;
struct compl{
float real;
float imag;
};

extern struct {
float a;
double b[100];
int i;
complex c[10];
} mycom_;

void getval_(){
printf("a = %f\n",mycom_.a);
printf("b[0] = %f\n",mycom_.b[0]);
printf("i = %d\n",mycom_.i);
printf("c[1].real = %f\n",mycom_.c
[1].real);
}

penfold% ifc common.o getval.o -o
common.exe

Intel® Fortran Compiler User's Guide

248

Fortran and C Scalar Arguments
Table that follows shows a simple correspondence between most types of Fortran and C
data.

Fortran and C Language Declarations

Example below illustrates the correspondence shown in the table above: a simple Fortran
call and its corresponding call to a C procedure. In this example the arguments to the C
procedure are declared as pointers.

Example of Passing Scalar Data Types from Fortran to C

penfold% common.exe
a = 1.000000
b[0] = 2.000000
i = 4
c[1].real = 1.000000

Fortran C
integer*1 x char x;
integer*2 x short int x;
integer*4 x long int x;
integer x long int x;
integer*8 x long long x;

or _int64 x;
logical*1 x char x;
logical*2 x short int x;
logical*4x long int x;
logical x long int x;
logical*8 x long long x;

or _int64 x;
real*4 x float x;
real*8 x double x;
real x float x;
real*16 No equivalent
double precision x double x;
complex x struct {float real,

imag;} x;
complex*8 x struct {float real,

imag;} x;
complex*16 x struct {double dreal,

dimag;} x;
double complex x struct {double dreal,

dimag;} x;
complex(KIND=16)x No equivalent
character*6 x char x[6];

Intel® Fortran Compiler User's Guide

249

 Note
The character data or complex data do not have a simple correspondence to C
types.

Passing Scalar Arguments by Value
A Fortran program compiled with the Intel® Fortran Compiler can pass scalar arguments to
a C function by value using the nonstandard built-in function %VAL. The following example
shows the Fortran code for passing a scalar argument to C and the corresponding C code.

Example of Passing Scalar Arguments from Fortran to C

In this case, the pointers are not used in C. This method is often more convenient,
particularly to call a C function that you cannot modify, but such programs are not always
portable.

 Note
Arrays, records, complex data, and character data cannot be passed by value.

Fortran Call
integer I
integer*2 J
real x
double precision d
logical l
call vexp(i, j, x, d, l)
C Called Procedure
void vexp_ (int *i, short *j, float
*x, double *d, int *l)
{
...program text...
}

Fortran Call
integer i
double precision f, result,
argbyvalue
result= argbyvalue(%VAL(I),%VAL
(F))
END
C Called Function
double argbyvalue_ (int i,double
f)
{
...program text...
return g;
}

Intel® Fortran Compiler User's Guide

250

Array Arguments
The table below shows the simple correspondence between the type of the Fortran actual
argument and the type of the C procedure argument for arrays of types INTEGER,
INTEGER*2, REAL, DOUBLE PRECISION, and LOGICAL.

 Note
There is no simple correspondence between Fortran automatic, allocatable,
adjustable, or assumed size arrays and C arrays. Each of these types of arrays
requires a Fortran array descriptor, which is implementation-dependent.

Array Data Type

 Note
Be aware that array arguments in the C procedure do not need to be declared as
pointers. Arrays are always passed as pointers.

Fortran Type C Type
integer x() int x[];
integer*1 x() signed char x[];
integer*2 x() short x[];
integer*4 x() long int x[];
integer*8 x() long long x[]; or _int64
real*4 x() float x[];
real*8 x() double x[];
real x() float x[];
real*16 x() No equivalent
double precision x
()

double x[];

logical*1 x() char x[];
logical*2 x() short int x[];
logical*4 x() long int x[];
logical x() int x[];
logical*8 x() long long x[]; or _int64 x

[];
complex x() struct {float real, imag;}

[x];
complex *8 x() struct {float real, imag;}

[x];
complex *16 x() struct {double dreal,dimag;}

x;
double complex x() struct { double

dreal,dimag; } [x];
complex(KIND=16) x
()

No equivalent

Intel® Fortran Compiler User's Guide

251

 Note
When passing arrays between Fortran and C, be aware of the following semantic
differences:

! Fortran organizes arrays in column-major order (the first subscript, or dimension,
of a multiply-dimensioned array varies the fastest); C organizes arrays in row-
major order (the last dimension varies the fastest).

! Fortran array indices start at 1 by default; C indices start at 0. Unless you
declare the Fortran array with an explicit lower bound, the Fortran element X(1)
corresponds to the C element x[0].

Example below shows the Fortran code for passing an array argument to C and the
corresponding C code.

Example of Array Arguments in Fortran and C

Character Types
If you pass a character argument to a C procedure, the called procedure must be
declared with an extra integer argument at the end of its argument list. This argument is the
length of the character variable.

The C type corresponding to character is char. Example that follows shows Fortran
code for passing a character type called charmac and the corresponding C procedure.

Example of Character Types Passed from Fortran to C

Fortran Code
dimension i(100), x(150)
call array(i, 100, x, 150)
Corresponding C Code
array (i, isize, x, xsize)
int i[];
float x[];
int *isize, *xsize;
{
. . .program text. . .
}

Fortran Code
character*(*) c1
character*5 c2
float x
call charmac(c1, x, c2)

Intel® Fortran Compiler User's Guide

252

For the corresponding C procedure in the above example, n1 and n2 are the number of
characters in c1 and c2, respectively. The added arguments, n1 and n2, are passed by
value, not by reference. Since the string passed by Fortran is not null-terminated, the C
procedure must use the length passed.

Null-Terminated CHARACTER Constants

As an extension, the Intel Fortran Compiler enables you to specify null-terminated
character constants. You can pass a null-terminated character string to C by making the
length of the character variable or array element one character longer than otherwise
necessary, to provide for the null character. For example:

Complex Types
To pass a complex or double complex argument to a C procedure, declare the
corresponding argument in the C procedure as either of the two following structures,
depending on whether the actual argument is complex or double complex:

struct { float real, imag; } *complex;

Corresponding C Procedure
charmac_ (c1, x, c2, n1, n2)
int n1, n2;
char *c1,*c2;
float *x;
{
. . .program text. . .
}

Fortran Code
PROGRAM PASSNULL

interface
subroutine croutine (input)
!MS$attributes alias:'-
croutine'::CROUTINE
character(len=12) input
end subroutine
end interface

character(len=12)HELLOWORLD
data_HELLOWORLD/'Hello World'C/
call croutine(HELLOWORLD)
end

Corresponding C Code
void croutine(char *input, int len)
{
printf("%s\n",input);
}

Intel® Fortran Compiler User's Guide

253

struct { double real, imag; } *dcomplex;

Example below shows Fortran code for passing a complex type called compl and the
corresponding C procedure.

Example of Complex Types Passed from Fortran to C

Return Values
A Fortran subroutine is a C function with a void return type. A C procedure called as a
function must return a value whose type corresponds to the type the Fortran program
expects (except for character, complex, and double complex data types). The table
below shows this correspondence.

Return Value Data Type

Fortran Code
double complex dc
complex c
call compl(dc, c)
Corresponding C Procedure
compl (dc, c)
struct { double real, imag; } *dc;
struct { float real, imag; } *c;
{
. . .program text. . .
}

Fortran Type C Type
integer int;

integer*1 signed char;

integer*2 short;

integer*4 long int x;

integer*8 x long long x; or _int64

logical int;

logical*1 char;

logical*2 short;

logical*4x long int x;

logical*8 long long x; or _int64

real float;

real*r x float x;

real*8 x double x;

real*16 No equivalent
double precision double;

Intel® Fortran Compiler User's Guide

254

Example below shows Fortran code for a return value function called cfunct and the
corresponding C routine.

Example of Returning Values from C to Fortran

Returning Character Data Types
If a Fortran program expects a function to return data of type character, the Fortran
compiler adds two additional arguments to the beginning of the called procedure's
argument list:

! The first argument is a pointer to the location where the called procedure should store
the result.

! The second is the maximum number of characters that must be returned, padded with
white spaces if necessary.

The called routine must copy its result through the address specified in the first argument.
Example that follows shows the Fortran code for a return character function called
makechars and corresponding C routine.

Example of Returning Character Types from C to Fortran

Fortran code
integer iret, cfunct
iret = cfunct()
Corresponding C Routine
int cfunct ()
{
...program text...
return i;
}

Fortran code
character*10 chars, makechars
double precision x, y
chars = makechars(x, y)
Corresponding C Routine
void makechars_ (result, length, x,
y);
char *result;
int length;
double *x, *y;
{
...program text, producing
returnvalue...
for (i = 0; i < length; i++) {
result[i] = returnvalue[i];

Intel® Fortran Compiler User's Guide

255

In the above example, the following restrictions and behaviors apply:

! The function's length and result do not appear in the call statement; they are
added by the compiler.

! The called routine must copy the result string into the location specified by result;
it must not copy more than length characters.

! If fewer than length characters are returned, the return location should be padded
on the right with blanks; Fortran does not use zeros to terminate strings.

! The called procedure is type void.

! You must use lowercase names for C routines or ATTRBUTE directives and
INTERFACE blocks to make the calls using uppercase.

Returning Complex Type Data
If a Fortran program expects a procedure to return a complex or double-complex value,
the Fortran compiler adds an additional argument to the beginning of the called procedure
argument list. This additional argument is a pointer to the location where the called
procedure must store its result.

Example below shows the Fortran code for returning a complex data type procedure called
wbat and the corresponding C routine.

Example of Returning Complex Data Types from C to Fortran

}
}

Fortran code
complex bat, wbat
real x, y
bat = wbat (x, y)
Corresponding C Routine
struct _mycomplex { float real, imag };
typedef struct _mycomplex _single_complex;
void wbat_ (_single_complex location, float
*x, float *y)

{
float realpart;
float imaginarypart;
... program text, producing realpart and
imaginarypart...
*location.real = realpart;
*location.imag = imaginarypart;
}

Intel® Fortran Compiler User's Guide

256

In the above example, the following restrictions and behaviors apply:

! The argument location does not appear in the Fortran call; it is added by the compiler.

! The C subroutine must copy the result's real and imaginary parts correctly into
location.

! The called procedure is type void.

If the function returned a double complex value, the type float would be replaced by
the type double in the definition of location in wbat.

Procedure Names
C language procedures or external variables can conflict with Fortran routine names if they
use the same names in lower case with a trailing underscore. For example:

Fortran Code
subroutine myproc(a,b)
end

C Code
void myproc_(float *a, float *b){
}

The expressions above are equivalent, but conflicting routine declarations. Linked into the
same executable, they would cause an error at link time.

Many routines in the Fortran runtime library use the naming convention of starting library
routine names with an f_ prefix. When mixing C and Fortran, it is the responsibility of the C
program to avoid names that conflict with the Fortran runtime libraries.

Similarly, Fortran library procedures also include the practice of appending an underscore
to prevent conflicts.

Pointers
In the Intel® Fortran Compiler implementation, pointers are represented in memory in the
form shown in the table that follows.

Pointer Representation in Intel Fortran Compiler

Intel® Fortran Compiler User's Guide

257

Calling C Pointer-type Function from Fortran
In Intel® Fortran, the result of a C pointer-type function is passed by reference as an
additional, hidden argument. The function on the C side needs to emulate this as follows:

Calling C Pointer Function from Fortran

The function’s result (int *) is returned as a pointer to a pointer (int **), and the C
function must be of type void (not int*). The hidden argument comes at the end of the
argument list, if there are other arguments, and after the hidden lengths of any character
arguments.

In addition to pointer-type functions, the same mechanism should be used for Fortran
functions of user-defined type, since they are also returned by reference as a hidden

Pointer To: Representation
a numeric
scalar

one word representing the address of its
target

a derived
type scalar

one word representing the address of its
target

a character
scalar

two words, the first word containing the
address of its target and the second
containing its defined length

an array a data structure of variable size that
describes the target array; Intel reserves
the right to modify the form of this
structure without notice

Fortran code
program test
interface
function cpfun()
integer, pointer:: cpfun
end function
end interface
integer, pointer:: ptr
ptr => cpfun()
print*, ptr
end
C Code
#include <malloc.h>
void *cpfun_(int **LP)
{
*LP = (int *)malloc(sizeof
(int));
**LP = 1;
return LP;
}

Intel® Fortran Compiler User's Guide

258

argument. The same is true for functions returning a derived type (structure) or
character if the function is character*(*).

 Note
Calling conventions such as these are implementation-dependent and are not
covered by any language standards. Code that is using them may not be portable.

Implicit Interface
An implicit interface call is a call on a procedure in which the caller has no explicit
information on the form of the arguments expected by the procedure; all calls within a
Fortran program are of this form. All arguments passed through an implicit interface, apart
from label arguments, are passed by address.

Fortran Implicit Argument Passing by Address

Actual arguments of type character are passed as a character descriptor, which consists
of two words, see Character Types.

Label arguments (alternate returns) are handled differently: subroutines which include one
or more alternate returns in the argument list are compiled as integer functions; these
functions return an index into a computed goto; the caller executes these gotos on return.
For example:

call validate(x,*10,*20,*30)

is equivalent to

goto (10,20,30), validate(x)

Explicit Interface
Fortran provides various mechanisms by which the declarations of the dummy arguments
within the called procedure can be made available to the caller while it is constructing the
actual argument list. An explicit interface call is one to the following:

! a module procedure

! an internal procedure

Argument Address Passed
scalar the address of the scalar
array the address of the first element of the array
scalar pointer the address of its target
array pointer the address of the first element of its target
procedure the address associated with the external

name

Intel® Fortran Compiler User's Guide

259

! an external procedure for which an interface block is provided

In this form of call the construction of the actual argument list is controlled by the
declarations of the dummy arguments, rather than by the characteristics of the actual
arguments. As in an implicit interface call, all arguments (apart from label arguments) are
passed by address, but the form of the address is controlled by attributes of the associated
dummy argument, see the table below.

Fortran Explicit Argument Passing by Address

As in an implicit interface call, arguments of type character are passed as a character
descriptor, described in Character Types.

Intel reserves the right to alter or modify the form of the internal data used to pass
assumed-shape arrays and pointers to arrays. It is therefore not recommended that
interfaces using these forms of argument are to be compiled with other than Intel ® Fortran
Compiler.

The call on an explicit interface need not associate an actual argument with a dummy
argument if the dummy argument has the optional attribute. An optional argument
that is not present for a particular call to a routine has a placeholder value passed instead
of its address. The place-holder value for optional arguments is always -1.

Intrinsic Functions
The normal argument passing mechanisms described in the preceding sections may
sometimes not be appropriate when calling a procedure written in C. The Intel® Fortran
Compiler also provides the intrinsic functions %REF and %VAL which may be used to
modify the normal argument passing mechanism. These intrinsics must not be used when
calling a procedure compiled by the Intel Fortran Compiler. See Additional Intrinsic
Functions section.

Argument Address Passed
scalar the address of the scalar
assumed-shape
array

the address of an internal data structure
which describes the actual argument

other arrays the address of the first element of the
actual array

scalar pointer the address of the pointer
array pointer the address of an internal data structure

which describes the pointer's target
procedure the address associated with the external

name

Intel® Fortran Compiler User's Guide

260

Reference Information
Maximum Size and Number
The table below shows the size or number of each item that the Intel ® Fortran Compiler
can process. All capacities shown in the table are tested values; the actual number can be
greater than the number shown.

Additional Intrinsic Functions
The Intel® Fortran Compiler provides a few additional generic functions, and adds specific
names to standard generic functions (in particular, to accommodate DOUBLE COMPLEX
arguments). Some specific names are synonyms to standard names.

 Note
Many intrinsics listed in this section are handled as library calls. Not all the functions
that are listed in the sections that follow can be inlined.

Synonyms

The Intel® Fortran provides synonyms for standard Fortran intrinsic names. They are given
in the right-hand columns.

Item Tested Values
Maximum nesting of interface blocks 10
Maximum nesting of input/output implied DOs 20
Maximum nesting of array constructor implied DOs 20
Maximum nesting of include files 10
Maximum length of a character constant 32767
Maximum Hollerith length 4096
Maximum number of digits in a numeric constant 1024
Maximum nesting of parenthesized formats 20
Maximum nesting of DO, IF or CASE constructs 100
Maximum number of arguments to MIN and MAX 255
Maximum number of parameters 256
Maximum number of continuation lines in fixed or free form 99
Maximum width field for a numeric edit descriptor 1024

Standard
Name

Intel Fortran
Synonym

Standard
Name

Intel Fortran
Synonym

DBLE DREAL DIGITS EPPREC
IAND AND MINEXPONENT EPEMIN
IEOR XOR MAXEXPONENT EPEMAX
IOR OR HUGE EPHUGE
RADIX EPBASE EPSILON EPMRSP

Intel® Fortran Compiler User's Guide

261

Note that the Fortran standard intrinsic TINY and the Intel additional intrinsic EPTINY are
not synonyms. TINY returns the smallest positive normalized value appropriate to the type
of its argument, whereas EPTINY returns the smallest positive denormalized value.

DCMPLX Function

The DCMPLX function must satisfy the following conditions:

! If x is of type DOUBLE COMPLEX, then DCMPLX(x) is x.

! If x is of type INTEGER, REAL, or DOUBLE PRECISION, then DCMPLX(x) is DBLE(x)
+ 0i

! If x1 and x2 are of type INTEGER, REAL or DOUBLE PRECISION, then DCMPLX(x1,
x2) is

DBLE(x1) + DBLE(x2) * i

! If DCMPLX has two arguments, then they must be of the same type, which must be
INTEGER, REAL or DOUBLE PRECISION.

! If DCMPLX has one argument, then it may be INTEGER, REAL or DOUBLE
PRECISION, COMPLEX or DOUBLE COMPLEX.

LOC Function

The LOC function returns the address of a variable or of an external procedure.

Intel® Fortran KIND Parameters

Each intrinsic data type (INTEGER, REAL, COMPLEX, LOGICAL and CHARACTER) has a
KIND parameter associated with it. The actual values which the KIND parameter for each
intrinsic type can take are implementation-dependent. The Fortran standard specifies that
these values must be INTEGER, that there must be at least two REAL KINDs and two
COMPLEX KINDs (corresponding in each case to default REAL and DOUBLE PRECISION),
and that there must be at least one KIND for each of the INTEGER, CHARACTER and
LOGICAL data types.

INTEGER KIND values

KIND=1 1-byte INTEGER
KIND=2 2-byte INTEGER
KIND=4 4-byte INTEGER default KIND
KIND=8 8-byte INTEGER

REAL KIND values

Intel® Fortran Compiler User's Guide

262

KIND=4 4-byte REAL default KIND
KIND=8 8-byte REAL equivalent to DOUBLE PRECISION
KIND=16 16-byte REAL

COMPLEX KIND values

KIND=4 4-byte REAL & imaginary parts default KIND
KIND=8 8-byte REAL & imaginary parts equivalent to DOUBLE COMPLEX
KIND=16 16-byte REAL and imaginary parts equivalent to COMPLEX*32

LOGICAL KIND values

KIND=1 1-byte LOGICAL
KIND=2 2-byte LOGICAL
KIND=4 4-byte LOGICAL default KIND
KIND=8 8-byte LOGICAL

CHARACTER KIND value

KIND=1 1-byte CHARACTER default KIND

Except for COMPLEX, the KIND numbers match the size of the type in bytes. For COMPLEX
the KIND number is the KIND number of the REAL or imaginary part.

An include file (f90_kinds.f90) providing symbolic definitions, for use when defining
KIND type parameters, is included as part of the standard Intel® Fortran release.

Argument and Result KIND Parameters

The following extensions to standard Fortran are provided:

! References to the following intrinsic functions return INTEGER(KIND=2) results when
compile-time option -I2 or -i2 is specified: INT, IDINT, NINT, IDNINT, IFIX,
MAX1, MIN1.

! The following specific intrinsic functions may be given arguments of type INTEGER
(KIND=2): IABS, FLOAT, MAX0, AMAX0, MIN0, AMIN0, IDIM, ISIGN.

! References to the following intrinsic functions return INTEGER(KIND=8): results
when compile-time option -I2 or -i2 is specified: INT, IDINT, NINT, IDNINT, IFIX,
MAX1, MIN1.

! The following specific intrinsic functions may be given arguments of type INTEGER
(KIND=8): IABS, FLOAT, MAX0, AMAX0, MIN0, AMIN0, IDIM, ISIGN.

! References to the following specific intrinsic functions return REAL(KIND=8) results

Intel® Fortran Compiler User's Guide

263

when compile-time option -r8 is specified: ALOG, ALOG10, AMAX1, AMIN1, AMOD,
MAX1, MIN1, SNGL, REAL.

! References to the following specific intrinsic functions return results of type COMPLEX
(KIND=8), that is the real and imaginary parts are each of 8 bytes, when compile-
time option -r8 is specified: CABS, CCOS, CEXP, CLOG, CSIN, CSQRT, CMPLX.

%REF and %VAL Intrinsic Functions

Intel® Fortran provides two additional intrinsic functions, %REF and %VAL, that can be used
to specify how actual arguments are to be passed in a procedure call. They should not be
used in references to other Fortran procedures, but may be required when referencing a
procedure written in another programming language such as C.

In general, %VAL passes its argument as a 32-bit, sign extended, value with the following
exceptions: the argument cannot be an array, a procedure name, a multibyte Hollerith
constant, or a character variable (unless its size is explicitly declared to be 1).

In addition, the following conditions apply:

! If the argument is a derived type scalar, then a copy of the argument is generated and
the address of the copy is passed to the called procedure.

! An argument of complex type will be viewed as a derived-type containing two fields - a
real part and an imaginary part, and is therefore passed in manner similar to derived-
type scalars.

! An argument that is a double-precision real will be passed as a 64-bit floating-point
value.

This behavior is compatible with the normal argument passing mechanism of the C
programming language, and it is to pass a Fortran argument to a procedure written in C
where %VAL is typically used.

%REF(X) Specifies that the actual argument X is to be passed
as a reference to its value. This is how Intel Fortran
normally passes arguments except those of type
character. For each character value that is passed as
an actual argument, Intel Fortran normally passes
both the address of the argument and its length (with
the length being appended on to the end of the actual
argument list as a hidden argument. Passing a
character argument using %REF does not pass the
hidden length argument.

%VAL(X) Specifies that the value of the actual argument X is to
be passed to the called procedure rather than the
traditional mechanism employed by Fortran where the
address of the argument is passed.

Intel® Fortran Compiler User's Guide

264

The intrinsic procedures %REF and %VAL can only be used in each explicit interface block,
or in the actual CALL statement or function reference as shown in the example that follows.

List of Additional Intrinsic Functions

To understand the tabular list of additional intrinsic functions that follows after these notes,
take into consideration the following:

! Specific names are only included in the Additional Intrinsic Functions table if they are
not part of standard Fortran.

! An intrinsic that takes an integer argument accepts either INTEGER(KIND=2) or
INTEGER(KIND=4) or INTEGER(KIND=8).

! The abbreviation "double" stands for DOUBLE PRECISION.

! The abbreviation "dcomplex" stands for DOUBLE COMPLEX. Dcomplex type is an
Intel® Fortran extension, as are all intrinsic functions taking dcomplex arguments or
returning dcomplex results.

! If an intrinsic function has more than one argument, then they must all be of the same
type.

Calling Intrinsic Procedures
PROGRAM FOOBAR
INTERFACE
SUBROUTINE FRED(%VAL(X))
INTEGER :: X
END SUBROUTINE FRED
FUNCTION FOO(%REF(IP))
INTEGER :: IP, FOO
END FUNCTION FOO
END INTERFACE
...
CALL FRED(I) ! The value of I is
passed to FRED
J = FOO(I) ! I passed to FOO by
reference,
! FOO receives a reference to
! the value of I.
END PROGRAM

Alternatively:
PROGRAM FOOBAR
INTEGER :: FOO
EXTERNAL FOO, FRED
CALL fred(%VAL(I))
J = FOO(%REF(I))
END PROGRAM

Intel® Fortran Compiler User's Guide

265

! If a function name is used as an actual argument, then it must be a specific name, not
a generic name.

! If a function name is used as a dummy argument, then it does not identify an intrinsic
function in the subprogram, but has a data type according to the normal rules for
variables and arrays.

Additional Intrinsic Functions

Intrinsic
Function

Definition

Generic
Name

Specific
Name

No
of
Args

Type of
Args

Type of
Function

Type
conversion

Conversion
to double
precision
See Note 1

DREAL 1 real
real*16
doubl
complex*32

real
real*16
double
complex*32

DFLOAT

1

integer*2
integer*4
integer*8

real*8
real*8
real*8

Conversion t
double
complex See
Note 2

DCMPLX

1 or
2

integer*2
integer*4
integer*8
real*4
real*8
real*16
real*16
complex*8
complex*16
complex*32
complex*32

complex*16
complex*16
complex*16
complex*16
complex*16
complex*16
complex*16
complex*16
complex*16
complex*16
complex*32

Absolute
value

|x|

ABS

ZABS
CDABS
TABS
DABS
QABS

1

dcomplex
dcomplex
real
double
real*16
complex*32

double
double
real
double
real*16
complex*32

Imaginary
part of a
complex
argument

xi

IMAG

DIMAG
CDIMAG
TIMAG
QIMAG

1

dcomplex
dcomplex
real
real*16
complex*32

double
double
real
real*16
complex*32

Conjugate
of a
complex
argument

(xr, -xi)

CONJG

DCONJG
GTCONJ
DCONJ
QCONJ

1

dcomplex
real
double
complex*32

double
real
double
complex*32

Intel® Fortran Compiler User's Guide

266

Square root

Ðx

SQRT

ZSQRT
SQRT
TSQRT
DSQRT

1

dcomplex
dcomplex
real
real*16

dcomplex
dcomplex
real
real*16

Exponential

ex

EXP

ZEXP
CDEX
TEXP
QEXP
DEXP

1

dcomplex
dcomplex
real
double
real*16
double

dcomplex
dcomplex
real
double
complex*32
double

Natural
Logarithm

loge(x)

LOG

ZLOG
CDLOG
DLOG
QLOG

1

dcomplex
dcomplex
real*16
real*16
complex*32

dcomplex
dcomplex
double
real*16
complex*32

Bitwise
Operation

AND AND 2 integer integer

See Note 1 OR OR 2 integer integer
 Exclusive OR XOR 2 integer integer
 Shift left: x1

logically
shifted left x2
bits.x2 must
be > 0

 LSHIFT 2 integer integer

 Shift right: x1
logically
shifted right x
bits.x2 must
be > 0

 RSHIFT 2 integer integer

Environ-
mental
Inquiries.
See Note 1

Base of
number
systems

EPBASE

1

real
double
real*16
real*16
complex*32

integer
integer
integer
integer
complex*32

 Number of
Significant
Bits

EPPREC

1

real
double
real*16
real*16
complex*32

integer
integer
integer
integer
integer

Minimum
Exponent

EPEMIN

1

real
double
real*16
real*16
complex*32

integer
integer
integer
integer
integer

Intel® Fortran Compiler User's Guide

267

Maximum
Exponent

EPEMAX

1

real
double
real*16
real*16
complex*32

integer
integer
integer
integer
integer

Smallest non
zero number

EPTINY

1

real
double
real*16
double
complex*32

real
double
real*16
double
double

Largest
Number
Representab

EPHUGE

1

integer
real
double
real*16
double
complex*32

integer
real
double
real*16
double
double

Epsilon

EPMRSP

1

real
double
real*16
double
complex*32

real
double
real*16
double
complex*32

Location
See Note 3

Address of LOC 1 any integer

Sine

sin(x)

SIN
SIND

ZSIN
SIND
DSIND
QSIND

1

dcomplex
real*16
double
real*16
complex*32

dcomplex
real*16
double
real*16
complex*32

Cosine

cos(x)

COS
COSD

ZCOS
CDCOS
COSD
DCOSD
QCOSD

1

dcomplex
dcomplex
real
double
real*16
complex*32

dcomplex
dcomplex
real
double
real*16
complex*32

Tangent

tan(x)

TAND

TAND
DTAND
QTAND

1

real
double
real*16
complex*32

real
double
real*16
complex*32

Arcsine

arcsin(x)

ASIND

ASIND
DASIND
QASIND

1

real
double
real*16
complex*32

real
double
real*16
complex*32

Intel® Fortran Compiler User's Guide

268

Key Files Summary for IA-32 Compiler
The following tables list and briefly describe files that are installed for use by the IA-32
version of the compiler.

/bin Files

/lib Files

Arc-cosine

ACOSD

ACOSD
QCOSD
DACOSD
QACOSD

1

real
complex*32
double
real*16
complex*32

real
complex*32
double
real*16
complex*32

Arctangent

arctan(x)

ATAND

ATAND
DATAND
QATAND

1

real
double
real*16
complex*32

real
double
real*16
complex*32

arctan(x1-x2

ATAN2D

ATAN2D
DATAN2D
XATAN2D
QATAN2D

2222

real
double
real*16
real*16
complex*32

real
double
real*16
real*16
complex*32

File Description
f90com Executable used by the compiler
fpp Fortran preprocessor
ifc Intel® Fortran Compiler
ifc.cfg Configuration file for use from command line
ifccem FCE Manager Utility
ifcvars.csh Environment variables header file
ifcvars.sh Batch file to set environment variables
profmerge Utility used for Profile Guided Optimizations
proforder Utility used for Profile Guided Optimizations
xiar Tool used for final interprocedural compilation

prior to archiving.
xild Tool used for Interprocedural Optimizations

File Description
libbindf90.a Library of Binder utilities
libcepcf90.a Fortran I/O library to coexist with C
libcepcf90.so Shared Fortran I/O library to coexist with C
lincprts.a C++ standard language library

Intel® Fortran Compiler User's Guide

269

Key Files Summary for Itanium® Compiler
The following tables list and briefly describe files that are installed for use by the Itanium ®
compiler version of the compiler.

/bin Files

lincprts.so Shared C++ standard language library
libcxa.a C++ language library indicating I/O data

location
libcxa.so Shared C++ language library indicating I/O

data location
libf90.a Intel-specific Fortran runtime library
libf90.a Shared Intel-specific Fortran runtime library
libguide.a OpenMP* library
libguide.so Shared OpenMP library
libiepcf90.a Intel-specific Fortran runtime I/O library
libiepcf90.so Shared Intel-specific Fortran runtime I/O

library
libimf.a Special purpose math library functions,

including some transcendentals, built only for
Linux

libimf.so Shared special purpose math library
functions, including some transcendentals,
built only for Linux

libintrins.a Intrinsic functions library
libintrins.so Shared intrinsic functions library
libirc.a Intel-specific library (optimizations)
libompstub.a Library to resolve references to OpenMP

subroutines when OpenMP is not used
libpepcf90.a Portability library
libpepcf90.so Shared portability library
libposf90.a Posix library
libposf90.a Shared posix library
libsvml.a Short-vector math library (used by vectorizer)
libunwind.a Exception handling library to perform stack

unwinds
libunwind.so Shared version of exception handling library

File Description
f90com Executable used by the compiler
fpp Fortran preprocessor
efc Intel® Fortran Compiler
efc.cfg Configuration file for use from command line
efccem FCE Manager utility

Intel® Fortran Compiler User's Guide

270

/lib Files

efcvars.csh Environment variables header file
efcvars.sh Batch file to set environment variables
profmerge Utility used for Profile Guided Optimizations
proforder Utility used for Profile Guided Optimizations
xiar Tool used for final interprocedural compilation

prior to archiving.
xild Tool used for Interprocedural Optimizations

File Description
libasmutils.so Library of Intel Itanium Assembler utilities
libcepcf90.a Fortran I/O library to coexist with C
libcepcf90.so Shared Fortran I/O library to coexist with C
libcprts.a C++ standard language library
libcprts.so Shared C++ standard language library
libcxa.a C++ language library indicating I/O data

location
libcxa.so Shared C++ language library indicating I/O

data location
libdeceia.a Assembler decoder library for IA-32

instructions on Itanium processor.
libdeceia.so Shared assembler decoder library for IA-32

instructions on Itanium processor.
libdecem.a Assembler decoder library for Itanium

processor.
libdecem.so Shared assembler decoder library for Itanium

processor.
libdecem68.a Assembler decoder library for Pentium® 4

 processor.
libdecem68.so Shared assembler decoder library for

Pentium® 4 processor.
libdiseia.a Disassembly library for IA-32 instructions on

Itanium processor.
libdiseia.so Shared disassembly library for IA-32

instructions on Itanium processor..
libdisem.a Disassembly library for Itanium processor.
libdisem.so Shared disassembly library for Itanium

processor..
libdisp68.a Disassembly library for Pentium 4 processor.
libdisp68.so Shared disassembly library for Pentium 4

 processor.
libenceia.a Assembler encoder library for IA-32

instructions on Itanium processor.

Intel® Fortran Compiler User's Guide

271

libenceia.so Shared assembler encoder library for IA-32
instructions on Itanium processor.

libencem.a Assembler encoder library for Itanium
processor.

libencem.so Shared assembler encoder library for Itanium
processor.

ibencp68.a Assembler encoder library for Pentium 4
processor.

libencp68.so Shared assembler encoder library for Pentium
4 processor

libf90.a Intel-specific Fortran run-time library
libf90.so Shared Intel-specific Fortran run-time library
libfpel.a Floating point emulation assembly library.
libguide.a OpenMP* static library
libguide.so Shared OpenMP library
libiel.a Integer emulation assembly library.
libiepcf90.a Intel-specific Fortran I/O library
libiepcf90.so Shared Intel-specific Fortran I/O library
libiline.so Assembly library.
libimf.a Intel special purpose math library functions,

including some transcendentals.
libintrins.a Intrinsic functions library
libintrins.so Shared intrinsic functions library
libirc.a Intel-specific library (optimizations)
libm.a Math library compatible with GNU.
libmofl.a Multiple Object Format Library, used by the

Intel assembler
libmofl.so Shared Multiple Object Format Library, used

by the Intel assembler
libpepcf90.a Portability library
libpepcf90.so Shared portability library
libposf90.a Posix library
libposf90.so Shared posix library
libsched.so Shared assembly scheduling library
libsymdbg.so Shared assembly symbolic debugger library
libunwdecem.a Assembly decoder exception handling library

to perform stack unwinds
libunwdecem.so Shared assembly decoder exception handling

library to perform stack unwinds
libunwind.a Exception handling library to perform stack

unwinds
libunwind.so Shared exception handling library to perform

stack unwinds
libvral.so Assembly virtual register allocation library

Intel® Fortran Compiler User's Guide

272

Error Message Lists
This section provides lists of error messages generated during compilation phases or
reporting program error conditions. It includes the error messages for the following areas:

! runtime

! allocation

! input-output

! intrinsic procedures

! mathematical

! exceptions

Runtime Errors (IA-32 Only)

These errors are caused by an invalid run-time operation. Following the message, a
postmortem report is printed if any of the compile-time options -C, -CA, -CB, -CS, -CU, -
CV or -d{n} was selected.

 Error Option(s)
Required

Message

401 -CU Unassigned variable
404 none Assigned label is not in specified list
405 none Integer is not assigned with a format label
406 -CB Array bounds exceeded
439 none nth argument is not present
440 none Inconsistent lengths in a pointer assignment
442 none Inconsistent length for CHARACTER pointer function
*447 -CS Invalid DIM argument to LBOUND
*448 -CS Invalid DIM argument to UBOUND
*449 -CS Invalid DIM argument to SIZE
451 none Procedure is a BLOCKDATA
454 -CS Array shape mismatch
455 -CB Array section bounds inconsistent with parent array
456 -CB Invalid character substring ending position
457 -CB Invalid character substring ending position
458 none Object not allocated
459 -CA Array not allocated
460 -CA Pointer not allocated
461 -CA, -CU Pointer is undefined

Intel® Fortran Compiler User's Guide

273

*These errors are followed by additional information, as appropriate:

! nth dummy argument is not an actual-argument-type

! type1 actual argument passed to type2 dummy argument n

! type actual argument passed to cray-pointer dummy argument n

! Cray-pointer actual argument passed to type dummy argument n

! nth dummy argument is [not] a cray-pointer

! nth actual argument is not compatible with type RECORD

! name is [not] a pointer-valued function

! nth dummy argument is [not] a pointer

! name is [not] a dynamic CHARACTER function

! nth dummy argument is [not] optional

462 -CA Assumed-shape array is not allocated
463 -CA Assumed-shape array is undefined
464 none Inconsistent lengths in a character array constructor

441 -CV

443 -CV

444 -CV

480-CV

481-CV
441 -CV Inconsistent length for CHARACTER pointer argument

argument-name
443 -CV Inconsistent length for CHARACTER argument
444 -CV Inconsistent length for CHARACTER function
480 -CV Too many arguments specified
481 -CV Not enough arguments specified
*482 -CV Incorrect interface block
*483 -CV Interface block required for subprogram-name
*484 -CV name is not a type-kind function-subroutine
*485 -CV Argument type mismatch
*486 -CV Array rank mismatch

Intel® Fortran Compiler User's Guide

274

! nth dummy argument is [not] an assumed-shape array

! name is [not] an array-valued function

! nth dummy argument is an array but the actual argument is a scalar

! nth dummy argument is a scalar but the actual argument is an array

! The actual rank (x) of name does not match the declared rank (y)

! The data type of name does not match its declared type

! nth dummy argument and the actual argument are different data types

! nth actual argument passed to Fortran subprogram using %VAL

! nth actual argument passed to Fortran subprogram using %REF

Allocation Errors

The following errors can arise during allocation or deallocation of data space.

If the relevant ALLOCATE or DEALLOCATE includes a STAT = specifier, then an
occurrence of any of the errors below will cause the STAT variable to become defined with
the corresponding error number, instead of the error message being produced.

In the error messages, vartype is

array a pointer to an array, an allocatable array, or a
temporary array

character
scalar

a pointer to a character scalar, an automatic
character scalar, or a temporary character
scalar

pointer a pointer to a non-character scalar

Error Message
491 vartype is already allocated.
492 vartype is not allocated.
493 vartype was not created by ALLOCATE.

Intel® Fortran Compiler User's Guide

275

Input/Output Errors

The number and text of each input-output error message is given below, with the context in
which it could occur and an explanation of the fault which has occurred. If the input-output
statement includes an IOSTAT=STAT specifier, then an occurrence of any of the errors that
follow will cause the STAT variable to become defined with the corresponding error number.

494 Allocation of nnn bytes failed
or
Allocation of array with extent nnn failed
or
Allocation of array with element size nnn failed
or
Allocation of character scalar with element size
nnn failed
or
Allocation of pointer with element size nnn failed.

495 Heap initialization failed.

Error Message Where
Occurring

Description

117 Unit not
connected

OPEN An attempt was made to read or write to a
closed unit.

118 File already
connected

OPEN An attempt was made to OPEN a file on one
unit while it was still connected to another.

119 ACCESS
conflict

OPEN,
Positional,
READ, WRITE

When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELIM, ERR, IOSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the ACCESS specifier.
This message is also used if an attempt is
made to use a direct-access I/O statement on
a unit which is connected for sequential I/O or
a sequential I/O statement on a unit
connected for direct access I/O.

120 RECL conflict OPEN When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELIM, ERR, IOSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the RECL specifier.

121 FORM conflict OPEN When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELIM, ERR, IOSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the FORM specifier.

Intel® Fortran Compiler User's Guide

276

122 STATUS
conflict

OPEN When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELIM, ERR, IOSTAT and PAD
specifier may be redefined. An attempt has
been made to redefine the STATUS specifier.

123 Invalid
STATUS

CLOSE STATUS=DELETE has been specified in a
CLOSE statement for a unit which has no
write permissions; for example, the unit has
been opened with the READONLY specifier.

125 Specifier not
recognized

OPEN A specifier value defined by the user has not
been recognized.

126 Specifiers
inconsistent

OPEN Within an OPEN statement one of the
following invalid combinations of specifiers
was defined by the user:

ACCESS=DIRECT was specified when
STATUS=APPEND

BLANK=FORMATTED was specified when
FORM= UNFORMATTED

127 Invalid RECL
value

OPEN,
DEFINE
FILE

The value of the RECL specifier was not a
positive integer.

128 Invalid
filename

INQUIRE The name of the file in an Inquire by file
statement is not a valid filename.

129 No filename
specified

OPEN In an OPEN statement, the STATUS specifier
was not SCRATCH or UNKNOWN and no
filename was defined.

130 Record
length not
specified

OPEN The RECL specifier was not defined although
ACCESS=DIRECT was specified.

131 An equals
expected

Namelist
READ

A variable name, array element or character
substring reference in the input was not
followed by an `='.

132 Value
separator
missing

List-Directed
READ,
Namelist
READ

A complex or literal constant in the input
stream was not terminated by a delimiter (that
is, by a space, a comma or a record
boundary).

133 Value
separator
expected

Namelist
READ

A subscript value in a character substring or
array element reference in the input was not
followed by a comma or close bracket.

134 Invalid
scaling

WRITE with
FORMAT

If d represents the decimal field of a format
descriptor and k represents the current scale
factor, then the ANSI Standard requires that
the relationship -d<k<d+2 is true when an E
or D format code is used with a WRITE
statement. This requirement has been
violated.

Intel® Fortran Compiler User's Guide

277

135 Invalid
logical value

Formatted
READ

A logical value in the input stream was
syntactically incorrect.

136 Invalid
character
value

Namelist
READ

A character constant does not begin with a
quote character.

137 Value not
recognized

List-Directed
READ,
Namelist
READ

An item in the input stream was not
recognized.

138 Invalid
repetition
value

List-Directed
READ,
Namelist
READ

The value of a repetition factor found in the
input stream is not a positive integer
constant.

139 Illegal
repetition
factor

List-Directed
READ,
Namelist
READ

A repetition factor in the input stream was
immediately followed by another repetition
factor.

140 Invalid
integer

Formatted
READ

The current input field contained a real
number when an integer was expected.

141 Invalid real Formatted
READ

The current input field contained a real
number which was syntactically incorrect.

143 Invalid
complex
constant

List-Directed
READ,
Namelist
READ

The current input field contained a complex
number which was syntactically incorrect.

144 Invalid
subscript

Namelist
READ

A subscript value in an array element
reference in the input was not a valid integer.

145 Invalid
substring

Namelist
READ

A subscript value in a character substring
reference was not a valid integer or was not
positive.

146 Variable not
in Namelist

Namelist
READ

The data contained an assignment to a
variable which is not in the NAMELIST list.

147 Variable not
an array

Namelist
READ

A variable name in the data was followed by
an open bracket but the name is not an array
or character variable.

148 Invalid
character

Formatted
READ

A character has been found in the current
input stream which cannot syntactically be
part of the entity being assembled.

149 Invalid
Namelist
input

Namelist
READ

The first character of a record read by a
Namelist READstatement was not a space.

150 Literal not
terminated

List-Directed
READ,
Namelist
READ

A literal constant in the input file was not
terminated by a closing quote before the end
of the file.

151 A variable
name
expected

Namelist
READ

A list of array or array element values in the
data contained too many values for the
associated variable.

Intel® Fortran Compiler User's Guide

278

152 File does not
exist

OPEN An attempt has been made to open a file
which does not exist with STATUS=OLD.

153 Input file
ended

READ All the data in the associated internal or
external file has been read.

154 Wrong
length record

READ, WRITE The record length as defined by a FORMAT
statement, or implied by an unformatted
READ or WRITE, exceeds the defined
maximum for the current input or output file.

155 Incompatible
format
descriptor

READ/WRITE
with FORMAT

A format description was found to be
incompatible with the corresponding item in
the I-O list.

156 READ after
WRITE

READ An attempt has been made to read a record
from a sequential file after a WRITE
statement.

158 Record
number out
of range

Direct Access
READ/WRITE,
FIND

The record number in a direct-access I-O
statement is not a positive value, or, when
reading, is beyond the end of the file.

159 No format
descriptor for
data item

READ/WRITE
with FORMAT

No corresponding format code exists in a
FORMAT statement for an item in the I-O list
of a READ or WRITE statement.

160 READ after
Endfile

READ An attempt has been made to read a record
from a sequential file which is positioned at
ENDFILE.

161 WRITE
operation
failed

WRITE After repeated retries WRITE(2) could not
successfully complete an output operation.
This may occur if a signal to be caught
interrupts output to a slow device

162 No WRITE
permission

WRITE An attempt has been made to write to a file
which is defined for input only.

163 Unit not
defined or
connected

FIND The unit specified by a FIND statement is not
open. The unit should first be defined by a
DEFINE FILE statement, or should be
connected by some other means.

164 Invalid
channel
number

Any I-O
Operation

The unit specified in an I/O statement is a
negative value.

166 Unit already
connected

DEFINE
FILE

The unit specified in a DEFINE FILE
statement is already open.

167 Unit already
defined

DEFINE
FILE, OPEN

The same unit has already been specified by
a previous DEFINE FILE statement.

168 File already
exists

OPEN An attempt has been made to OPEN an
existing file with STATUS=NEW.

169 Output file
capacity
exceeded

READ, WRITE An attempt has been made to write to an
internal or external file beyond its maximum
capacity.

Intel® Fortran Compiler User's Guide

279

171 Invalid
operation on
file

Positional,
READ, WRITE

An I/O request was not consistent with the file
definition; for example, attempting a
BACKSPACE on a unit that is connected to the
screen.

172 various READ, WRITE An unexpected error was returned by READ2
- the error text will be the NT* message
associated with the failure.

173 various READ, WRITE An unexpected error was returned by WRITE-
the error text will be the LINUX* message
associated with the failure.

174 various READ, WRITE An unexpected error was returned by LSEEK
- the error text will be the LINUX message
associated with the failure.

175 various OPEN, CLOSE An unexpected error was returned by
UNLINK - the error text will be the LINUX
message associated with the failure.

176 various OPEN, CLOSE An unexpected error was returned by CLOSE-
the error text will be the LINUX message
associated with the failure.

177 various OPEN An unexpected error was returned by CREAT
- the error text will be the LINUX message
associated with the failure.

178 various OPEN An unexpected error was returned by OPEN-
the error text will be the LINUX message
associated with the failure.

181 Substring
out of range

Namelist
READ

A character substring reference in the input
data lay beyond the bounds of the character
variable.

182 Invalid
variable
name

Namelist
READ

A name in the data was not a valid variable
name.

185 Too many
values

Namelist
READ
specified

A repetition factor (of the form r*c) exceeded
the number of elements remaining
unassigned in either an array or array
element reference.

186 Not enough
subscripts

Namelist
READ
specified

An array element reference contained fewer
subscripts than are associated with the array.

187 Too many
subscripts

Namelist
READ
specified

An array element reference contained more
subscripts than are associated with the array.

188 Value out of
range

Formatted
READ

During numeric conversion from character to
binary form a value in the input record was
outside the range associated with the
corresponding I-O item.

190 File not
suitable

OPEN A file which can only support sequential file
operations has been opened for direct access
I-O.

Intel® Fortran Compiler User's Guide

280

191 Workspace
exhausted

OPEN Workspace for internal tables has been
exhausted.

192 Record too
long

READ The length of the current record is greater
than that permitted for the file as defined by
the RECL= specifier in the OPEN statement

193 Not
connected
for
unformatted
I-O

Unformatted
READ/WRITE

An attempt has been made to access a
formatted file with an unformatted I-O
statement.

194 Not
connected
for formatted

I-O

Formatted
READ/WRITE

An attempt has been made to access an
unformatted file with a formatted I-O
statement.

195 Backspace
not
permitted

BACKSPACE An attempt was made to BACKSPACE a file
which contains records written by a list-
directed output statement; this is prohibited
by the ANSI Standard.

199 Field too
large

List-Directed
READ,
Namelist
READ

An item in the input stream was found to be
more than 1024 characters long (this does
not apply to literal constants).

203 POSITION
conflict

OPEN When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELIM, ERR, IOSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the POSITION
specifier.

204 ACTION
conflict

OPEN When a file is to be connected to a unit to
which it is already connected, then only the
BLANK, DELIM, ERR, IOSTAT and PAD
specifiers may be redefined. An attempt has
been made to redefine the ACTION specifier.

205 No read
permission

READ An attempt has been made to READ from a
unit which was OPENed with
ACTION="WRITE".

206 Zero stride
invalid

Namelist
READ

An array subsection reference cannot have a
stride of zero.

208 Incorrect
array triplet
syntax

Namelist
READ

An array subsection triplet has been input
incorrectly.

209 Name not a
derived type

Namelist
READ

A name in the data which is not a derived
type has been followed by a `%'.

210 Invalid
component
name

Namelist
READ

A derived type reference has not been
followed by an `='.

Intel® Fortran Compiler User's Guide

281

Little-Big Endian Conversion Errors

Other Errors Reported by I/O statements

Errors 101-107 arise from faults in run-time formats:

Notes

211 Component
name
expected

Namelist
READ

A `%' must be followed by a component
name in a derived type reference.

212 Name not in
derived type

Namelist
READ

A component is not in this derived type.

213 Only one
component
may be
array-valued

Namelist
READ

In a derived-type reference, only the derived
type or one of its components may be an
array or an array subsection.

214 Object not
allocated

READ/WRITE An item has been used which is either an
unallocated allocatable array or a pointer
which has been disassociated.

Error Message Where
Occurring

Description

215 Conversion
of derived
data types is
disabled

READ/WRITE Conversion of derived data types is disabled
if READ/WRITE statement refers to derived
data type. Fatal error.

216 !Internal
Error!
Unknown
data size

READ/WRITE Unknown data size. Fatal error. Contact Intel.

217 !Internal
Error!
Conversion
buffer too
small

READ/WRITE Conversion buffer too small. Fatal error.
Contact Intel.

Error Message
101 Syntax error in format
102 Format is incomplete
103 A positive value is required here
104 Minimum number of digits exceeds width
105 Number of decimal places exceeds width
106 Format integer constants > 32767 are not

supported
107 Invalid H edit descriptor

Intel® Fortran Compiler User's Guide

282

! The I/O statements OPEN, CLOSE and INQUIRE are classified as Auxiliary I/O
statements. The I/O statements REWIND, ENDFILE and BACKSPACE are classified as
Positional I/O statements.

! The IOSTAT = variable is set to -1 if an end-of-file condition occurs, to -2 if
an end-of-record condition occurs (in a non-advancing READ), to the error number
if one of the listed errors occurs, and to 0 if no error occurs.

! Should no input/output specifier relating to the type of the occurring input/output error
be given (END=, EOR=, ERR= or IOSTAT=, as appropriate), then the input/output error
will terminate the user program. All units which are currently opened will be closed,
and the appropriate error message will be output on Standard Error followed (if
requested) by a postmortem report (see Runtime Diagnostics).

! The form of an input/output error message is presented in the table below.

 Note
Only as much information as is available or pertinent will be displayed.

Intrinsic Procedure Errors

The following error messages, which are unnumbered, are generated when incorrect
arguments are specified to the Intel® Fortran Compiler intrinsic procedures, and option -CS
was selected at compile-time. The messages are given in alphabetic order.

Each message is preceded by a line of the form:

ERROR calling the intrinsic subprogram name:

where name is the name of the intrinsic procedure called. The term "integer" indicates
integer format of an argument.

I/O Error nnn : Text of message
In Procedure : Procedure name
At Line : Line number
Statement : I/O statement type
Unit : Unit identifier or Internal File
Connected To : File name
Form : Formatted, Unformatted or Print
Access : Sequential or Direct
Nextrec : Record number
Records Read : Number of records input
Records Written : Number of records output
Current I/O
Buffer :

Snapshot of the current record with a
pointer to the current position

Intel® Fortran Compiler User's Guide

283

List of Intrinsic Errors

Argument integer of the intrinsic function name has string length integer. It should
have string length at least integer.

Argument integer of the intrinsic function name is a rank integer array.
It should be a rank integer array.

Argument integer of the intrinsic function name is an array with integer elements. It
should be an array with at least integer elements.

Argument name has the value integer and argument name has the value integer .
Both arguments should have non-negative values and their sum should be less than or
equal to integer .

Array argument name has size integer .
It should have size integer.

Array arguments name1 and name2 should have the same shape.
The shape of argument name1 is: (integer,integer,...,integer).
The shape of argument name2 is: (integer,integer,...,integer).

At least one of the array arguments should have rank = 2
The extent of the last dimension of MATRIX_A is integer.
The extent of the first dimension of MATRIX_B is integer.
These values should be equal.

The DIM parameter had a value of integer.
Its value should be integer.

The DIM parameter had a value of integer.
Its value should be at least integer and no larger than integer.

The name array has shape: (integer,integer,...,integer).
The shape of name should be: (integer,integer,...,integer).

The NCOPIES argument has a value of integer. NCOPIES should be non-negative.

The ORDER argument should be a permutation of the integer1 to integer.
The contents of the ORDER argument array is: (integer,integer,...,integer).

The rank of the RESULT array should be equal to the size of the SHAPE array.
The rank of the RESULT array is integer. The size of the SHAPE array is integer.

The RESULT array has shape: (integer,integer,...,integer).
The shape of the RESULT array should be: (integer,integer,...,integer).

Intel® Fortran Compiler User's Guide

284

The RESULT array has size integer. It should have size integer.

The RESULT character string has length integer. It should have length integer.

The SHAPE argument has size integer.
Its size should be at least integer and no larger than integer.

! The SHAPE argument should have only non-negative elements.

! The contents of the SHAPE array is: (integer,integer,...,integer).

! The SIZE argument has a value integer. Its value should be non-negative.

! The size of the SOURCE array should be at least integer.

! The size of the SOURCE array is integer.

! When setting seeds with the intrinsic function name, the first seed must be at least
integer and not more than integer, and the second seed must be at least
integer and not more than integer.

Mathematical Errors

This section lists the errors that can be reported as a consequence of using an intrinsic
function or the exponentiation operator **.

If any of the errors below is reported, the user program will terminate. A postmortem report
(see Runtime Diagnostics) will be output if the program was compiled with the option -d
{n}. All input-output units which are open will be closed.

The number and text of mathematical errors are:

Error Message
16 Negative DOUBLE PRECISION value raised to a non-integer power
17 DOUBLE PRECISION zero raised to non-positive power
22 REAL zero raised to non-positive power
23 Negative REAL value raised to a non-integer power
24 REAL value raised to too large a REAL power
38 INTEGER raised to negative INTEGER power
39 INTEGER zero raised to non-positive power
40 INTEGER to INTEGER power overflows
46 DOUBLE PRECISION value raised to too large a DOUBLE

PRECISION power
47 COMPLEX zero raised to non-positive INTEGER power

Intel® Fortran Compiler User's Guide

285

Exception Messages

The following messages, which are unnumbered, are a selection of those which can be
generated by exceptions (signals). They indicate that a hardware-detected or an
asynchronous error has occurred. Note that you can obtain a postmortem report when an
exception occurs by compiling with the -d{n} option.

The occurrence of an exception usually indicates that the Fortran program is faulty.

Message Comment
**QUIT
signal**

Program aborted by the user typing ^/ (ctrl + /)

**Illegal
Instruction**

May be indicative of a bad call on a function
that is defined to return a derived type result:
either the sizes of the expected and actual
results do not correspond, or the function has
not been called as a derived type function.

**Alignment
Error**

Access was attempted to a variable which is
not aligned on an address boundary
appropriate to its type; this could occur, for
example, when a formal double-precision type
variable is aligned on a single word boundary.

**Address
Error** **Bus
Error**

Usually caused by a wrong value being used
as an address (check the associativity of all
pointers).

	Intel® Fortran Compiler User's Guide
	Disclaimer
	Welcome to Intel® Fortran Compiler
	Major Components of the Intel® Fortran Compiler Product
	What's New in This Release
	Improvements and New Features
	Features and Benefits
	Product Web Site and Support
	System Requirements
	FLEXlm* Electronic Licensing
	How to Use This Document
	Notation Conventions
	Related Publications
	Publications on Compiler Optimizations

	Options Quick Reference Guides
	Conventions used in the Options Quick Guide Tables
	New Compiler Options
	Compiler Options Quick Reference Alphabetical
	Compiler Options by Functional Groups
	Customizing Compilation Process Options
	Alternate Tools and Locations
	Preprocessing
	Compiling
	Linking
	Compilation Output
	Debugging
	Libraries
	Diagnostics and Messages

	Language Conformance Options
	Data Type
	Source Program
	Arguments and Variables
	Common Blocks

	Application Performance Optimizations Options
	Setting Optimization Level
	Floating-point Arithmetic Precision
	Processor Dispatch Support
	Interprocedural Optimizations
	Profile-guided Optimizations
	High-level Language Optimizations
	Parallelization
	Vectorization (IA-32 only)
	Optimization Reports (Itanium® Compiler)

	Windows* to Linux* Options Cross-reference

	Getting Started with the Intel® Fortran Compiler
	Invoking Intel® Fortran Compiler
	Invoking from the Compiler Command Line
	Setting the Environment Variables
	Running the Shell Scripts
	Command Line Syntax

	Command Line with make
	Input Files

	Default Behavior of the Compiler
	Default Behavior of the Compiler Options
	Data Setting and Language Conformance
	Optimizations
	Compilation
	Messages and Diagnostics
	Messages and Diagnostics
	Disabling Default Options
	Resetting Default Data Types

	Default Libraries and Tools
	Assembler
	Linker

	Compilation Phases

	Customizing Compilation Environment
	Environment Variables
	Configuration Files
	Response Files
	Include Files

	Customizing Compilation Process
	Specifying Alternate Tools and Locations
	Specifying an Alternate Component
	Passing Options to Other Tools

	Preprocessing
	Preprocessor Options
	Preprocessing Fortran Files
	Enabling Preprocessing with CVF
	String Constants for IA-32 Systems
	Preprocessing Only: -E, -EP, -F, and -P
	Specifying an Include Directory, -Idir
	Compiling an Input File from a Different Directory
	Specifying the .mod Files Directory
	Removing Include Directories, -X
	Defining Macros
	Predefined Macros
	Suppressing Macros
	Preprocessor Macro for OpenMP*

	Compilation
	Controlling Compilation
	Saving Compiler Version and Options Information,
	Monitoring Data Settings
	Little-endian-to-Big-endian Conversion (IA-32)

	Specifying Compilation Output
	Default Output Files
	Specifying Executable Files
	Specifying Object Files
	Producing Assembly Files with Annotations and Comments
	Using the Assembler to Produce Object Code
	Listing Options

	Linking
	Options to Link to Tools and Libraries
	Controlling Linking and its Output
	Suppressing Linking

	Debugging
	Support for Symbolic Debugging
	Compiling Source Lines with Debugging Statements, -DD
	Parsing for Syntax Only
	Debugging and Optimizations

	Fortran Language Options
	Setting Integer and Floating-point Data Types
	Source Program Features
	Program Structure and Format
	Compatibility with Platforms and Compilers
	Escape Characters
	Line Terminators

	Setting Arguments and Variables
	Automatic Allocation of Variables to Stacks
	Alignment, Aliases, Implicit None
	Preventing CRAY* Pointer Aliasing

	Allocating Common Blocks
	Dynamic Common Option
	Allocating Memory to Dynamic Common Blocks
	Why Use a Dynamic Common
	Rules of Using Dynamic Common Option

	Compiler Optimizations
	Optimization Levels
	Setting Optimization Levels
	Restricting Optimizations

	Floating-point Arithmetic Precision
	Floating-point Arithmetic Precision for IA-32 Systems
	-prec_div Option
	-pc{32|64|80} Option
	Rounding Control, -rcd, -fp_port

	Floating-point Arithmetic Precision for Itanium®-based Systems
	Contraction of FP Multiply and Add/Subtract Operations
	FP Speculation
	FP Operations Evaluation
	Controlling Accuracy of the FP Results

	Improving/Restricting FP Arithmetic Precision

	Targeting a Processor and Extensions Support
	Targeting a Processor, -tpp{n}
	Exclusive Specialized Code with -x{i|M|K|W}
	Specialized Code with -ax{i|M|K|W}
	Checking for Performance Gain
	Combining Processor Target and Dispatch Options
	Example of -x and -ax Combinations

	Interptocedural Optimizations
	Multifile IPO
	Compilation Phase
	Creating a Multifile IPO Executable with Command Line
	Creating a Multifile IPO Executable Using xild
	Usage Rules
	The xild Options
	Compilation with Real Object Files
	Creating a Library from IPO Objects
	Analyzing the Effects of Multifile IPO, -ipo_c, -ipo_S
	Using -ip with -Qoption Specifiers

	Criteria for Inline Function Expansion
	Selecting Routines for Inlining
	Controlling Inline Expansion of User Functions
	Inline Expansion of Library Functions

	Profile-guided Optimizations
	Instrumented Program
	Added Performance with PGO
	Profile-guided Optimizations Methodology
	PGO Phases
	Basic PGO Options
	Generating Instrumented Code, -prof_gen[x]
	Generating a Profile-optimized Executable, -prof_use
	Disabling Function Splitting, -fnsplit- (Itanium® Compiler only)

	Advanced PGO Options
	Specifying the Directory for Dynamic Information Files
	Specifying Profiling Summary File
	Guidelines for Using Advanced PGO

	PGO Environment Variables
	Example of Profile-Guided Optimization
	Merging the .dyn Files
	The profmerge Utility
	Dumping Profile Data
	Using profmerge to Relocate the Source Files

	PGO API Support
	The Profile IGS Functions
	The Profile IGS Environment Variable
	Dumping Profile Information
	Resetting the Dynamic Profile Counters
	Dumping and Resetting Profile Information
	Interval Profile Dumping
	Interval Profile Dumping

	High-level Language Optimizations (HLO)
	Loop Transformations
	Scalar Replacement (IA-32 Only)
	Loop Unrolling with -unroll[n]
	Memory Dependency with IVDEP Directive
	Prefetching

	Parallelization
	Parallelization with OpenMP*
	Parallel Processing with OpenMP
	Performance Analysis
	Programming with OpenMP
	Parallel Region and Constructs
	Worksharing Construct
	Parallel Processing Directive Groups
	Data Sharing
	Orphaned Directives
	Preparing Code for OpenMP Processing

	Parallel Processing Thread Model
	The Execution Flow
	Pseudo Code of the Parallel Processing Model

	Compiling with OpenMP, Directive Format, and Diagnostics
	-openmp Option
	OpenMP Directive Format and Syntax
	Syntax for Parallel Regions in the Source Code
	OpenMP Diagnostics

	OpenMP Directives and Clauses
	OpenMP Directives
	OpenMP Clauses

	OpenMP Support Libraries
	Execution modes
	OpenMP Environment Variables
	Standard Environment Variables
	Intel Extension Environment Variables

	OpenMP Runtime Library Routines
	Intel Extension Routines
	Stack Size
	Memory Allocation

	Examples of OpenMP Usage
	do: A Simple Difference Operator
	do: Two Difference Operators
	sections: Two Difference Operators
	single: Updating a Shared Scalar

	Auto-parallelization
	Programming with Auto-parallelization
	Guidelines for Effective Auto-parallelization Usage
	Coding Guidelines
	Auto-parallelization Data Flow

	Programming Enabling, Options, Directives, and Environment Variables
	Auto-parallelization Options
	Auto-parallelization Directives
	Auto-parallelization Directives Format and Syntax
	Examples

	Auto-parallelization Environment Variables

	Auto-parallelization Threashold Control and Diagnostics
	Threshold Control
	Diagnostics
	Example of Parallelization Diagnostics Report
	Troubleshooting Tips

	Debugging Multithreaded Programs
	Debugger Limitations for Multithread Programs
	Debugging Parallel Regions
	Constructing an Entry-point Name
	Debugging Code with Parallel Region
	Example 1 Debuging Code with Parallel Region

	Debugging Multiple Threads
	The Call Stack Dumps
	Example 2 Debugging Code Using Multiple Threads with Shared Variables

	Debugging Shared Variables

	Vectorization
	Vectorizer Options
	Usage with Other Options

	Loop Parallelization and Vectorization
	Vectorization Key Programming Guidelines
	Guidelines
	Restrictions

	Data Dependence
	Data Dependence Analysis

	Loop Constructs
	Loop Exit Conditions
	Types of Loop Vectorized
	Stripmining and Cleanup
	Statements in the Loop Body
	Floating-point Array Operations
	Integer Array Operations
	Other Operations

	Vectorization Examples
	Argument Aliasing: A Vector Copy
	Data Alignment
	Alignment Strategy

	Loop Interchange and Subscripts: Matrix Multiply

	Optimization Support Features
	Compiler Directives
	Pipelining for Itanium®-based Applications
	LOOP COUNT (N) Directive
	Loop Distribution Directive
	Loop Unrolling Support
	Prefetching Support
	Vectorization Support (IA-32)
	IVDEP Directive
	Overriding Vectorizer's Efficiency Heuristics
	The VECTOR ALWAYS and NOVECTOR Directives
	The VECTOR ALIGNED and UNALIGNED Directives

	Compiler Intrinsics
	Cache Size Intrinsic (Itanium® Compiler)

	Timing Your Application
	Optimizer Report Generation (Itanium® Compiler)
	Specifying Optimizations to Generate Reports
	Command Syntax Example
	The Availability of Report Generation

	Libraries
	The Order of Passing the Files to Linker
	Using the POSIX* and Portability Libraries
	Intel® Shared Libraries
	Advantages of This Approach
	Shared Library Options

	Math Libraries
	Using Math Libraries with IA-32 Systems
	Optimized Math Library Primitives
	Programming with Math Library Primitives
	IEEE* Floating-point Exceptions
	Invalid Operation Exception

	Compiler Diagnostics
	Runtime Diagnostics
	Optional Runtime Checks
	Pointers, -CA
	Allocatable Arrays
	Assumed-Shape Arrays

	Array Subscripts, Character Substrings, -CB
	Unassigned Variables, -CU
	Actual to Dummy Argument Correspondence, -CV

	Diagnostic Report, -d{n}
	The Level of Output
	Selecting a Postmortem Report
	Invoking a Postmortem Report

	Compiler Information Messages
	Diagnostic Messages
	Command-line Diagnostics

	Warning Messages
	Suppressing or Enabling Warning Messages

	Comment Messages
	Error Messages
	Suppressing or Enabling Error Messages

	Fatal Errors

	Mixing C and Fortran
	Naming Conventions
	Passing Arguments between Fortran and C Procedures
	Using Fortran Common Blocks from C
	Fortran and C Scalar Arguments
	Passing Scalar Arguments by Value
	Array Arguments
	Character Types
	Return Values
	Returning Character Data Types
	Returning Complex Type Data
	Procedure Names
	Pointers
	Calling C Pointer-type Function from Fortran
	Implicit Interface
	Explicit Interface
	Intrinsic Functions

	Reference Information
	Maximum Size and Number
	Additional Intrinsic Functions
	Synonyms
	DCMPLX Function
	LOC Function
	Intel® Fortran KIND Parameters
	Argument and Result KIND Parameters
	%REF and %VAL Intrinsic Functions
	List of Additional Intrinsic Functions

	Key Files Summary for IA-32 Compiler
	Key Files Summary for Itanium® Compiler
	Error Message Lists
	Runtime Errors (IA-32 Only)
	Allocation Errors
	Input/Output Errors
	Little-Big Endian Conversion Errors
	Other Errors Reported by I/O statements
	Intrinsic Procedure Errors
	Mathematical Errors
	Exception Messages

