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Abstract: In a previous work, a new Gauss quadrature was introduced with a view to evaluate multicenter integrals
over Slater-type functions efficiently. The complexity analysis of the new approach, carried out using the three-center
nuclear integral as a case study, has shown that for low-order polynomials its efficiency is comparable to the SD̄. The
latter was developed in connection with multi-center integrals evaluated by means of the Fourier transform of B functions.
In this work we investigate the numerical properties of the Gauss–Bessel quadrature and devise strategies for an efficient
implementation of the numerical algorithms for the evaluation of multi-center integrals in the framework of the Gaussian
transform/Gauss–Bessel approach. The success of these strategies are essential to elaborate a fast and reliable algorithm
for the evaluation of multi-center integrals over STFs.

© 2007 Wiley Periodicals, Inc. J Comput Chem 29: 934–944, 2008
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Introduction

Multi-center integrals over Slater-type functions (STFs) is one of
the long-standing problems in the field of quantum chemistry. Aside
from the overlap integrals, these quantities represent electron–nuclei
or electron–electron interactions and constitute the basic building
blocks needed to populate the Hamiltonian of a molecular system.
From a mathematical perspective, multicenter integrals fall within
one of two categories,

1. One-electron integrals, for which the most difficult is proba-
bly the so-called three-center nuclear attraction integral that is
defined as,

J =
∫

r
χ

m1
n1,l1

(αra)
1

‖rc‖χ
m2
n2,l2

(βrb)dr (1)

where ru = r − u represents the coordinate of the electron
with respect to a point defined by its location vector u in some
fixed frame of reference. The term χm

n,l(αra) denotes any accept-
able atomic orbital. In practice this can be either Gaussian or
exponentially decaying (also referred to as STFs).

2. Two-electron integrals represents interactions between two–
electron distributions. A useful pictorial representation of these
quantities can easily be constructed using graphs, (Fig. 1) In
these graphs, A, B, C, and D represent the atoms on which the

orbitals are centered while (1) and (2) are the interacting elec-
trons. From these graphs, one can easily write the corresponding
definition of the integral. For instance from the graph (e), we can
write,

J =
∫

r1

∫
r2

χ
m1
n1,l1

(α1r1,a)χ
m2
n2,l2

(α2r1,b)
1

‖r1 − r2‖
χ

m3
n3,l3

(α3r2,b)χ
m4
n4,l4

(α4r2,c) dr1 dr2 (2)

where rk,u = rk −u represent the coordinate of electron (k) with
respect to the center defined by the vector u in some fixed frame
of reference.

When the atomic orbitals are STFs, the evaluation of multi-
center integrals becomes a challenging problem. In fact, over the
past 50 years numerous scientists, who paved the road to modern
computational chemistry, have tried to solve this difficult issue by
proposing a diverse set of mathematical tools and numerical proce-
dures. The efforts invested in this problem were motivated by the
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Figure 1. Graph representation of two-electron integrals. (a) two-
center Coulomb, (b) two-center hybrid, (c) two-center exchange,
(d) three-center hybrid, (e) three-center exchange, and (f) four-center
integrals.

fact that STFs are considered the most suitable orbitals to be used
for the construction of molecular wave functions. In fact, theoreti-
cal investigations of the behavior of the solutions of the Schrödinger
equation have shown that such solutions must have a cusp1 at the
origin and an exponential decay at infinity.2 Handy et al.3 went even
farther by showing that Hartree–Fock orbitals decrease asymptoti-
cally as exp[−2(−2εj)

1/2r] in which εj is the energy of the jth spin
orbital. This clearly is an additional theoretical proof supporting the
adequacy of STFs.

In the past decades three major routes, geared toward elaborating
an efficient algorithm for the evaluation of multicenter integrals over
STFs, have been investigated.

1. The one-center expansion originated with the pioneering work
of Coolidge,4 Löwdin,5 and Barnett and Coulson.6 This method
aimed at constructing an addition theorem which allowed an
arbitrary STF centered on some point defined by a location vec-
tor a to be expanded in terms of spherical harmonics. In this
context, STFs end up being represented by a two-range infi-
nite series,7–9 similar in a way to the multipole expansion of the
Coulomb operator. Perhaps the major drawback of this method,
as far as complicated multicenter integrals are concerned, is the
slow convergence of the leading infinite series which require
special numerical devices in order to keep computation times
from being prohibitively long. In addition to the afore mentioned
multipole expansion, some work has been devoted to investigate
the theoretical aspects of the one-center one-range expansion.10

However, and to the best of our knowledge, this method has not
been used extensively in practice.

2. The Gaussian integral transform (GIT), which was introduced
by Shavitt and Karplus back in the early 60s11 appeared as a

promising route, since instead of infinite series,12–15 multicenter
integrals end up being represented by multiple integrals whose
structure is as follows,

J ∝
∫ 1

0
du ua(1 − u)b

∫ 1

0
dv va′

(1 − v)b′
. . .

∫ ∞

0
dz FGIT(u, v, . . . , z) exp

[
−σ

z
− τ z

]
(3)

At this point the precise definition of F(u, v, . . . , z) is not crucial
for the argument we intend to make regarding the evaluation of
the earlier integral; it will certainly be given in due time. To eval-
uate the afore mentioned multiple integral, the term xα(1 − x)β

in the integrals over the range [0, 1] suggest the use of a Gauss–
Jacobi quadrature (at least when α and β > −1). As for the
innermost integral, this requires greater care since the integrands
exhibit a moving sharp peak due to the function exp(−σ/z−τ z).
To solve this problem, various strategies can be used. The first
and perhaps the most straightforward is to use an infinite series
representation which can then be accelerated in order to improve
its convergence.11 An alternative to this method is to rely on a
tailored Gauss quadrature specifically designed to use the term
exp(−σ/z − τ z) as part of its weight function. This quadrature
is referred to as Gauss–Bessel (GB) allows the singular term to
be removed from the integrand leaving a well behaving function
that can be accurately interpolated by a polynomial.

3. The Fourier integral transform (FIT) was first used in connection
to multicenter integrals over STFs by Bonham and Cowork-
ers.16 This method was later thoroughly studied by Steinborn
and coworkers and led to a new set of exponentially decreasing
orbitals known as the B functions. These functions were selected
as the basis of choice in the framework of the FIT approach, since
their Fourier transform is the simplest in comparison to other
STFs. In this context multicenter integrals are represented by a
multiple integral whose mathematical structure is of the form,

J =
∫ 1

0
du ur(1 − u)s

∫ 1

0
dv vr′

(1 − v)s′
. . .

∫ ∞

0
dz FFIT(u, v, . . . , z) jν(αz) (4)

in which jν(αz) is a spherical Bessel function. As for the
term FFIT(u, v, . . . , z), it is an exponentially decreasing function
which ensures the convergence of the innermost integral. The
best numerical strategy for evaluating the semi-infinite integral
occurring in eq. (4) is to rely on the SD̄ nonlinear transforma-
tion that was introduced by Safouhi18 and which was shown
to be a very powerful tool for semi-infinite integrals contain-
ing strongly oscillating Bessel functions. As a last remark, it
is important to notice that eq. (4) and (3) show a certain simi-
larity in the mathematical structure of multicenter integrals, as
expressed in both the FIT and GIT approaches. However in some
instances, as is the case for four-center integrals, GIT-based
multi-integrals may have an additional integral over the
range [0,1].

Journal of Computational Chemistry DOI 10.1002/jcc



936 Duret, Bouferguene, and Safouhi • Vol. 29, No. 6 • Journal of Computational Chemistry

Previously,19 it was shown that, in the case of three-center
nuclear attraction integrals, the numerical algorithm using the GB
quadrature has a complexity comparable to that of the SD̄ for low-
order polynomials. In fact, when the roots and weights of the GB
quadrature are computed on the fly, the complexity of the proce-
dure used to evaluate the three-center nuclear attraction integrals
increases as n3, where n is the order of the GB quadrature. This
complexity can clearly be penalizing if high-order quadratures are
required. As a consequence, this work is devoted to exploring strate-
gies that can be used for an efficient implementation of the GB
quadrature. The end result of this investigation is an algorithm with
linear complexity.

For the sake of completeness, we intend to address two
approaches both used to evaluate the semi-infinite integral occur-
ring in eq. (3): the Shavitt and Karplus infinite series11 which we
refer to as the SK-series and the GB quadrature.

1. First (cf. Convergence Analysis of the SK-Series section), we
address the convergence properties of the SK-series which is
shown to converge linearly, except for specific values of some
parameters for which such a convergence becomes logarithmic.
This poses severe numerical issues when accelerating techniques
are applied to speed up the summation procedure.

2. Second (cf. Implementation Strategy of the GB Quadrature
for the Evaluation of Tl,m(σ , τ) section), we focus on the GB

quadrature for which the integrand is transformed allowing a
minimal number of roots and weights to be stored. This strategy
is shown to yield an algorithm with linear complexity.

3. Third, it is also shown (cf. Complexity Analysis section) that
when the GB quadrature is implemented using the procedure
described in Implementation Strategy of the GB Quadrature for
the Evaluation of Tl,m(σ , τ) section, the leading algorithm has a
linear complexity similar to that of the SD̄ method (as applied in
the context of the FIT).

Definitions

A STF centered on some arbitrary point A(xA, yA, zA) defined by a
location vector a can generally be written in spherical coordinates as,

f m
n,l(ζra) = Pn,l(ζ‖ra‖) exp(−ζ‖ra‖)Ym

l (θra , φra ) (5)

where ra = r−a and Ym
l (θra , φra ) stands for the spherical harmonic

of degree l and order m. As for the term Pn,l(ζ‖ra‖), it is a poly-
nomial in the variable ‖ra‖ also referred to as the radial part of the
orbital. Of course, based on the specific definition of this polynomial
one can build a variety of useful exponentially decaying orbitals. For
instance,




Pn,l(ζ r) exp(−ζ r) = L2l+1
n−l−1(2ζ r) exp(−ζ r) yields hydrogen-like orbitals

Pn,l(ζ r) exp(−ζ r) = (ζ r)lKn−1/2(ζ r) yields B functions

Pn,l(ζ r) exp(−ζ r) = rn−1 exp(−ζ r) yields Slater orbitals

(6)

in which Kν(z) stands for the modified Bessel function of the second
kind. Although the spherical representation of atomic orbitals is the
most widely used in quantum chemistry textbooks, Cartesian coor-
dinates can also be very useful in practice. In fact, certain numerical
procedures used to evaluate multicenter integrals are tailored for
cartesian coordinates since high-order orbitals are easily obtained
as a result of applying a shift operator to the simplest instance, e.g.
1s orbital. In this respect, the work of Fernandez and Coworkers20

is an excellent reference to clearly understand the elegance of shift
operators in the context of multicenter integrals.

Strategies for the Evaluation of Tl,m(σ ,τ)

As mentioned earlier, when the GIT approach is used, multicenter
integrals over Slater orbitals can be expressed as a sum of multi-
ple integrals, the innermost of which is semi-infinite. According to
Shavitt and Karplus,11 such an integral can generally be written as,

�(m + 1/2)Tl,m(σ , τ) =
∫ ∞

0
zl−mFm

(
1

z

)[√
z exp

(
−σ

z
− τ z

)]
dz

(7)

where σ and τ are the two parameters which depend on the screen-
ing constants of the orbitals, the coordinates of the centers and the
integration variables of the outer integrals. Referring to the general
mathematical definition given in eq. (3), we can write,

σ = σ(ζ1, ζ2, . . . , geometry, u, v, . . .),

τ = τ(ζ1, ζ2, . . . , geometry, u, v, . . .) (8)

At this point one may be tempted to use a combination of Gauss
quadratures, eg. Gauss–Legendre and Gauss–Laguerre, to evaluate
the function Tl,m(σ , τ). In fact analysis of the integrand in (7) shows
that the term exp(−σ/z − τ z) introduces a moving peak which can
be very sharp. In such a case, Gauss interpolation polynomials will
fail to capture this special behavior, hence leading to inaccurate
results. Consequently, three strategies may be adopted to solve this
difficulty,

1. Increase the number of points in the classical Gauss quadratures.
This however is not the best solution, since not only it yields
costly algorithms but more importantly it still can fail for specific
values of σ and τ .

Journal of Computational Chemistry DOI 10.1002/jcc



Strategies for an Efficient Implementation of the Gauss–Bessel Quadrature 937

2. Turn to a series representation of Tl,m(σ , τ). One of such repre-
sentations is what we previously called the SK-series.11 Perhaps,
the major drawback of this type of expansions is the possibil-
ity of obtaining a slowly convergent series that would require
a special procedure for its evaluation. This adds another level
of complexity to the algorithms which, of course, comes with a
computational penalty.

3. Use a tailored Gauss quadrature built using the term exp(−σ/z−
τ z) as part of the weight function.15, 19 The authors would like to
draw attention to the work of Gautschi, who has previously con-
sidered a quadrature for which the weight function is of the form
exp(−1/x − x),21 which obviously is a special case of the GB
quadrature. This specific work by Gautcshi came to the attention
of the authors after publishing our previous work. A complex-
ity analysis of the algorithm based on this method has shown
that the number of operations, in the case of the three-center
nuclear attraction integrals, grows as n3 where n is the order of
the interpolating polynomial.19 Although for low-order polyno-
mials, such a complexity is comparable to that based on the SD̄
technique, improvements must be introduced in order to make
the GB approach efficient enough for a routine use.

4. Application of an extrapolation technique. In this respect, it
appears that Gray’s G22, 23 transformation might be the most
appropriate for the integrand occurring earlier.

Let us mention, here, that the earlier listed methods can be viewed
as the basic building blocks for the algorithms used to evaluate
multicenter integrals in the GIT approach. In practice, however,
we believe that a suitable combination of two (or more) of these
methods will perform better than any single method implemented
to handle all cases. With this view in mind, the rest of this section
is dedicated to explore the possibility the strengths of the SK-series
and the GB-quadrature.

Convergence Analysis of the SK-Series

When infinite series expansions are used for numerical computa-
tions, two major drawbacks can render the corresponding algorithm
inefficient. On the one hand, the numerical stability of the summa-
tion procedure and on the other hand the convergence of the series. In
the following these two aspects will be investigated in the SK-series
representation of the semi-infinite integral Tl,m(σ , τ). The series in
question is defined as,

Tl,m(σ , τ) =
∞∑

p=m−l

1

�(l + p + 3/2)

(√
τ

1 + σ

)p+1/2

Kp+1/2(2
√

(1 + σ)τ) (9)

To study the convergence of this series, let us start by recalling
some important results that will be used later in the section.

Let s = ∑∞
n an be a infinite series and such that the term an has a

Poincaré type asymptotic expansion of the form,

an ∼ λnn

[
α0 + α1

n
+ α2

n2
+ . . .

]
where

{
α0 �= 0
n −→ +∞

(10)

According to theorem 1 in ref. 24 (p. 6), the series s converges
linearly for |λ| < 1 and logarithmically for |λ| = 1 and 	(
) <

−1. Obviously when |λ| > 1 the series diverges.

In terms of computational effort, a linearly convergent series
can be evaluated by a brute force algorithm using direct summation.
Although this is not the most efficient approach to carry out such
an evaluation, computer time may still end up within reasonable
bounds. On the contrary, a logarithmically convergent series cannot
be evaluated, in practice, by a direct summation. A famous example
falling in this category is the so-called Riemann’s ζ(1) function,
which after summing a million terms yields a value of 14.3927
giving a false impression of convergence. Of course, a theoretical
investigation of this series clearly shows that it diverges. In the light
of the earlier remarks, let us start by deriving the Poincaré-type
asymptotic representation of its general term for large values of the
index p. According to ref. 25 (Eq. 3.10), the asymptotic expansion
of the modified Bessel function can be written as,

Kν(z) ∼ 1

2

(
2

z

)ν

�(ν)

P∑
p=0

(−1)p �(ν − p)

�(ν)

1

p!
( z

2

)p

+ O(ν−P−1) ν −→ +∞ (11)

Inserting the above asymptotic representation into the definition
of the general term of the series expansion (9), referred to as Un,
yields the following approximate,

Un ∼ 1

2

�(n + 1/2)

�(n + l + 3/2)

[
1

1 + σ

]n+1/2

×
P∑

p=0

(−1)p �(n + 1/2 − p)

�(n + 1/2)

[√
τ(1 + σ)

]p
with n −→ +∞

(12)

At this point, further simplifications can be carried out by notic-
ing that, for large values of n, �(n + α) ∼ nα . Thus, after some
simple algebra the asymptotic representation of the terms Un can be
brought into a form similar to that of eq. (10),

Un ∼
[

1

1 + σ

]n

n−l−1
[

1

2
√

1 + σ
−

√
τ(1 + σ)

2
√

1 + σ

1

n

+
√

τ(1 + σ)
2

2
√

1 + σ

1

n2
−

√
τ(1 + σ)

3

2
√

1 + σ

1

n3
+ . . .

]
(13)

In the light of the results presented in connection with eq. (10),
we may easily conclude that for σ > 0, i.e. 1/(1 + σ) < 1, the SK-
series representation of Tl,m(σ , τ) converges linearly. Of course,
from a practical point of view, though the SK-series is still lin-
early convergent for small values of σ , its convergence deteriorates
making the summation procedure computationally expensive. The
result of the earlier analysis can be summarized pictorially using a
color-coded map similar to those used for digital elevation models

Journal of Computational Chemistry DOI 10.1002/jcc



938 Duret, Bouferguene, and Safouhi • Vol. 29, No. 6 • Journal of Computational Chemistry

Figure 2. Number of terms ensuring the convergence of the SK-series
T5,0(σ , τ) as a function of σ and τ . These parameters were such that
0.001 ≤ σ ≤ 1 and 0.001 ≤ τ ≤ 1.

in geospatial data analysis. This approach allows the 3-D function
N = f (σ , τ), where N is the number of terms required to achieve
convergence, to be easily analysed. Accordingly, it can easily be
seen on Figure 2 that as σ gets closer to zero (top left corner) the
number of terms needed to ensure convergence increases rapidly.
On the other hand and as predicted by the theory, τ has little influ-
ence on the convergence of the SK-series (constant gray intensity
horizontally from left to right, Fig. 2).

Fortunately, this difficulty can be solved by means of a suitable
convergence accelerating technique that has been developed in the
past few decades. In fact, in the original paper on the GIT method,
Shavitt and Karplus have noticed that the convergence of the SK-
series varies widely and the earlier paragraph provides a proof as to
which parameters controls its convergence, i.e. σ . In their original
paper, the authors have used the Aitken’s �2 nonlinear transforma-
tion to accelerate the convergence of their series. In the following,
we would like to investigate the advantages of using the Levin u
transformation.26 In the review paper of Weniger,27 the generalized
u transformation is defined as,

L(n)

k,l (β, sn, ωn) =

k∑
j=0

(−1)j k
j

(β + n + j)k−l−1

(β + n + k)k−1

sn+j

ωn+j

k∑
j=0

(−1)j k
j

(β + n + j)k−l−1

(β + n + k)k−1

1

ωn+j

(14)

in which s is the limit of the sequence, sn its n-th partial sum and ωn

the n-th remainder, that is ωn = s− sn. The earlier formula provides
the exact limit for any sequence that can be written as,

sn = s + (β + n)lωn

k−1∑
j=0

cj

(β + n)j
, k, l, n ∈ N

∗ (15)

where N
∗ = N − {0}. As can be seen, the extrapolation formula

(14) depends on the remainder ωn. Although for general series the
analytical expression of ωn is unknown, few suggestions were made
and were found to work very well in practice. For instance for loga-
rithmic,26 alternating26 and convergent strictly alternating28 series,
the following remainders were suggested,




ωn = (β + n)an for logarithmicaly convergent series

ωn = an for alternating series

ωn = an+1 for convergent strictly alternating series

(16)

The derivation of the aforementioned formulas as well as many
of their theoretical aspects were thoroughly discussed by Weniger
in ref. 27. In addition a useable Fortran routine, referred to as
Glevin (ref. 27, p. 52), was also provided. This routine is used to
illustrate the benefits of the Levin u transformation in improving
the convergence of the SK-series. The outcome of this experiment
is summarized in Table (1) in which the values of the SK-series
were generated for selected values of σ purposely chosen to be
close to zero, since it is in this region that convergence difficulties
occur.

Based on the values listed in Table 1, it can clearly be seen that
accelerating the original SK-series improves its convergence, since
extra exact digits are gained in the process. However, even though
the calculations required by Levin’s u transformation were carried
out using appropriate recurrence relations to ensure numerical sta-
bility, the acceleration process is not fully stable. Indeed, according
to the values of Table 1, it may be noticed that after n = 17 or 18, the
estimated limit starts fluctuating, which ultimately leads to a loss
of accuracy. This observation is obviously in conflict with the the-
ory which predicts that the estimated limit should be more accurate
as the number of partial sums increases. Obviously, enlarging the
internal representation of floating numbers, that is using quadru-
ple precision (as provided in many Fortran compilers), yields a
more stable procedure. This workaround is, however, not very suit-
able for an intensive routine that is at the heart of any GIT-based
multicenter integral, since it will lead to a dramatic computational
penalty.

Implementation Strategy of the GB Quadrature
for the Evaluation of Tl,m(σ , τ)

In previous work,29 preliminary results have shown that a numer-
ical procedure using a tailored Gauss quadrature, known as GB,
can be a good candidate for the evaluation of the semi-infinite inte-
gral Tl,m(σ , τ). The selection of this method was motivated by two
facts. On the one hand, series expansions can be very costly owing
to their poor convergence. On the other hand, applying a classical
quadrature is not recommended because of the singular behavior of
the integrand. GB quadrature was elaborated with a view to com-
pensate for these shortcomings, since the singular term is included
as part of the weight function W(z) = √

z exp(−σ/z − τ z). Note
that the term

√
z is merely a convenience, since this allows the

moments to be expressed in terms modified Bessel functions of the
second kind Kn+1/2(2

√
στ) that have closed analytical expressions.
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Table 1. Acceleration of the SK-Series Using Levin’s u Transformation.

n 104Ln
n(β, sn, (β + n)an)

a 104Ln
n(β, sn, (β + n)an)

b 104Ln
n(β, sn, (β + n)an)

c 104Ln
n(β, sn, (β + n)an)

d

15 5.56979540388427(−4) 5.56979540416457(−4) 5.53018006840289(−4) 5.53018006846880(−4)

16 5.56979540318605(−4) 5.56979540244135(−4) 5.53018006219076(−4) 5.53018006202258(−4)

17 5.56979539905240(−4) 5.56979540133946(−4) 5.53018005806925(−4) 5.53018005802322(−4)

18 5.56979540784951(−4) 5.56979540062138(−4) 5.53018005254347(−4) 5.53018005549722(−4)

19 5.56979537825869(−4) 5.56979540014497(−4) 5.53018007065773(−4) 5.53018005387549(−4)

20 5.56979546193032(−4) 5.56979539982370(−4) 5.53017999091708(−4) 5.53018005281870(−4)

21 5.56979522978574(−4) 5.56979539960380(−4) 5.53018023148069(−4) 5.53018005212064(−4)

22 5.56979589202469(−4) 5.56979539945119(−4) 5.53017959850841(−4) 5.53018005165375(−4)

23 5.56979379859304(−4) 5.56979539934391(−4) 5.53018119654682(−4) 5.53018005133788(−4)

24 5.56980140547945(−4) 5.56979539926761(−4) 5.53017692867075(−4) 5.53018005112191(−4)

25 5.56977779658011(−4) 5.56979539921272(−4) 5.53019099520965(−4) 5.53018005097280(−4)

26 5.56992914489160(−4) 5.56979539917284(−4) 5.53015596051774(−4) 5.53018005086892(−4)

27 5.56972046491779(−4) 5.56979539914358(−4) 5.52958206952717(−4) 5.53018005079595(−4)

28 5.56963549818559(−4) 5.56979539912192(−4) 5.53011953601722(−4) 5.53018005074428(−4)

29 5.56968184364744(−4) 5.56979539910575(−4) 5.53008554588115(−4) 5.53018005070744(−4)

30 5.56964410712436(−4) 5.56979539909358(−4) 5.52989656312023(−4) 5.53018005068099(−4)

31 5.56956914942583(−4) 5.56979539908435(−4) 5.53017094564084(−4) 5.53018005066189(−4)

32 5.56993537853547(−4) 5.56979539907731(−4) 5.53015792453635(−4) 5.53018005064800(−4)

33 5.56978780721298(−4) 5.56979539907190(−4) 5.53015518944974(−4) 5.53018005063786(−4)

34 5.56976340230520(−4) 5.56979539906771(−4) 5.53015354080221(−4) 5.53018005063041(−4)

35 5.56975279473866(−4) 5.56979539906445(−4) 5.53015002685314(−4) 5.53018005062491(−4)

36 5.56974758728678(−4) 5.56979539906190(−4) 5.53012606356496(−4) 5.53018005062084(−4)

37 5.56974948999922(−4) 5.56979539905990(−4) 5.53018159599067(−4) 5.53018005061781(−4)

38 5.56975808602963(−4) 5.56979539905832(−4) 5.53016894836986(−4) 5.53018005061554(−4)

39 5.56976698622764(−4) 5.56979539905706(−4) 5.53016636833971(−4) 5.53018005061384(−4)

40 5.56977252570164(−4) 5.56979539905605(−4) 5.53016561659583(−4) 5.53018005061256(−4)

41 5.56977482887447(−4) 5.56979539905525(−4) 5.53016562041707(−4) 5.53018005061159(−4)

42 5.56977402001894(−4) 5.56979539905460(−4) 5.53016599029677(−4) 5.53018005061086(−4)

43 5.56976461640496(−4) 5.56979539905407(−4) 5.53016640223254(−4) 5.53018005061030(−4)

44 5.56983876441984(−4) 5.56979539905369(−4) 5.53016642240955(−4) 5.53018005060989(−4)

45 5.56979581692137(−4) 5.56979539905317(−4) 5.53016482131995(−4) 5.53018005060950(−4)

aEstimated limit of the SK-series T5,0(0.001, 1) using double precision.
bEstimated limit of the SK-series T5,0(0.001, 1) using quadruple precision. s45 = 5.56979307996937(−4) and
s = 5.56979539905165(−4).
cEstimated limit of the SK-series T5,0(0.005, 1) using double precision.
dEstimated limit of the SK-series T5,0(0.005, 1) using quadruple precision. s45 = 5.53017824256391(−4) and
s = 5.53018005060845(−4).

In the following we describe the implementation of a numerical
procedure geared toward the calculation of Tl,m(σ , τ) in which
strong emphasis is put on efficiency. Two cases are to be studied
separately.

1. For large values of σ , the SK-series is expected to converge
fast and hence the motivation to rely on this representation for
σ ≥ 2. In fact, the larger the σ the faster is the convergence of
the SK-series; this feature should be used in order to optimize
the number of terms that need to be computed. To refine the
observation of Shavitt and Karplus, a simple regression analysis
was applied in order to build a functional relationship between the
number of terms (ensuring a satisfactory convergence) and the
parameter σ ,

n =
⌊
−0.0200σ 3 + 0.4959σ − 4.346σ + 23.567 + 1

2

⌋
(17)

2. For small values of σ , the use of a tailored Gauss quadrature pro-
vides a possible solution allowing the algorithmic complexity to
be maintained within reasonable bounds. In this case, the com-
putation can be optimized by transforming slightly the integral
Tl,m(σ , τ),

�(m + 1/2)Tl,m(σ , τ) =
∫ +∞

0
zl−m−2Fm

(
1

z

)

×
[√

z exp

(
−σ

z
− τ z

)]
dz

= σ l−m−1/2
∫ ∞

0
zl−m−2Fm

(
1

σu

)

×
[√

u exp

(
−1

u
− βu

)]
du (18)
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where β = στ . With respect to algorithmic efficiency, the eval-
uation of multicenter integrals by means of the GB quadrature is
likely to be slow if the corresponding roots and weights are to be
evaluated on the fly for each value of σ and τ . The change of vari-
able introduced in the integral given by (18) allows a special GB
weight W(1, β; z) to occur within the integrand. This is advanta-
geous since the number of roots and weights to be computed is
likely to be smaller than when the general weight W(σ , τ ; z) is
used. Indeed, for a general GB weight function, a set of roots and
weights needs to be computed for each couple (σ , τ) while for
W(1, β; z) the computation needs to be done for each value of β.
To further increase the efficiency of the algorithms, the roots and
weights of the GB quadrature corresponding to W(1, β; z) are
computed for values of β ranging from near zero to some large
value. A small increment is used. During a typical computation
of a given multicenter integral, one of the following scenarios
may occur,

(a) The product στ coincides exactly with one of the values of β

for which the roots and weights have been stored. In this very
unlikely case, the computation is straightforwardly done.

(b) The product στ ≤ βmax. In this case, the integration will be
carried out using the GB roots and weights that have been
computed for β closest possible to στ . Clearly, an additional
term of the form exp[−(στ − β)u] needs to be included as
part of the integrand.

(c) The product στ > βmax. In this case, a set of new roots and
weights are computed on the fly.

It must emphasized that introducing the term β into the calculation
makes it easy to calculate the weights and roots of the GB quadrature.
Of course, the parameter σ is now part of the Boys function for

which a variety of very efficient algorithms have been developed.
For real case studies, i.e., computation of molecular structures, some
intelligence needs to be implemented within the software so as to
gather statistics that will be used to select the value of βmax in such
a way as to minimize the number of orthogonal polynomials to be
computed on the fly.

Complexity Analysis

Based on the mathematical structure of multicenter integrals in the
FIT approach (4), it may be argued that FIT is more advantageous
than GIT, particularly in the case of four-center integrals, since these
quantities end up defined as a triple integral as opposed to a quadru-
ple integral in the case of the GIT. Although, this may seem to be
an interesting argument from a theoretical point of view, this is not
necessarily true when addressing the computability of such quanti-
ties. The following intends to show that by suitably implementing
the GB-based algorithm for the GIT approach, its complexity ends
up to be similar to what was done for the FIT. Indeed, it is well
known that, in the FIT approach, the innermost semi-infinite integral
involves a strongly oscillating integrand that requires a specialized
technique to ensure its accurate evaluation. This aspect of the com-
putation has been thoroughly studied by one of us and led to the
SD̄ method.18 The benefits of this method have been reported in
many papers supported by a large number of numerical experi-
ments. In the following we compare the complexity of the GIT- and
FIT-based methods in the case of a four-center integral involving s
orbitals.

Starting from the expression of the four-center integral derived
by Shavitt and Karplus using 1s orbitals [see eq. (16) in ref. 11],
we obtain after some algebra the following formula in the case of
arbitrary s orbitals,

JGIT(n1, n2, n3, n4) = N (n1, α1)N (n2, α2)N (n3, α3)N (n4, α4)

2n1+n2+n3+n4+4π

∫ 1

u=0

du

u(n1+1)/2(1 − u)(n2+1)/2

∫ 1

v=0
dv

pn1+n2+n3+n4+1

v(n3+1)/2(1 − v)(n4+1)/2

×
∫ 1

w=0
dw(1 − w)(n1+n2−1)/2w(n3+n4−1)/2σ 3/2

∫ +∞

z=0
dz(σ z)(n1+n2+n3+n4)/2Hn1

[
α1p

2

√
1 − w

u

√
σ z

]

× Hn2

[
α2p

2

√
1 − w

1 − u

√
σ z

]
Hn3

[
α3p

2

√
w

v

√
σ z

]
Hn4

[
α4p

2

√
w

1 − v

√
σ z

]
erf

(
1√
σ z

)
W(1, στ ; z) (19)

in which the normalization term is such that N (n, α) =
(2α)n+1/2/

√
(2n)! and W(µ, ν; z) is the GB weight function

defined as,15

W(µ, ν; z) = √
z exp

[
−µ

z
− νz

]
, with

{ 	(µ) > 0
	(ν) > 0

(20)

The parameters p, σ , and τ occurring in the earlier equations are
such that,

σ = u(1 − u)

1 − w

a2

p2
+ v(1 − v)

w

c2

p2
(21)

τ = p2

4

[
1 − w

u
α2

1 + 1 − w

1 − u
α2

2 + w

v
α2

3 + w

1 − v
α2

4

]
(22)

p = ‖u
−→
AB − v

−→
CD + −→

BD‖ (23)

where A, B, C, and D are the centers of the orbitals. In practice,
the condition on µ and ν given in eq. (20) is satisfied, because the
integration of the multiple integral defining the interaction integrals
is usually carried out by means of a suitable Gauss product rule.
As a result and based on the definitions of σ and τ [cf. eqs. (21)
and (22)], these parameters cannot vanish, since classical Gauss
quadratures (excluding Gauss–Lobatto) do not use the boundaries
of the integration interval.
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At this point, let us count the number of elementary opera-
tions needed to compute the integral (19). Since multiplications and
the evaluation of transcendental functions are the most demand-
ing in CPU time, these only will be included in our counting
procedure.

On the basis of the values listed in Table 2, we are now in a
position to give the number of elementary operations required by

Table 2. Counting Elementary Operations for the Computation of the
Multiple Integral in Eq. (19).

Integration over u Operations

u1 = √
u 1

u2 = √
1 − u 1

u−(n1+1)

1 × u−(n2+1)

2 1 + 1 + 1

Total 5 + (1 + 1)a

Integration over v Operations

v1 = √
v 1

v2 = √
1 − v 1

Denominator = v−(n3+1)

1 × v−(n4+1)

2 1 + 1 + 1

px,y,z = u
−→
ABx,y,z − v

−→
CDx,y,z + −→

BDx,y,z 3(1 + 1)

p2 = p2
x + p2

y + p2
z 1 + 1 + 1

p = √
p2 1

pn1+n2+n3+n4 /denominator 1 + 1

Total 17 + (1 + 1)a

Integration over w Operations

w1 = √
1 − w 1

w2 = √
w 1

σ = [u(1 − u)/(1 − w)](a2/p2) + . . . 4 + 4
τ = (p2/4)[(1 − w)/uα2

1 + . . .] 2 + 2 + 2 + 2 + 2
σ 3/2 1b

Total 21 + (1 + 1)a

Integration over z Operations

z1 = √
σ z 1

zn1+n2+n3+n4
1 1

x1 = (α1p)/2(w2/u1)z1 5
HN+1(x1) =

2x1HN (x1) − 2NHN−1(x1) =
H1(x1)HN (x1) − 2NHN−1(x1)

3(N − 1)

erf(1/z1) 1 + 1
exp[−(στ − βc)z] 1 + 1 + 1
zn1+n2+n3+n4

1 × Hn1 (x1) × Hn2 (x2) × . . . 6

Total 3(n1 + n2 + n3 + n4) + 6 + 1a

The roots and weights of the Gauss–Bessel quadrature are assumed to be
computed beforehand.
aExtra operations due to a multiplication by the weighting factor and the
innermost integral (when applicable).
bThe term wn1+n2−1

1 × wn3+n4−1
2 does not occur in the computation, since it

is accounted for as part of the Gauss-Jacobi weights.
cThe parameter β corresponds to the value of στ for which the roots and
weights are stored.

the multiple quadruple integral in eq. (19),

NGB =
Nu∑
i=1


7 +

Nv∑
j=1

[
19 +

Nw∑
k=1

23

+
( Nz∑

l=1

3(n1 + n2 + n3 + n4) + 7

)] 


= [3(n1 + n2 + n3 + n4) + 7] NzNwNvNu

+ 23NwNvNu + 19NvNu + 7Nu (24)

Based on this relationship, it can clearly be seen that when the
roots and weights of the GB quadrature are stored, the cost of the
computational procedure is proportional to the product of the orders
of the interpolating polynomials used to evaluate each integral. At
this point, it is of interest to count the number of elementary oper-
ations needed by the semi-infinite integral occurring in (19) if the
evaluation is performed solely by means the SK series. Expanding
the Hermite polynomials and collecting the appropriate powers of
the integration variable, yields after some algebra to the following
result,

S =
�n1/2�∑

a

(−1)a

a!(n1 − 2a)!

[
α1p

√
1 − w

u

]n1−2a

×
�n2/2�∑

b

(−1)b

b!(n2 − 2b)!

[
α2p

√
1 − w

1 − u

]n2−2b

×
�n3/2�∑

c

(−1)c

c!(n3 − 2c)!
[
α3p

√
w

v

]n3−2c

×
�n4/2�∑

d

(−1)d

d!(n4 − 2d)!
[
α4p

√
w

1 − v

]n4−2d

Tα,0(σ , τ) (25)

where α = n1 + n2 + n3 + n4 − (a + b + c + d) + 1. Interestingly,
the number of operations required by Tα,0(σ , τ) (7) when computed
by means of the following three-term recurrence relation,

Up+1 = 1

(α + p + 3/2)(1 + σ)

[
τ

(α + p + 1/2)
Up−1 + (p + 1/2)Up

p = m − l + 1, m − l + 2, . . . pmax

]
(26)

is at least 6pmax + α. This number is then compounded since the
earlier operation is performed inside the innermost summation in
eq. (25). In contrast, a brute force scheme in which the terms are
computed independently requires only pmax + α + 1 operations to
be performed inside the innermost summation. As a result, it is this
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implementation that is used to compare the complexity of the GB
and SK-series based algorithms.

Now, inserting the number of operations needed as part of the
innermost summation in eq. (25) and taking into account that each
summation requires an additional multiplication, since the Hermite
polynomial coefficients must multiply the next summation, yields
the following,

NSK = (�n1/2� + 1�) + (�n1/2� + 1�)(�n2/2� + 1�)
+ (�n1/2� + 1�)(�n2/2� + 1�)(�n3/2� + 1�)
+ (�n1/2� + 1�)(�n2/2� + 1�)(�n3/2� + 1�)(�n4/2� + 1�)

+
[

pmax + 1 − 1

2
(�n1/2� + �n2/2� + �n3/2� + �n4/2�)

]

× (�n1/2� + 1)(�n2/2� + 1)(�n3/2� + 1)(�n4/2� + 1)

(27)

In the earlier equation, we have omitted to add the overhead cost
required for the computation of the Hermite coefficients and the
terms Tp described in parts one and two of Table 3. Inspection of
the earlier equation clearly shows that, since NSK depends on the
product of the quantum numbers n1, n2, n3 and n4, it is expected
to grow rapidly as such quantum numbers increase. In contrast,
according to eq. (24) a GB-based algorithm will require [3(n1 +
n2 +n3 +n4)+7]Nz operations and it grows linearly with increasing
values of the quantum numbers. This feature is very advantageous
in practice, since it helps keeping the computational effort within
reasonable bounds.

Let us turn, now, to count the number of operations required
by the evaluation of the semi-infinite integral in the frame-
work of the FIT method. In such a case, the four-center

integral involving s type orbitals yields the following semi-infinite
integral,

SFIT =
∫ +∞

z=0

Bn1+n2+1[β(u, z)
−→
AB]

β(u, z)2(n1+n2)+1

× Bn3+n4+1[γ (v, z)
−→
DC]

γ (v, z)2(n3+n4)+1
j0(‖�v‖z) dz (28)

where,

j0(z) = sin(z)

z
(29)

�v = (1 − v)
−→
DC − (1 − u)

−→
AB + −→

AD (30)

β(u, z) =
√

(1 − u)α2
1 + uα2

2 + u(1 − u)z2 (31)

γ (v, z) =
√

(1 − v)α2
3 + vα2

4 + v(1 − v)z2 (32)

In order to carry out a comparative study between the efficiency
of the procedures used to evaluate multicenter within the frame-
work of the FIT and the GIT, it suffices to compare the complexity
of the algorithms used to evaluate the innermost integrals in the ear-
lier equations. The rationale behind this restriction is the due to the
similarity of the outer integrals, i.e. over u and v, in both GIT and
FIT, and this will likely to involve a similar number of elementary
operations. In the case of the FIT, the SD̄ transformation is proba-
bly the most suitable procedure for integrals involving a product of
an oscillatory Bessel function j0(αx) and exponentially decreasing

Table 3. Counting the Number of Elementary Operations Required to Compute the Semiinfinite Integral (25) by
Means of the SK Series.

Coefficients of the Hermite polynomialsa Number of operations

x1 = α1p
√

(1 − w)/u Computed before stepping into summation over a [cf. eq. (25)].
(−1)a/[a!(n1 − 2a)!]xa

1 Computed and stored in a one-dimension array. This requires 2(n1 − 1) + 1 operations.

A similar approach is applied to the Hermite polynomials Hn2 , Hn3 , and Hn4 , hence leading to a total of 2(n1 + n2 + n3 + n4 − 4) operations.

Other termsa Number of operations

1/�(l + p + 3/2) Computed and appropriately stored as part of the initialization of the system.

Tp = √
τ/(1 + σ)

p+1/2
Kp+1/2(2

√
τ(1 + σ)) Computed before stepping into the summations over a, b, c, and d in eq. (25). This requires (4pmax)

b

operations.
1/�(α + p + 3/2) × Tp This is computed inside the innermost summation in eq. (25). This requires (pmax + α + 1)c operations.

Total (required inside the innermost summation)c pmax + l + 1

apmax denotes the number of terms required to ensure convergence of the SK series.
bThe three-term recurrence relation, Up+1 = 1/(1+σ)[τUp−1 +(p+1/2)Up] is used to compute the product in question.
cThis product requires only one multiplication that needs to be performed inside the innermost summation of eq. (25).
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term. According to Safouhi, the SD̄ transformation can be
written as,

SD̄(2,j)
n =

n+1∑
i=0

(
n + 1

i

)
(1 + i + j)nF(xi+j)/

[
x2

i+jG(xi+j)
]

∑n+1
i=0

(
n + 1

i

)
(1 + i + j)n/

[
x2

i+jG(xi+j)
] (33)

where xi+j = (i + j + 1)π and F(x) = ∫ x
0 G(t) sin(t)dt. In the case

under study the function G(t) is defined as,

G(t) = 1

‖�v‖z

Bn1+n2+1[β(u, z)
−→
AB]

β(u, z)2(n1+n2)+1

Bn3+n4+1[γ (v, z)
−→
DC]

γ (v, z)2(n3+n4)+1
(34)

Following the analysis given previously in Table 2 of ref. 19, the
number of elementary operations required by the evaluation of the
semi-infinite integral (28) using the SD̄ can be written as,

NSD̄ = [(j + 1) + (n + 1)]NLeg[19 + 3(n1 + n2 + n3 + n4)]
(35)

where n and j are the parameters of the SD̄ transformation. As for
the term NLeg, it stands for the order of the Legendre quadrature used
to compute the integral F(x) occurring in (33). Interestingly, it can
be seen from eqs. (35) and (24) that the number of elementary oper-
ations involves the same dependence on the quantum numbers, i.e.
3(n1 +n2 +n3 +n4). This clearly shows that the complexity of both
the SD̄-and the GB based algorithms is similar, provided that the
roots and weights of the GB quadrature are not computed on the fly.

Conclusion

In the course of this work, we have highlighted two major aspects
of the algorithm using the GIT. First, it was shown that when the
SK series is used to compute the semi-infinite integral, its conver-
gence can be dramatically slow for small values of σ . In this respect,
a convergence accelerator such as the Levin u transformation can
be used to accelerate the convergence but may suffer severely due
to numerical instabilities. Second, from a complexity perspective,
it was shown that a GB based algorithms (for which the roots and
weights were stored beforehand) performs better than the SK-series,
especially for large values of the principal quantum numbers. For
the purpose of the present work, the roots and weights of the special
GB quadrature using W(1, β; z) were stored for values of β ranging
from 0.05 to 104 with a stepsize of 0.05. The first numerical exper-
iments conducted on small systems such as CH4, C2H2, and C2H4

showed that an algorithm fully based on the GB quadrature appears
to be comparable to that build on the SD̄ method in the frame-
work of the FIT approach. At this point, the remaining unknown
is to determine the optimal number of points Nz and Nw that will
allow the double integral, i.e. over w and z, to be evaluated accu-
rately with the least amount of elementary operations and a thorough
comparison of accuracy. However, for a general purpose algorithm,

we expect that a tradeoff between speed and accuracy needs to be
found in order to accommodate extreme cases, e.g. medium to large
screening distances and medium to large interatomic distances.
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